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Mining integrated semantic networks for drug repositioning

opportunities

Joseph Mullen, Simon J Cockell, Hannah Tipney, Peter Woollard, Anil Wipat

Current research and development approaches to drug discovery have become less fruitful

and more costly. One alternative paradigm is that of drug repositioning. Many marketed

examples of repositioned drugs have been identified through serendipitous or rational

observations, highlighting the need for more systematic methodologies to tackle the

problem. Systems level approaches have the potential to enable the development of novel

methods to understand the action of therapeutic compounds, but requires an integrative

approach to biological data. Integrated networks can facilitate systems level analyses by

combining multiple sources of evidence to provide a rich description of drugs, their targets

and their interactions. Classically, such networks can be mined manually where a skilled

person is able to identify portions of the graph (semantic subgraphs) that are indicative of

relationships between drugs and highlight possible repositioning opportunities. However,

this approach is not scalable. Automated approaches are required to systematically mine

integrated networks for these subgraphs and bring them to the attention of the user. We

introduce a formal framework for the definition of integrated networks and their associated

semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm for

mining semantically-rich networks for occurrences of a given semantic subgraph. This

algorithm allows instances of complex semantic subgraphs that contain data about

putative drug repositioning opportunities to be identified in a computationally tractable

fashion, scaling close to linearly with network data. We demonstrate the utility of our

approach by mining an integrated drug interaction network built from 11 sources. This

work identified and ranked 9,643,061 putative drug-target interactions, showing a strong

correlation between highly scored associations and those supported by literature. We

discuss the 20 top ranked associations in more detail, of which 14 are novel and 6 are

supported by the literature. We also show that our approach better prioritizes known drug-

target interactions, than other state-of-the art approaches for predicting such interactions.
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ABSTRACT 12

Current research and development approaches to drug discovery have become less fruitful and more

costly. One alternative paradigm is that of drug repositioning. Many marketed examples of repositioned

drugs have been identified through serendipitous or rational observations, highlighting the need for

more systematic methodologies to tackle the problem. Systems level approaches have the potential

to enable the development of novel methods to understand the action of therapeutic compounds, but

requires an integrative approach to biological data. Integrated networks can facilitate systems level

analyses by combining multiple sources of evidence to provide a rich description of drugs, their targets

and their interactions. Classically, such networks can be mined manually where a skilled person is able

to identify portions of the graph (semantic subgraphs) that are indicative of relationships between drugs

and highlight possible repositioning opportunities. However, this approach is not scalable. Automated

approaches are required to systematically mine integrated networks for these subgraphs and bring them

to the attention of the user. We introduce a formal framework for the definition of integrated networks and

their associated semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm

for mining semantically-rich networks for occurrences of a given semantic subgraph. This algorithm

allows instances of complex semantic subgraphs that contain data about putative drug repositioning

opportunities to be identified in a computationally tractable fashion, scaling close to linearly with network

data. We demonstrate the utility of our approach by mining an integrated drug interaction network built

from 11 sources. This work identified and ranked 9,643,061 putative drug-target interactions, showing a

strong correlation between highly scored associations and those supported by literature. We discuss the

20 top ranked associations in more detail, of which 14 are novel and 6 are supported by the literature.

We also show that our approach better prioritizes known drug-target interactions, than other state-of-the

art approaches for predicting such interactions.

13

Keywords: drug repositioning, data integration, data mining, semantic networks, semantic subgraphs,

bioinformatics, systems approaches
14

INTRODUCTION 15

Drug repositioning is the application of established, approved compounds to a novel therapeutic appli- 16

cation. This process is a rapidly-evolving issue in the area of drug development, having the potential to 17

reduce both drug development costs and the time taken for a drug to reach the market. Many repositioned 18

drugs currently on the market have been discovered through either serendipitous or rational observations. 19

However, these manual approaches are not efficient given the potentially huge search space of drug-target 20

(D-T) interactions. Systematic approaches to searching for repositioning opportunities are required to 21

provide an efficient and scalable alternative to manual investigations. 22

A large number of studies have detailed computational approaches to aid in the systematic identification 23

of drug repositioning opportunities, including methodologies based on: chemical structure (Keiser et al., 24

2009), protein structure and molecular docking (Moriaud et al., 2011), phenotype similarity (such as 25
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side-effect similarity (Yang and Agarwal, 2011) and gene expression similarity (Lamb et al., 2006)) or 26

genetic variation (Sanseau et al., 2012). 27

More recent approaches to drug repositioning focus on the creation of integrated networks which 28

combine data from multiple analyses, to give a systems level view of cellular and molecular processes 29

(Chen et al., 2012; Cockell et al., 2010; He et al., 2011). This approach provides a complementary path 30

to reductionist science in understanding complex phenomena. Semantically-rich integrated networks, 31

which utilise a graph-based representation, are a convenient method of representing the types of integrated 32

data necessary for finding drug repositioning opportunities (Betzler et al., 2011). In graph-based data, 33

entities, such as proteins or drugs, are represented as vertices. Interactions between these entities, such 34

as protein-protein interactions or a drugs binding to a protein are captured in edges. In semantic graphs 35

each vertex and edge in the graph is assigned a type from a predefined set. Vertices and edges are also 36

are annotated with attributes. Graph representations of complex systems are widely used in computer 37

science, social and technological network analysis science due to their ability to represent structured 38

and semi-structured data (Riaz and Ali, 2011). Within bioinformatics graph-based representations are 39

also widely adopted, particularly as a means of representing data produced during an exercise in data 40

integration and in protein-protein interactions networks. 41

In the context of these integrated networks, subgraphs are connected components of the parent 42

network (Gallagher, 2006). These subgraphs formally capture local relationships between the elements 43

represented in the graph. Often, the relationships in a given subgraph are indicative of a particular 44

biological phenomenon. In the case of drug repositioning networks, the types of relationships include 45

amongst others: interactions between drugs and their targets, interactions between targets, and the 46

diseases associated with particular targets. Therefore, within the integrative graph are subgraphs that 47

describe repositioning opportunities as a result of their semantic and topological properties. Once 48

appropriate subgraphs have been observed and defined they can be used as templates to find instances 49

of these subgraphs, and related subgraphs, within a given graph to highlight similar drug repositioning 50

opportunities. 51

For example, chlorpromazine is an anti-psychotic drug that is also approved as an antihistamine 52

(Mitchell, 1993). The interactions of chlorpromazine can be captured in an integrated network (Fig. 53

1). Data from DrugBank version 2.5 (DBv2.5) (Wishart, 2006) provides three interactions between 54

chlorpromazine and single protein targets; none of these interactions explain the antihistaminic affects of 55

the drug. Structurally, chlorpromazine is very similar to the antiemetic trimeprazine. DBv2.5 captures 56

an interaction between trimeprazine and the Histamine H1 receptor, a known target for antihistamines. 57

