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Intron gain by tandem genomic duplication: a novel case and
a modification of the traditional model

Ming-Yue Ma, Deng-Ke Niu

Origin and subsequent accumulation of spliceosomal introns are prominent events in the
evolution of eukaryotic gene structure. Recently gained introns would be especially useful
for the study of the mechanism(s) of intron gain because the evolutionary traces might
have not been erased by randomly accumulated mutations. However, the mechanism(s) of
intron gain remain unclear due to the presence of a few solid cases. A widely cited model
of intron gain is tandem genomic duplication, in which the duplication of an AGGT-
containing exonic segment provides the GT and AG splicing sites for the new intron.
However, successful recognition and splicing of an intron require many more signals than
those at the two splicing sites. We found that the second intron of the potato RNA-
dependent RNA polymerase gene PGSC0003DMG402000361 is absent in the orthologous
genes of other Solanaceae plants, and sequence similarity showed that the major part of
the new intron is a direct duplication of the 3' side of the upstream intron. In addition to
the new intron, a downstream exonic segment of 168bp has also been duplicated. Most of
the splicing signals were inherited from the parental intron/exon structure, including a
putative branch site, the polypyrimidine tract, the 3' splicing site, two putative exonic
splicing enhancers and the GC contents differentiated between the intron and exon. We
propose a modified version of the tandem genomic duplication model, termed as the
partial duplication of the preexisting intron/exon structure.
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ABSTRACT

Origin and subsequent accumulation of spliceosomal introns are prominent events in the
evolution of eukaryotic gene structure. Recently gained introns would be especially useful for the
study of the mechanism(s) of intron gain because the evolutionary traces might have not been
erased by randomly accumulated mutations. However, the mechanism(s) of intron gain remain
unclear due to the presence of a few solid cases. A widely cited model of intron gain is tandem
genomic duplication, in which the duplication of an AGGT-containing exonic segment provides
the GT and AG splicing sites for the new intron. However, successful recognition and splicing of
an intron require many more signals than those at the two splicing sites. We found that the
second intron of the potato RNA-dependent RNA polymerase gene PGSC0003DMG402000361
is absent in the orthologous genes of other Solanaceae plants, and sequence similarity showed
that the major part of the new intron is a direct duplication of the 3’ side of the upstream intron.
In addition to the new intron, a downstream exonic segment of 168bp has also been duplicated.
Most of the splicing signals were inherited from the parental intron/exon structure, including a
putative branch site, the polypyrimidine tract, the 3’ splicing site, two putative exonic splicing
enhancers and the GC contents differentiated between the intron and exon. We propose a
modified version of the tandem genomic duplication model, termed as the partial duplication of

the preexisting intron/exon structure.
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INTRODUCTION

Although, spliceosomal introns are the characteristic feature of eukaryotic nuclear genes, their
origin and subsequent accumulation during evolution remain obscure. There are several purposed
models of the spliceosomal introns gain, which include intron transposition, transposon insertion,
tandem genomic duplication, insertion of an exogenous sequence during double-strand-break
repair, insertion of a group II intron, intron transfer and intronization (Yenerall & Zhou 2012).
Comparative analyses of discordant intron positions among conserved homologous genes have
been carried out in diverse eukaryotic lineages. Except for a few studies (Fablet et al. 2009; Li et
al. 2009; Torriani et al. 2011; van der Burgt et al. 2012; Verhelst et al. 2013), the observed
frequency of intron gain has generally been found to be much lower than those of the intron loss,
and there is very limited supporting evidence for the intron gain models (Csuros et al. 2011;
Hooks et al. 2014; Irimia & Roy 2014; Roy & Gilbert 2005; Roy & Penny 2006; Yenerall et al.
2011; Yenerall & Zhou 2012; Zhu & Niu 2013). Recently, Collemare et al. (2013) claimed that
the abundance of introns in extant eukaryotic genomes could not be explained by traditional
models of intron gain, but can be possible by a new model, the insertion of introner-like elements
(van der Burgt et al. 2012). Here, we investigate a novel case of intron gain and also highlight

the importance of tandem genomic duplications in gene evolution.

MATERIALS AND METHODS

The genome sequences and annotation files of potato (Solanum tuberosum) (PGSC_DM v3),
tomato (Solanum lycopersicum) (ITAG2.3), and tobacco (Nicotiana benthamiana) (version 0.4.4)
were downloaded from SGN (Sol Genomics Network) (Bombarely et al. 2011), while Pepper

Genome Database (release 2.0) (Qin et al. 2014) was used for the pepper (Capsicum annuum L.)