Through guilt-by-association, we can therefore predict the Histamine H1 receptor as a target for chlor- 58

promazine, an interaction captured in the latest editions of the DrugBank database. The topological and 59

semantic properties of the subgraph depicted in Fig. 1B describe a repositioning relationship that could 60

be generically applicable to any two drugs and their target. Fig. 1B describes a situation whereby a 61

compound, structurally similar to a compound with a known target, may also bind to the same target 62

(the inference is represented as the dashed line). This real example can therefore be used to derive a 63

template semantic subgraph that can be used for searching for similar, but novel, drug-target associations 64

relationships involving different drugs and targets. This template semantic subgraph therefore describes 65

a pattern indicative of a drugs interaction with a target, highlighting potential new indications for the 66

drug. Although Fig. 1 shows a simple triad, semantic subgraphs capturing data relevant to repositioning 67

opportunities are likely to be more complex. In the context of drug repositioning, manual identification of 68

potential repositioning opportunities from large target networks is possible, though not efficient for the 69

systematic analysis of such large networks. The definition of semantic subgraphs for known repositioning 70

opportunities, in combination with an algorithm for the mining of integrated complex networks for these 71

subgraphs, allows us to highlight potential repositioning in a more systematic and exhaustive fashion. 72

In this paper we introduce a formal framework for the definition of a semantic subgraph for integrated 73

networks. We also present DReSMin (Drug Repositioning Semantic Mining), an algorithm for searching 74

integrated networks for occurrences of a given semantic subgraph using semantic distance thresholds. 75

DReSMin optimises the search time for larger subgraphs by including a semantic graph pruning step 76

and applying a method for splitting large subgraphs prior to searching. We demonstrate the utility of 77

our approach by searching an integrated drug dataset for semantic subgraphs that are indicative of drug 78

repositioning opportunities, particularly focusing on inferring D-T interactions. As part of this work we 79

updated an existing integrated dataset used for in silico drug discovery (Cockell et al., 2010). Finally we 80

2/25

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1427v1 | CC-BY 4.0 Open Access | rec: 12 Oct 2015, publ: 12 Oct 2015



demonstrate that our approach can be successfully used to predict putative D-T interactions that were not 81

explicitly represented in the integrated network. 82

Graphs 83

Definition of our graph model A graph G is defined as a ordered pair (V,E), where V is a set of vertices 84

(or nodes), and E ∈ V ×V is a set of edges (or relations). Each e ∈ E is a pair (vi,v j) where vi,v j ∈ V . 85

Edges represent relations between vertices. Edges may be directed or undirected. Both vertices and edges 86

may be labelled, typed and attributed. 87

DReSMin, requires a directed (edges have a direction associated with them) graph where vertices and 88

edges are labelled with types Tv and Te respectively, where Tv and Te are drawn from a finite hierarchy of 89

types H, and are annotated with attributes. The algorithm allows for multigraphs (vertices vi and v j are 90

permitted to have multiple edges between them) and for vertices to contain self-loops (vi may have an 91

edge directed toward itself). For the remainder of this paper |V (G)| will be used to represent the number 92

of vertices contained in graph G. 93

Classical subgraph definition Subgraph isomorphism is a task in which two graphs, G & Q are given 94

as input and one must determine whether G contains a subgraph that is isomorphic to Q: is there a 95

subgraph G′(V ′,E ′) : V ′ ⊆V,E ′ ⊆ E? During the search of a query graph, a mapping (M) is expressed as 96

the set of ordered pairs (v,m) (with v ∈ G and m ∈ Q ) and so M = {(v,m) ∈VG ×VQ|v is mapped onto 97

m}; that is M : G′ 7→ Q. 98

Semantic subgraph definition A semantic subgraph is defined as Q = (V,E,Tv, fv,Te, fe) , where V is 99

a set of vertices, E is a set of edges, Tv is a set of node types and Te is a set of edge types. fv : V � Tv 100

and fe : E � Te are surjective functions; each node is assigned a node type and each edge an edge type 101

from Tv or Te respectively. A semantic subgraph aims to infer a relation between vertices of a particular te, 102

where a relation does not exist; for example between a compound and a target (Fig. 1B). 103

Graph matching 104

Several approaches have been described for combining semantic information with network motif topology 105

including the list coloured motif problem (Betzler et al., 2011; Lacroix et al., 2006). In this case a 106

motif (M) is defined as a multiset of colours, or types. An occurrence of M is a subset of vertices that 107

forms a connected subgraph whose multiset of colours, or types, matches that of M exactly (Lacroix 108

et al., 2006). Although this approach demonstrates how network motifs may be extended to incorporate 109

semantic information, it does not allow for topological exacts to be identified. The ability to identify 110

sub-components of a target network that match a defined topology is a necessity in situations where the 111

topology of a subgraph is believed to aid in describing the functionality of the sub-component. The task 112

of identifying mappings of a predefined subgraph with similar topology from a larger graph is known as 113

the graph matching problem (Gallagher, 2006). 114

There are different variations of the graph-matching problem. For example, exact matching occurs 115

when the mapping between the vertices of the two graphs is edge-preserving; a mapping contains all 116

edges defined by the query. One of the most stringent forms of exact matching is subgraph isomorphism 117

(Conte et al., 2004) which aims to find all occurrences of a query graph and is an NP-complete problem 118

(Washio and Motoda, 2003). Currently, algorithms addressing this problem are exponential in performance 119

relative to the size of the input graphs (Gallagher, 2006). Many algorithms which have been developed 120

to address the subgraph isomorphism problem are based on the exhaustive algorithm developed by 121

Ullmann (1976). Applying an exhaustive method to the identification of drug repositioning opportunities 122

is important to ensure all possible novel applications for a drug are investigated. Using a backtracking 123

approach, Ulmann’s algorithm finds solutions by incrementing partial solutions or abandoning them 124

when determining they cannot be completed (Ullmann, 1976). An extension of the Ullman approach, 125

incorporating the semantics of a graph, has been implemented using inexact (Djoko et al., 1997), as well 126

as exact approaches (Cordella et al., 2004; Giugno and Shasha, 2002). However, as yet, none of these 127

approaches have been applied to the automated identification of drug repositioning opportunities. 128

Whilst searching for semantic subgraphs it is important to consider the similarity between the query 129

subgraph and the target, both in terms of graph topology and the meaning of the annotations on vertices 130

and edges. A measurement of semantic similarity between elements of a mapping and the equivalent 131

element in a query must be introduced to the search and the degree of similarity can be expressed as a 132
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semantic distance. Numerous measures have been developed to score the semantic similarity between 133

two ontological concepts (Ge and Qiu, 2008; Noy, 2004). Previous work in the area of intelligence 134

link analysis has used ontology-based semantic similarity scoring methods for pattern matching (Seid 135

and Mehrotra, 2007). In Seid and Mehrotra’s algorithm, an inexact topological search is carried out 136

with matches semantically scored based on their Least Common Ancestor (LCA) within an ontology. 137

Topological and semantic scores are then combined and k ranked matches returned. 138

Whilst approaches described are adequate for their particular setting, here we present a new exhaustive 139

graph matching approach to aid in the identification of potential drug repositioning opportunities from 140

a target network. We therefore describe an algorithm for this task which is an improvement on those 141

introduced for the purpose of drug repositioning. 142

MATERIALS AND METHODS 143

Algorithm 144

We have developed DReSMin, an algorithm for the detection of semantic subgraphs. This algorithm 145

returns all mappings of a semantic subgraph that match at a level equal to, or above a given threshold, ST. 146

In this case our application for the algorithm is the identification of a semantic subgraph (Q) which may be 147

indicative of drug repositioning opportunities within a target graph (G). Examples of semantic subgraphs 148

may be initially drawn from a set of templates, that is the graph representation of known repositioned 149

drugs, such as chlorpromazine, shown in Fig. 1A. The algorithm is made up of four main components 150

which are described in Fig. 2. These components comprise: (i) Semantic graph pruning (ii) Topological 151

search (iii) Semantic subgraph distance exclusion (iv) Semantic subgraph splitting. 152

Semantic graph pruning We are concerned only with identifying semantic subgraphs that match, 153

semantically, at a level equal to, or above our threshold. (Note: In this work, the semantic distance 154

between two graph entities is calculated using the semantic distance calculator described in the ’Semantic 155

subgraph distance exclusion’ section.) In this graph pruning component of the algorithm, any vertices 156

(and their associated edges) in G which are above a certain semantic distance from those in Q are removed 157

from G. This step allows any vertices that are semantically distant from our query to be removed prior to 158

a search, cutting down the search space. Taking G, Q and a semantic threshold (ST) each tv ∈ Tv(Q) are 159

sent to the semantic subgraph distance calculator (termed SDC and described later in the manuscript), 160

and scored against every tv ∈ Tv(G). If SDC(tv(Q), tv(G))< ST then all v ∈V (G) of type tv are removed 161

from G as well as any e ∈ E where v = vi or v = v j. Finally after all semantically insignificant elements 162

are removed from G, all isolated v ∈V (G) that may have resulted from the edge pruning step are also 163

removed. 164

Topological matching Many algorithms addressing the problem of subgraph isomorphism build on 165

Ullman’s work. These applications include: GraphQL (He and Singh, 2008), GADDI (Zhang et al., 2009) 166

and, one of the most efficient, the VF algorithm (Cordella et al., 1999). Performance is increased in 167

these algorithms by exploiting different join orders, pruning rules and auxiliary information to prune out 168

negative candidate subgraphs as early as possible. We carry out topological matching using a variation 169

of the VF algorithm (Cordella et al., 1999). The VF algorithm is exhaustive and suitable for working 170

with ‘large’ graphs (up to 3×104 vertices) and employs a depth-first strategy implemented in a recursive 171

fashion (Cordella et al., 1999). During a search using the VF algorithm, the search space is minimised via 172

the introduction of topological pruning rules (Cordella et al., 1999). Integrated networks typically surpass 173

the aforementioned ’large’ graphs in size, particularly true within the biological and pharmaceutical 174

settings. As data volumes continue to grow (e.g. omics technologies continue to mature) it is important to 175

develop exhaustive algorithms capable of scaling with the data. 176

Our initial implementation of the VF algorithm showed poor scalability and so, as an enhancement 177

to the VF algorithm, we introduce three steps to improve the efficiency of searching for topological 178

subgraphs. These three steps include: a set of rules used to determine the appropriate vertices at which an 179

instance of the search is started (initial candidate set), as described in (1) below; a topological pruning 180

rule, based on a closed world assumption, as described in (2) below; and a semantic thresholding step 181

(described in the next section of the manuscript). Focussing on the identification of new indications for 182

existing compounds it is vital that mappings of semantic subgraphs, in this work, contain a compound. 183

1. When considering an initial candidate set of nodes from the target graph G at which to initiate 184
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the search, it is desirable to try to ensure that the set is made up of nodes of a type, X, such as 185

Compound to ensure the relevance of the portion of graph being searched. Therefore, an initial 186

candidate set for the search is chosen based on: all v ∈V (Q) whose tv ∈ Tv(Q) = X are considered 187

with v > degQ(v) (where deg represents the degree of a node) selected as v. m is made up of all 188

v ∈V (G) whose degG(v)≥ degQ(v) and tv ∈ Tv(G) = X . 189

2. When mining with a given semantic subgraph that describes a potential repositioning situation we 190

must assume that the lack of a relationship between nodes indicates the absence of a relationship 191

between the two nodes (a closed world assumption). As a result, when searching for a given 192

semantic subgraph, Q, we only consider a match if there exists no additional edges between the 193

vertices in a mapping M from the target graph G, and their equivalent vertices in Q. Therefore, 194

a mapping M is expressed as a set of ordered pairs and the closed world assumption requires 195

(M = match)∨ (deg(v) ∈ (G)≡ deg(m) ∈V (Q)). 196

Semantic subgraph distance exclusion Semantic thresholding is used to exclude matches found in G 197

that are below a given semantic distance from Q. This process is achieved through a semantic subgraph 198

distance calculator (SDC). An SDC comprises of two distance matrices, one for tv ∈ Tv(G) and one for 199

te ∈ Te(G). We have n = 18(tv) and n = 42(te) =� each matrix is represented as matrix P′ = [pi j], the 200

n×n matrix defined by; 201

pi j =







1 if pi is semantically identical to p j;

0 if pi is semantically unrelated to p j;

−1 if pi is semantically opposite to p j.