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1439v1 | CC-BY 4.0 Open Access | rec: 17 Oct 2015, publ: 17 Oct 2015




56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

(Zunla-1). The scaffold sequences of eggplant (Solanum melongena) were downloaded from
NCBI (SME 12.5.1, http://www.ncbi.nlm.nih.gov/genome/). The SAR files of the potato whole-
genome shotgun (WGS) reads (SRP007439) and the leaf, tuber, and mixed-tissue transcriptomes
(SRP022916, SRP005965, SRP040682, and ERP003480) were retrieved from the Sequence
Read Archive of NCBI (http://www.ncbi.nlm.nih.gov/sra/). We mapped the RNA-Seq reads to
the genomes by using TopHat version 2.0.8 (Kim et al. 2013), while BWA (alignment via
Burrows-Wheeler transformation, version 0.5.7) (Li & Durbin 2009) was used for the WGS
reads. We used default parameters for both programs. The orthologous proteins were identified
by using the best reciprocal BLAST hits with a threshold E value of < 10710, In addition, the
orthologous relationships were confirmed by using the SynMap
(http://genomevolution.org/CoGe/SynMap.pl).

The RNA-dependent RNA polymerase (RdRp) genes encode those enzymes which catalyze
the replication of RNA from an RNA template. They have been identified in all the major
eukaryotic groups and play crucial roles in the regulation of development, maintenance of
genome integrity, and defense against the foreign nucleic acids (Willmann et al. 2011; Zong et al.
2009). The PGSC0003DMG402000361 orthologous sequence in eggplants was manually
annotated with references to the annotations of the orthologous genes in potato, tomato, pepper,
and tobacco.

By aligning 9,883 groups of orthologous mRNAs among potato, tomato and pepper, we
obtained 34,364 conserved introns in potatoes with length > 60 bp. Among these conserved
introns, we searched the consensus sequences of the 5" splicing sites, the branch sites, the
polypyrimidine tracts, and the 3’ splicing sites according to Irimia and Roy (2008) and Schwartz,

et al. (2008). The information content of these sites was calculated by using the WebLogo 3.4
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79  online (http://weblogo.threeplusone.com/create.cgi) (Crooks et al. 2004). The exonic splicing

80 enhancers of A. thaliana were identified by Pertea et al. (2007). We used them as query and
81 found 50 bp exonic sequence downstream of the target intron.

82
83 RESULTS AND DISCUSSION

84 By comparing the orthologous genes of tomatoes (Solanum lycopersicum), potatoes (Solanum
85 tuberosum) and other Solanaceae plants, we found 11 cases of precise intron loss and six cases of
86 imprecise intron loss (Ma et al. 2015). At the same time, we found the sign of an imprecise
87 intron gain in potato gene, PGSC0003DMG402000361. The second intron of this gene is found
88 unique in potatoes (Fig. 1). By analyzing the transcriptomic data of potato, we found 109 RNA-
89  Seq reads that are exclusively mapped to the annotated exon-exon boundary (Supplemental
90 Information 1: Table S1), which confirmed the annotation of this intron. Based on the
91 phylogenetic tree of the species being compared (Fig. 2), there were two possible explanations
92  for the presence/absence of the intron. The first was the gain of a new intron in potatoes, and the
93 second was four parallel intron loss events occurred in the other four species: tomato, eggplant,
94 pepper, and tobacco. According to the principle of parsimony, we concluded that the second
95 intron of the potato gene PGSC0003DMG402000361 was gained after the divergence of potatoes
96 and tomatoes.
97 The intron gain was accompanied by a 168 bp insertion in the downstream exon (Fig. 1).
98 For BLAT search (Kent 2002), new intron and the inserted exonic sequence was used as a query
99 sequence against the whole potato genome, and it was found that the combined sequence is a
100 direct duplication of the upstream sequence that co-occurs with a small insertion of an exogenous
101  sequence (10 bp) between the duplicates (Fig. 3A). We were aware of this fact that two nearly

102  identical regions in a reference genome might either be a true duplicate or a false due to an error
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in genome assembly. To verify the duplication in the potato gene PGSC0003DMG402000361,
we found three sources of evidence. Firstly, 62 whole genome shotgun (WGS) reads were
exclusively mapped crossing the four boundaries of two duplicates (Supplemental Information 1:
Table S2). Secondly, 109 RNA-Seq reads were exclusively mapped crossing the boundary of the
two duplicates in mature mRNA, i.e., the position of the new intron (Supplemental Information
1: Table S1). Thirdly, there are ten nucleotide differences between the duplicates (Fig. 3B).

Close examination of the coding region confirmed that the duplication and the insertion did
not cause any frame-shifts. Furthermore, we tested whether PGSC0003DMG402000361 is still a
functional gene, or a pseudogene, by surveying its nonsynonymous and synonymous substitution
rates, dy and ds, respectively. Using the phylogenetic tree of PGSC0003DMG402000361 and its
orthologous genes in tomato, pepper, and tobacco, we performed a likelihood-ratio test (LRT) to
compare two models. The first model was the null hypothesis that the gene was undergoing
neutral evolution, in which case the dy/ds value of PGSC0003DMG402000361 would be equal to
one. In the alternative model, the estimated value of dy/ds would be < 1 (Yang 2007). The dy/ds
was 0.3101; the LRT statistic, 2AL (twice the log likelihood difference between the two
compared models), was 74.7; and the y? test supported the hypothesis that the
PGSC0003DMG402000361 gene was subject to purifying selection (P < 10716),

According to Logsdon et al. (1998), strong evidence of intron gain must satisfy the two
conditions. The first one is a clear phylogeny to provide support for the intron gain, while the
second is an identified source element of the gained intron. Given the clear phylogeny and the
identity of the source sequence, we consider the second intron of the potato gene

PGSC0003DMG402000361 to be a well-supported case of a newly gained intron.
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125 The present case of intron gain is somewhat different from the tandem genomic duplication
126  model of intron gain that was originally put forward by Rogers (1989). In that model, tandem
127  duplication of an exonic segment harboring the AGGT sequence generates two splice sites for
128  the new intron: 5'-GT and 3'-AG, and the new intron comes from the duplication of exonic

129  sequence. It is now well known that the two splice sites do not contain sufficient information to
130  unequivocally determine the exon-intron boundaries (Lim & Burge 2001). Accurate recognition
131 and efficient splicing of an intron also requires a polypyrimidine tract, an adenine nucleotide at
132 the branch site, and many other cis-acting regulatory motifs (Schwartz et al. 2009; Spies et al.
133 2009; Wang & Burge 2008; Wang et al. 2004). Duplication of exonic segments might happen to
134 generate a combination of the required signals and also produce a functional intron (Hellsten et
135 al. 2011), but it is unlikely that preexisting polypyrimidine tracts and other splicing signals are
136 commonly present in coding sequences. Additionally, introns are often remarkably richer in AU
137 than exons (Amit et al. 2012), and this difference has been demonstrated to be a requirement for
138 efficient splicing (Carle-Urioste et al. 1997; Luehrsen & Walbot 1994). The phenomena of direct
139 introns gain from duplicated exonic segments is particularly unlikely in plants, and it is due to
140 the striking difference of base content between exons and introns. In the present case of intron
141  gain, the duplication includes the 3’ side sequence of an intron and the 5’ side of the downstream
142 exon (Fig. 3A). The 3’ splicing site signal (CAG), the polypyrimidine tract

143 (TCTTCCAATGCCT), and the putative branch site (TTTAC) of this novel intron was inherited
144  from the parental intron (Fig. 3B, 3C). Moreover, the two overlapped putative exonic splicing
145 enhancers of the 3' flanking exon, TCAGCT and CAGCTC, and the GC contents differentiated
146  between the intron and exon (36% vs. 46%) were also inherited from the parental copy. The 5’

147  splicing signal of the novel intron, GTAAG, was provided by the exogenous sequence of 10 bp.
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148  Utilization of some of the active splicing signals of the parental intron is apparently a more

149  efficient method of intron gain. Therefore, we propose a modified version of the tandem genomic
150  duplication model, termed as partial duplication of a preexisting intron and the flanking exon.
151 Segmental duplication containing entire introns would be more likely to increase the gene intron
152 number and also has been observed previously (Gao & Lynch 2009). In the present paper, we
153  confine our discussion to the creation of new introns rather than the propagation of preexisting
154 introns.