(1)

During the matching process each element of M = (Vm,Em) is scored against its equivalent in 202

Q = (Vs,Es). The resulting semantic score (SS) of M is; 203

∑
SDC(m1,q1),SDC(m2,q2)....SDC(mn,qn)

n
(2)

A semantic threshold (ST) is defined by the user prior to a search; a value ranging from 0 to 1. During 204

the search, vertices and edges pass or fail the semantic threshold. Thus we identify topological exacts and 205

semantic closeness. 206

Semantic subgraph splitting This component takes a semantic subgraph, Q, and returns a set of 207

semantic subgraphs, D, whose |V |< 4. In Fig 2. we see how this step interacts with the other components 208

of DReSMin. ∀d ∈ D produced during this step of DReSMin the target network, G, is pruned using the 209

semantic graph prune component and d, before d is searched for in G. The graph splitting component 210

allows smaller subgraphs to be searched and mappings joined based on sharing a common overlapping 211

node (ON). In order for this approach to be successful a semantic subgraph is first converted to an 212

undirected graph. The most connected node, vmax(Q), is then identified and used as ON. Of all the 213

remaining v ∈V (Q), the two most distant vertices (v1,v2) from Q are selected. Two new graphs (D1&D2) 214

are then created and populated with nodes as such: V (D1)∪ v ∈ δ (v1,ON),V (D2)∪ v ∈ δ (v2,ON), that 215

is every node in the shortest path from v1 to ON is included in D1 and every node in the shortest path from 216

v2 to ON is included in D2. Remaining vertices are then allocated depending on which graph they share 217

a connecting edge with (Fig. 3). Edges are then allocated as such: ∀e ∈ E(Q) if either V (D1) or V (D2) 218

contains both (vi,v j) of e; e is allocated to that graph. Any edges whose nodes are are not found in the 219

same graph are not allocated to the split subgraphs. As a result of this process during a search we have D1 220

and D2 as well as our original semantic subgraph, Q. A search is then started with D1 or D2, depending 221

on which has the smallest |V |. The search is started using ON, maintaining the edge set it possessed in 222

Q, reducing the initial candidate set. All starting vertices that lead to an embedding being identified are 223

then passed to the second search; reducing the initial candidate set once more. All matches from the two 224

searches who share a common ON are then mapped and a final check for any e ∈ E(Q) that were not 225

allocated to either D1 or D2 is made. This splitting may be called iteratively if either D1 or D2 still possess 226

a |V |> 3 after the first round of splitting, as demonstrated in Fig. 3. Subsequent searching will result in 227

the same set of mappings that would be identified by a non-split search (for algorithm pseudo-code and 228

discussion please see Article S1). 229
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Ranking Inferred Interactions Scoring of a semantic subgraph, Q, is achieved by determining the

number of known D-T interactions in the predicted total set of D-T interactions inferred by Q. We refer

to the complete set of inferred interactions as Q(I). A score Rq is calculated based on the ability of Q

to identify D-T interactions captured in DBv3, but not present in our Dat integrated data set (see next

section). The set of interactions that are captured in DBv3, but not captured in Dat is known as DBv3Rel

(Equation 5.).

Rq(Q) =
|Q(I)∩DBv3Rel|

|Q(I)|
(3)

Once Rq is calculated for each semantic subgraph we then score individual D-T interactions, i, based on

the cumulative score of all semantic subgraphs that predicted i.

Ri(i) = ∑
i∈Q′(I)

Rq(Q
′) (4)

DReSMin is an exhaustive algorithm, as such, scoring inferred interactions allows for ranking, with those 230

ranked higher inferred with greater confidence than others. 231

Characterisation & Application An integrated dataset for in silico drug discovery has been described 232

previously by Cockell and co-workers (Cockell et al., 2010). This dataset satisfies the requirements 233

described for our algorithm (see ’Definition of our graph model’ section) and so was used to test the 234

algorithm performance and mined for D-T interactions using a Java based implementation of DReSMin. 235

The dataset was developed in Ondex (Köhler et al., 2006) and includes compounds and targets from 236

DrugBank1 (Wishart, 2006), Proteins from UniProt2 (UniProt Consortium, 2013) as well as information 237

from eleven other databases and analysis methods (Cockell et al., 2010). An updated version of this 238

dataset was used as a test bed for this work, however the approach we describe is valid for most integrated 239

networks that adopt a semantically rigorous approach to edge and vertex type definition. 240

Utilising a graph-based data representation and providing a framework for visualisation, both vertices 241

and edges within an Ondex graph are annotated with semantically enriched metadata. Each vertex 242

(or concept) is assigned a c ∈ C, where C is a finite set of conceptClasses, while each edge or 243

relation is assigned a r ∈ R where R is a finite set of relationTypes (Köhler et al., 2006). As 244

part of this work we developed plug-ins (parsers and mappers) for the Ondex platform to extend the 245

original dataset. These plug-ins allowed us to add disease conceptClass, taken from the National 246

Drug File Reference Terminology (NDF-RT)3. Four relationTypes showing interactions between 247

Disease-Disease (has parent and has child) and Compound-Disease (may treat and 248

may prevent) originally defined in NDF-RT were also integrated. A final relationType between 249

Target-Disease (involved in) was integrated from DisGeNET4 (Bauer-Mehren et al., 2010). 250

The updated dataset, which we refer to as Dat from here on in has an additional 4,463 vertices (155,316) 251

made up of 19 conceptClasses (see Table S1) in comparison to the original, together with an 252

additional 28,736 edges (816,096), representing 42 relationTypes (see Table S2). The metagraph of 253

the dataset described is shown in Fig. S1, with a subsection shown in Fig. 4. 254

This graph shows a high degree of connectivity with a dS(G) (average node degree) of 10.42, whereby 255

degrees of vertices range from δ (G) (minimum degree) of 1 and ∆(G) (highest degree) of 15,004. Average 256

connectivity differs between conceptClasses, with Proteins displaying the highest dS(G) of any 257

conceptClass at ∼ 45. Other notable connectivity averages include Target ∼ 13, Compound ∼ 7 258

and Disease ∼ 4. All searches presented here were carried out using a semantic threshold (ST) of 0.8 259

(see Article S2). We only include vertices of type Compound in our initial candidate set. 260

Drug-Target interaction prediction evaluation We compared our ranked set of predicted D-T inter- 261

actions to those produced by another state-of-the-art method for drug target interaction prediction - a 262

ligand-based method. Many approaches to drug-target prediction use ligand-based methods. These 263

1http://www.drugbank.ca
2http://www.uniprot.org
3VA National Drug File Reference Terminology. <http://www.nlm.nih.gov/ research/umls/sourcereleasedocs/current/NDFRT

>[September, 2013].
4Gene-disease association data were retrieved from the DisGeNET Database, GRIB/IMIM/UPF Integrative Biomedical Infor-

matics Group, Barcelona. <http://www.disgenet.org/>. [September, 2013].
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methods use only ligand information to create models that learn which sub-structural features of a ligand 264

correlate with activity against a particular target (Alvarsson et al., 2014). One implementation of such an 265

approach is provided by ChEMBL5. ChEMBL provide two models for target prediction, using bioactivity 266

data with a cut-off of 1µM and 10µM respectively. These models allow for n predicted interactions 267

to be made for a given drug. Inferred interactions are also scored and can be ranked, meaning a direct 268

comparison to our approach can be achieved. Predictions using the ChEMBL models can be found in 269

compound report cards, accessed via their website. 270

Mappings between DrugBank and ChEMBL compounds were retrieved from UniChem (Chambers 271

et al., 2013) via whole source mapping 6. This mapping provides a set of 3,765 drugs that are contained 272

in both datasets, of which 57 of the ChEMBL ids mapped to >1 DrugBank ID (one to four, five to three, 273

and 51 to two). DReSMin inferred drug-target associations for 2,223 of drugs common to both databases. 274

In the comparison presented below we only consider drug-target interaction inferences involving this set 275

of 2,223 drugs involved in these associations. 276

For each of the 2,223 drugs, we identified associations with single proteins. The top 100 of these 277

associations were identified using the ChEMBL Web resource client7. Any interactions already captured in 278

Dat, or interactions from organisms other than humans, were excluded from the analysis. This process was 279

repeated for both the 1µM and the 10µM ChEMBL models, giving us two sets of predicted drug-target 280

associations. In order for a fair comparison to be made for each of the 2,223 drugs the top x8 inferred 281

single protein targets were collated and ranked. This process resulted in three sets of 216,251 ranked 282

drug-target interactions; DReS, Chem1 and Chem10. 283

RESULTS 284

Characterisation and performance of DReSMin 285

We evaluated the effectiveness of each step of our algorithm by adding each step (initial candidate set 286

selection, topological pruning and semantic distance thresholding) sequentially to the basic topological 287

search algorithm and then comparing the efficiency of each modified version to the VF2 topological 288

search. The algorithm was implemented on a 20 node Ivy-Bridge bioinformatics cluster. Performance 289

was measured as the time taken for a complete search for a semantic subgraph (Q) within a given target 290

graph (G). Random semantic target graphs (Ran) as well as random semantic subgraphs were produced 291

in order to evaluate the performance of the semantic subgraph search strategy. These random graphs 292

were formulated using an approach that attempted to replicate the semantic and topological properties of 293

Dat. In these random target graphs ∀v ∈V (Ran) of type tv, the average deg−(tv) and the average deg+(tv) 294

were maintained ∀tv ∈ Tv(Dat). Experiments were repeated 10 times. 295

The SDC and graph-pruning step display linear running times of O(n); with the former capable of 296

scoring 8×104 concept pairs per second and the latter taking < 1 second to prune a graph G, with |V (G)| 297

of 1× 106. During the performance measures we focused on semantic subgraphs with between 3-6 298

vertices. The effect on search time when altering semantic subgraph edgeset size was also examined (Fig. 299

S2) showing an improvement in performance as the edgeset size increases. This performance increase is 300

due to the fact that fewer nodes satisfy the more stringent topological rules. With more stringent pruning 301

during a run of the algorithm the search space at each state is reduced; ultimately meaning that when 302

searching for semantic subgraphs who share the same |V | but have differing |E|, the semantic subgraph 303

with the >|E| will be more efficient to search for. 304

Once semantic subgraphs reach a |V (Q)| of 4 then restricting the initial candidate set to include 305

only Compounds improves performance. It is at this point the benefits of reducing the initial candidate 306

set successfully reduce the search space, concomitantly increasing performance (Fig. 5). A similar 307

phenomenon is observed with the introduction of the closed world check, whereby the real performance 308

benefits are apparent when semantic subgraphs reach a |V (Q)| of 4 (Fig. 5). By restricting the initial 309

candidate set as well as using the closed world assumption a two fold increase in performance in 310

comparison to a purely topological approach was observed. Performance is further enhanced when 311

utilising the semantic distance calculator demonstrating an almost 10 fold performance boost when 312

comparing to the purely topological approach. 313

5https://www.ebi.ac.uk/chembl/
6www.ebi.ac.uk/unichem/ Accessed 22nd June 2015
7https://github.com/chembl/chembl webresource client
8x= 100 or, if DReSMin inferred < 100 targets for this drug, x = number of DReSMin inferred targets
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Table 1. Drug, Target and Drug-Target (D-T) Interactions present in the Dataset and DBv3.

Drug Target D-T Interaction Unique Relevant

Dat (DBv2.5) 4,772 3,037 9,227 - -

DBv3 6,180 4,080 14,570 8,768 2,919

DBv4.2 6,377 3,601 14,157 8,673 2,940*

Notes: Unique: refers to interactions not found in Dat, Relevant: subset of Unique interactions, whereby

both the drug and target can be found in Dat. *Of these 333 are unique to DBv4.2 (i.e they are not

captured in DBv3)

The semantic graph prune step introduces a small but noticeable increase in performance to DReSMin. 314

Despite an overall increase in performance the graph prune step also brings a subtle cost; any potential 315

matches containing an element that scores < ST when passed to the SDC will not be returned. It is for 316

this reason that the graph pruning step is an optional add-on to the DReSMin algorithm. It is most useful 317

when one wishes to return matches that are semantically exact to the semantic subgraph being used as a 318

query (Q). The graph split step can potentially reduce the search time for Q from that of a |V (Q)| of 6 to 319

one closer to the sum of a search for a subgraph with a |V (Q)| of 3 and a subgraph with a |V (Q)| of 4. It 320

is this step that produces the greatest improvement to performance. For example, when using the SDC 321

to search for Q, where |V (Q)|= 6 in G when |V (G)|= 1×105, takes 60 seconds, using the graph split 322

method reduces this search time to just over 8 seconds, a 7 fold increase in performance. 323

Overall, when using all three of the algorithmic steps in DReSMin, the performance of DReSMin 324

showed performance characteristics approximating a linear scale closer to O(n). This is in contrast to 325

the exponential scaling characteristics observed for the purely topological search algorithm, VF2. These 326

DReSMin performance characteristics were observed for semantic subgraphs of size |V (Q)| ≤ 6 (Fig. 5). 327

Using DReSMin with the hardware described above it is possible to complete an exhaustive, exact search 328

for a 6 node semantic subgraph in a target graph containing > 1.5×105 vertices in under 10 seconds. 329

The accuracy of the algorithm does not decrease as the target graph connectivity, or |E|, increases (Fig. 330

S3) or as the target graph |V | increases (Fig. S4). 331

Application to search for drug-target interactions 332

Semantic subgraphs were identified in Dat and used to infer novel potential D-T interactions in Dat using 333

the DReSMin algorithm. To aid in this process we utilised more recent D-T versions of the DrugBank 334

datasets that were not used to build Dat. This approach allows us to determine if D-T interactions 335

inferred from Dat using DReSMIn are likely to be supported as more knowledge is obtained. We can thus 336

understand if inferences made have any potential value to drug repositioning now, as opposed to in the 337

future. 338

To carry out this process the D-T interactions from DBv2.5 that were integrated into Dat were retrieved 339

and captured in the set DatRel. We used DBv2.5 to construct Dat in this exercise even though later 340

releases of DrugBank are available; v3.0 (DBv3) and v4.2 (DBv4.2) Knox et al. (2011). DBv3 contains 341

additional drugs, targets and their interactions to those already contained in Dat (Table 1) and 8,768 342

additional D-T interactions to those found in Dat. Of these interactions, 2,919 involve drugs and targets 343

that are present in Dat, but the interaction relationship had not yet been defined (i.e. the D-T interaction 344

had not been annotated in DBv2.5). In this work, we refer to these 2,919 interactions from DBv3 as being 345