155 The modified version of the tandem genomic duplication model of intron gain could also be
156 termed as imprecise intron gain, which highlights the co-occurring insertion of the coding

157 sequence. Generally, the researchers seek intron gains in highly conserved orthologous genes.
158 Thus, only introns flanking conserved exonic sequences are likely to be identified as a new one.
159  Due to this methodology, the frequency of intron gain by segmental duplication might have been
160 underestimated previously. To be consistent with this idea, a study that specifically explored

161 intron gains by segmental duplications revealed tens of new introns in humans, mice, and

162  Arabidopsis thaliana (Gao & Lynch 2009). This result is in stark contrast to the comparative

163  studies of their highly conserved orthologous genes, which found very few or no intron gains at
164  all (Coulombe-Huntington & Majewski 2007; Fawcett et al. 2012; Roy et al. 2003; Yang et al.
165 2013). Considering the high frequency of internal gene duplications, which is 0.001-0.013

166 duplications/gene per million years (Gao & Lynch 2009), it can be stated that intron gain by

167 segmental duplication may be an important force shaping the eukaryotic gene structure. With the
168 increasing number of very closely related genomes (i.e., diverged within ten million years) to be
169 sequenced, we expect to find more intron gains by segmental duplication in the near future.

170
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CONCLUSIONS

In the potato gene PGSC0003DMG402000361, we found a novel intron originated from tandem
duplication. The duplicate includes the 3’ side sequence of an intron and the 5’ side of the
downstream exon. Most splicing signals which include, a putative branch site, the
polypyrimidine tract, the 3’ splicing site, two putative exonic splicing enhancers and the GC
contents differentiated between the intron and exon were inherited from the parental intron/exon
structure. By contrast, the widely cited model of intron gain is tandem duplication of an exonic
segment containing AGGT, which would create the GT and AG splicing sites. The case of intron
gain which we observed, requires a modified version of the tandem genomic duplication model:
partial duplication of the preexisting intron/exon structure. As we see, this modified version is

more consistent with the mechanisms of intron recognition and splicing (Schwartz et al. 2009;

Spies et al. 2009; Wang & Burge 2008; Wang et al. 2004).
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Figures

Figure 1. Alignments of coding sequences showing the intron gain and a flanking insertion
in the potato gene PGSC0003DMG402000361.

The presence and absence of the intron are represented by 1 and 0, respectively. The orthologous
genes used as references are Solycl12g008410.1 in tomato, Capana09g000243 in pepper, and
NbS00003153g0003 in tobacco. The orthologous region in eggplants was manually identified by

the best reciprocal program, BLAST, and manually annotated.

Figure 2. Phylogenetic tree used to identify the intron gain in Solanum tuberosum.

The tree was adapted from Sarkinen et al. (2013) and is not scaled according to substitution rates.

The presence and absence of the intron are represented by + and —, respectively.

Figure 3. The intron gain by tandem genomic duplication in the potato gene
PGSC0003DMG402000361.

(A) A schematic diagram showing the creation of a new intron by partial duplication of the
parental intron (marked in blue line) and the insertion of a short exogenous sequence (marked in
red line). (B) Alignment of the two copies of the duplication and the inserted exogenous
sequence (marked in red). The splicing sites, the putative branch site, the polypyrimidine tract,
and two overlapping putative exonic splicing enhancers (ESE; TCAGCT and CAGCTC) are

underlined. Sites differing between the two copies are indicated with bold blue letters. (C) The
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consensus sequences of the introns conserved among potatoes, tomatoes and peppers. These

sequences were used to recognize the splicing signals for the new intron.
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Figure 1(on next page)

Alignments of coding sequences showing the intron gain and a flanking insertion in the
potato gene PGSC0003DMG402000361

The presence and absence of the intron are represented by 1 and 0, respectively. The
orthologous genes used as references are Solyc12g008410.1 in tomato, Capana099g000243
in pepper, and NbS00003153g0003 in tobacco. The orthologous regions in eggplants were

manually identified by the best reciprocal program, BLAST, and manually annotated.
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Figure 2 (on next page)

Phylogenetic tree used to identify the intron gain in Solanum tuberosum

The tree was adapted from Sarkinen et al. (2013) and is not scaled according to substitution

rates. The presence and absence of the intron are represented by + and -, respectively.
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Figure 3(on next page)

The intron gain by tandemgenomic duplication in the potato gene
PGSC0003DMG402000361

(A) A schematic diagram showing the creation of a new intron by partial duplication of the parental intron
(marked in blue line) and the insertion of a short exogenous sequence (marked in red line). (B) Alignment
of the two copies of the duplication and the inserted exogenous sequence (marked in red). The splicing
sites, the putative branch site, the polypyrimidine tract, and two overlapping putative exonic splicing
enhancers (ESE; TCAGCT and CAGCTC) are underlined. Sites differing between the two copies are indicated
with bold blue letters. (C) The consensus sequences of the introns conserved among potatoes, tomatoes
and peppers. These sequences were used to recognize the splicing signals for the new intron.
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