’relevant’. These relevant interactions are represented in the set DBv3Rel (see Equation 5) and were used 346

to derive a query set of semantic subgraphs that were in turn used to mine Dat. DBv4.2 was then used as 347

a reference to validate the new repositioning opportunities identified through the mining of Dat. 348

DBv3Rel = {DatRel ∪Unique(DBv3) | d ∈ DatRel(d)∧ t ∈ DatRel(t)} (5)

Semantic subgraphs inferring drug target interactions Semantic subgraphs can be derived through 349

manual exploration of the graph and by reference to known repositioning examples. However, in this work, 350

in order to exhaustively test the DReSMin algorithm, we derived an automated method for producing a 351

set of semantic subgraphs that would be appropriate for systematically mining for new D-T interactions. 352
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In order to produce such a set, we extracted the portions of the network in Dat that contained drugs and 353

targets from the 2,919 D-T interactions whose interaction was annotated later in DBv3Rel. To extract 354

the subnetworks, each drug and target pair was identified in Dat and the subnetwork represented by 355

the shortest path between them was extracted as a semantic subgraph (Fig. 6). To identify the shortest 356

semantic subpaths, Dat was converted to an undirected graph and a Java implementation of Dijkstra’s 357

shortest path algorithm Dijkstra (1959), from the JGraphT 9 library used. On carrying out this semantic 358

subgraph identification exercise 194 different subgraphs with a |V | <10 were found to cumulatively 359

identify more than 95% of the D-T interactions in DBv3Rel and were used as a reference set for D-T 360

inference using DReSMin as described below. 361

Inference of novel drug-target interactions The 194 semantic subgraphs were used as queries to 362

search Dat using DReSMin to test the ability of the algorithm to identify D-T interactions in Dat that had 363

not yet been annotated in DBv2.5 (but are present in DBv3). DReSMin was used to identify subgraphs 364

in Dat that were similar to the query set of semantic subgraphs and therefore with the potential to 365

be indicative of novel D-T interactions and ultimately aid in the identification of drug repositioning 366

opportunities. After an exhaustive search of Dat with the 194 semantic subgraphs a set of mappings (or 367

instances) of each subgraph was identified. Semantic subgraphs were scored on their ability to identify 368

D-T interactions captured in DBv3Rel (using Equation 3), with these scores ranging from 0.0 to 0.06589 369

(Table S4). A single D-T interaction can be inferred by mappings of more than one query semantic 370

subgraph, thus adding confidence to the prediction that a D-T interaction exists. Therefore, in order to 371

rank the D-T interactions in terms of confidence, the scores assigned by all query semantic subgraphs that 372

produced a mapping containing a potential D-T interaction were summed (using Equation 4). The ∑Rq 373

of the scores of all 194 query semantic subgraphs was 0.9499 (Fig. S5) and so inferred D-T interaction 374

scores contained within mappings could potentially, range from 0.0 to 0.9459. The top ten performing 375

subgraphs, and a larger illustrative subgraph, are shown in Fig. 7. 376

A search of Dat with the set of 194 semantic subgraphs described above resulted in 906,152,721 377

mappings. These mappings now captured the potential drug target interactions in the structure of the 378

mapping subgraph. The 906,152,721 mappings predicted 9,643,061 D-T interactions that were ranked 379

as described above. Unsurprisingly, we identify the interactions from DBv3Rel that were used to create 380

the semantic subgraphs. Importantly, however, these interactions score highly, which indicates that a 381

single interaction was identified by multiple semantic subgraphs. The D-T interactions from DBv3Rel 382

consistently scored better and ranked higher than the unsupported inferred associations (Fig. 8A and 383

Fig. 8B). We also observe that the D-T interactions subsequently annotated and captured in DBv3Rel are 384

identified by two fold the number that infer D-T associations not annotated and present in DBv3Rel (Fig. 385

8C). 386

However, in order to quantify the predictive power of DReSMin we examined how many of the high 387

scoring D-T predictions were subsequently annotated in DBv4.2. DBv4.2 contains 333 interactions not 388

captured in DBv3 or Dat. In this work, these interactions are represented in the set DBv4Rel (see Equation 389

6). These 333 new interactions had not been used to construct the semantic subgraphs used for searching 390

Dat. Of the 333 D-T interactions captured in DBv4Rel, 309 were successfully identified (94%). We also 391

observed high ranking and scoring of 309 D-T interactions from DBv4Rel that were successfully identified 392

by DReSMin (Fig. 8D and Fig. 8E). The average number of semantic subgraphs that have mappings 393

inferring the 309 annotated D-T associations captured in DBv4Rel is increased >4 fold in comparison to 394

the number of semantic subgraphs that produce mappings that infer interactions not captured in DBv4Rel 395

(Fig. 8F). 396

DBv4Rel = {(DatRel ∪Unique(DBv4.2))∩DBv3Rel | d ∈ DatRel(d)∧ t ∈ DatRel(t)} (6)

Looking in more detail at the top 20 inferred D-T interactions (Table 2) we see 12 different drugs and 397

eight targets. Drugs include: three antiarrythmic calcium channel blockers (Verapamil, Mibefradil and 398

Bepridil); three phenothiazine antipsychotic agents (Promazine, Perphenazine and Thioridazine); three 399

atypical antipyschotic agents (Propiomazine, Clozapine and Quetiapine); two anticonvulsants (Zonisamide 400

and Levetiracetam) and one antiarrythmic adrenergic beta-antagonist (Propranolol). Of the 12 drugs 401

captured in the top ranked inferred D-T interactions, the average number of D-T interactions captured in 402

9 http://jgrapht.org
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Dat is ˜13, with the average number for all compounds being closer to three. The compounds present 403

in the top 20 inferred D-T interactions are well studied and annotated and are thus highly connected 404

in Dat. Targets include four voltage-dependant calcium channels (VDCC) and four G-Protein coupled 405

receptors (GPCR). VDCCs display selective permeability to calcium ions which enter a cell, and alter 406

a channel’s properties, through the pore which is formed by the a 1 subunit. We can see that three 407

sub-types of VDCC are represented in Table 2, being: L-type (CAC1C and CAC1D); P/Q Type (CAC1A) 408

and N-type (CAC1B). Members of the GPCR superfamily in Table 2 include receptors activated by the 409

neurotransmitters: serotonin (5HT7R and 5HT2B); epinephrine (ADA1A) and dopamine (DRD1). 410

The ability of DReSMin to predict novel D-T interactions was compared to the state-of-the-art ligand- 411

based method from ChEMBL. We first examined how many D-T interactions were predicted by both 412

methods (co-prediction) using interactions captured in the sets DReS, Chem1 and Chem10. Unsurprisingly, 413

due to the fact that the methods use different approaches, only 10% of the top x D-T interactions inferred 414

by DReSMin are found in the top x D-T interactions predicted by ChEMBL models (Fig.9A and Fig.9B). 415

More interestingly is the fact that DReSMin successfully infers >20 % more of the knowns from DBv4Rel 416

than ChEMBL, for both models (Fig.9C and Fig.9F). We found that DReSMin is able to rank the known 417

D-T interactions more effectively than ChEMBL, with a mean ranking position of known D-T interactions 418

from DBv4rel of ˜25,000, as opposed to the 50,000 achieved by ChEMBL. We must recognise the fact 419

that the semantic subgraphs used during this work were derived using DrugBank data and the ChEMBL 420

models trained on ChEMBL data. 421

Completing the drug-target-disease pathway The highest ranked D-T interaction identified by DReSMin,422

receiving a score of 0.49211, is supported by the literature and therefore known to the scientific commu- 423

nity. This D-T interaction is between one of the antiarrythmic calcium blockers, Verapamil, and CAC1C. 424

Within Dat eight indications are associated to Veparamil and 12 diseases associated to CAC1C. One 425

indication, hypertension, shares a has Indication association with Verapamil and a involved in association 426

with CAC1C. Although Verapamil is already used to treat hypertension, and the inferred D-T interaction 427

already known, we see how DReSMin may be used to help understand the molecular mechanism of a 428

drug and thus complete the ’drug-target-disease’ pathway. Understanding the molecular mechanisms 429

of drugs can only aide the identification of repositioning opportunities. In Fig. 10 we see examples of 430

unsupported, and therefore novel, DReSMin inferred D-T interactions that also increase understanding of 431

the molecular mechanisms involved in a drugs ability to treat a disease. Like Verapamil, Bepridil is also a 432

calcium channel blocker with known antiarrhythmia activities. Used as a treatment of hypertension, we 433

can see in Table 2 an inferred D-T association involving Bepridil and CAC1C. Bepridil is one of the two 434

drugs from Table 2 that have been withdrawn from the market due to safety concerns. For this reason it 435

is not a strong candidate to be repositioned, however, via the inferred association we are able to better 436

understand the molecular mechanism of the drugs ability to treat hypertension (Fig. 10A). 437

In Dat we see three indications for Quetiapine (Psychotic Disorders, Bipolar Disorders and Autistic 438

Disorders) and three involved in associations involving 5HT7R (Schizophrenia, Pain and Muscular 439

Diseases). Although not captured in Dat, Quetiapine is approved for the treatment of Schizophrenia. By 440

integrating this knowledge with Dat and our inferred associations we can complete another drug-target- 441

disease pathway (Fig.10C). Although Schizophrenia, along with many other diseases, is classified as a 442

psychotic disorder, we see how inferred knowledge can enable better understanding of drug-target-disease 443

pathways in more specific, as opposed to broader, disease areas. 444

Propranolol One inferred D-T interaction in Table 2 involves the antiarrythmic adrenergic beta- 445

antagonist, Propranolol, and the G protein-coupled receptor DRD1. In Dat we capture 12 indications 446

for Propranolol and 17 disease associations for DRD1, with one indication, Hypertension, in both (Fig. 447

11). Of the remaining 16 involved in associations involving DRD1 three of the diseases represent known 448

off-label indications for Propranolol being: Bipolar disorders; Schizophrenia, Alcoholism and as a 449

non-stimulant treatment for ADHD Gobbo and Louzã (2014). The remaining 12 diseases present and 450

support some interesting repositioning opportunities/studies of potential repositioning opportunities for 451

Propranolol. 452

Looking at potential indications of Propranolol that are currently being investigated by the scientific 453

community we see three that are supported by our work. Dat contains an association between DRD1 and 454

cocaine related disorders, with multiple clinical trials being undertaken to analyse the use of Propranolol 455

as a treatment for cocaine addiction NIDA (2010) as well as cocaine cravings of South Carolina (2015). 456
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Table 2. DReSMin was executed using the 194 semantic subgraphs that represented the shortest

path between the drugs and targets captured in the relevant associations

Drug (DrugBank ID) Type, Category Inferred Target (Uniprot ID) Evidence # Subs Score

Verapamil (DB00661) SM, AP CAC1C (Q13936) Y 85 0.49211

Mibefradil (DB01388) SM, WI CAC1A (O00555) 74 0.44378

Mibefradil (DB01388 ) SM, WI CAC1B (Q00975) 59 0.43097

Promazine (DB00420) SM, AP ADA1A (P35348) Y 117 0.39090

Quetiapine (DB01224) SM, AP 5HT7R (P34969) 61 0.38779

Propiomazine (DB00777) SM, AP 5HT7R (P34969) 69 0.38774

Verapamil (DB00661) SM, AP CAC1A (O00555) Y 78 0.38436

Verapamil (DB00661) SM, AP CAC1B (Q00975) Y 64 0.38180

Mibefradil (DB01388) SM, WI CAC1D (Q5SQC4) 52 0.37525

Perphenazine (DB00850) SM, AP 5HT7R (P34969) 86 0.37383

Thioridazine (DB00679) SM, AP 5HT7R (P34969) 75 0.36830

Promazine (DB00420) SM, AP 5HT7R (P34969) 75 0.36824

Propranolol (DB00571) SM, AP, IN DRD1 (P21728) 96 0.36084

Zonisamide (DB00909) SM, AP, IN CAC1B (Q00975) 50 0.35478

Levetiracetam (DB01202) SM, AP, IN CAC1B (Q00975) Y 50 0.35478

Thioridazine (DB00679) SM, AP 5HT2B (P41595) 107 0.35036

Clozapine (DB00363) SM, AP 5HT7R (P34969) Y 64 0.34799

Propranolol (DB00571) SM, AP, IN ADA1A (P35348) 84 0.34663

Bepridil (DB01244) SM, AP, WI CAC1C (Q13936) 77 0.34610

Levetiracetam (DB01202) SM, AP, IN CAC1A (O00555) 63 0.34605

Notes: See Table S4 for a detailed scoring of the 194 semantic subgraphs. Scores are used as a ranking

method for inferred interactions. Of the 20 interactions ranked highest by DReSMin, six were found in

DBv3; having literature supporting their existence. For drug Type and category: SM = small molecule,

AP = approved, IN = investigational and WI = withdrawn. Scores are to 5 decimal places. # Subs refers to

the number of semantic subgraphs that inferred the D-T interaction, with the maximum being 194.

A trial looking at the use of Propranolol as a treatment for Autism is also, at the time of writing, recruiting 457

of Missouri-Columbia (2015). Finally, a clinical trial has also been undertaken to analyse the effects of 458

using Propranolol as a treatment for drug-Induced movement disorders Corp. (2014). We can see that our 459

inferred D-T interactions allow us to predict repositioning opportunities that agree with the community. 460

DISCUSSION 461

In this paper, we explore the concept of using semantic subgraphs as a way of inferring novel D-T 462

interactions with the aim of using them to identify drug repositioning leads. We present and formalise 463

semantic subgraphs, showing how they may present patterns indicative of drug repositioning opportunities. 464

By employing a novel approach to reducing the target graph size prior to a search, and by breaking larger 465

semantic subgraphs to a set of smaller subgraphs, DReSMin significantly improves on the performance 466

of a purely topological approach to pattern matching. We also show how the approach can be used to 467

automate the identification of novel D-T interactions in an integrated semantic network, with the aid of 468

historical data. This real-world problem often requires searching for semantic subgraphs where |V (S)|> 4. 469

The optimisations we have presented here makes searching for instances of these complicated subgraphs 470

computationally tractable and scalable. We have shown an example of the application of DReSMin which 471

highlights the potential of the approach. 472

When comparing DReSMin to other state-of-the-art drug-target prediction methods we observe an 473

average co-prediction of 10%. The likely reason for the low co-prediction value is due to the fact that they 474

are two different approaches to the task. Despite the differing approaches we were able to directly compare 475

and contrast the results and found DReSMin to outperform the ChEMBL models at inferring annotated 476

DrugBank D-T interactions. Considering DReSMin is a general algorithm, not specifically developed for 477
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the inference of D-T interactions, this highlights it’s potential. Although the semantic subgraphs used 478

to search Dat were derived from the shortest paths between a drug and target from D-T interactions in 479

DBv3, these interactions were inferred, on average, by around 40 different semantic subgraphs. This is in 480

contrast to the 15 semantic subgraphs that inferred D-T interactions not captured in DBv3. Again this 481

validates the approach we employed during this work. Annotated D-T interactions were not only captured 482

by the semantic subgraph derived from the semantic shortest path between their drug and target but also 483

by many more. 484

Although DReSMin at present scores semantics based purely on the most abstract form of types, it 485

could be beneficial to include scoring metrics based on node and edge attributes, and the data-sources 486

from which they are retrieved. For example, during the process of data integration it would be useful to 487

consider dataset quality during the construction of the integrated graph and apply annotations that indicate 488

a measure of confidence in a given interaction. To this end we are currently developing a new integrated 489

dataset that will allow provenance and data to reliability to be scored during a search. This modification 490

will allow the scoring of semantic subgraphs to be not only topological and semantic but also based on 491

the reliability of the source of each element. 492

In the approach described here semantic subgraphs are derived from only the node types and edge 493

types that fall directly on the semantic shortest path between a drug and a target. In order for a semantic 494

subgraph capture even more functional detail it may be beneficial to expand the view that the subgraph 495

takes of its immediate neighbourhood. To this regard we are currently considering extending semantic 496

subgraphs to include nodes that interact with those in the semantic shortest path at a particular depth. 497

Although we present an exhaustive automated approach it is also worth noting that semantic subgraphs 498

can be drawn from real life repositioning examples via manual curation. Manually developing semantic 499

subgraphs is time consuming, however they may allow for more the creation of more accurate represen- 500

tations of a functional module representative of a drug repositioning opportunity. We hope to create a 501

library of semantic subgraphs curated from real world examples of repositioned drugs and compare the 502

accuracy and efficiency to the semantic subgraphs developed during this work. 503

With regard to the mining algorithm, as new graph mining frameworks emerge with efficient graph 504

searching algorithms (e.g. Neo4J), it may be possible to exploit these built in algorithms to implement 505

sections of the approach we describe here. However, necessarily, the nature of these implementations will 506

depend on the specific graph database. 507

We have demonstrated that our algorithm may be used to infer D-T interactions, however, like all 508

in silico approaches to analysing in vivo and in vitro systems the accuracy is limited; overly simplified 509

settings innately struggle to reflect real-life problems. Our approach, unlike many other computational 510

approaches to drug repositioning, is not limited to the inference of D-T interactions. Semantic subgraphs 511

may be designed to infer relations between any conceptClasses in a dataset and can be used to infer 512

a drugs indication, mode of action, side effect and more. We believe that the systems biology approach 513

that we describe here will allow for a more accurate, holistic, systematic approach to drug repositioning. 514
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Figure 1. An example of a simple semantic subgraph (B) is derived from the repositioning of

Chlorpromazine (A). Chlorpromazine is marketed as a non-sedating tranquilliser, but is also known to

be effective as an antihistamine Rukhadze et al. (2001) and so in A a relation is inferred between

Chlorpromazine and the Histamine H1 receptor (dashed line)
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is identified in Q (v3) and used as the overlapping node in both D1 and D2. The two most distant vertices

in Q are then identified (v1 and v6) and vertices in the path between these and ON added to the

corresponding graphs (D1 and D2). We also see that |V (D2)|> 3 and so a second call is made to graph

split giving us D21 and D22.
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Figure 5. Overview of algorithm performance with semantic subgraph (Q) queries nodeset

|V (Q)| ranging from 3-6. Graphs show each step of the algorithm reducing search time. Abbreviations:

VmaxG = initial candidate set is chosen using the vt of the node displaying the highest connectivity in Q,

COMP = compound makes up the initial candidate set, CW = closed world check implemented, SDC =

semantic distance calculator used during search, GP = semantic graph prune step implemented, GS =

graph split used. 5a (all steps plotted for |V (Q)|= 5) and 5b (focuses on GP and GS of |V (Q)|= 5).

Algorithm Performance (bottom right) shows the best approach for each semantic subgraph size.
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Figure 6. Semantic subgraphs were derived from the semantic shortest paths between a drug

and a target pair captured in DrugBank v3. A) shows a drug-target interaction captured in DBv3

made up of a drug (D1) and a target (T2) captured in our network, Dat. In order to create semantic

subgraphs D1 and T2 are identified in Dat (highlighted in green in B) and the semantic shortest paths

between the two nodes calculated (highlighted in red in B). Finally all semantic node types and edge

types that fall on the semantic shortest path are used to create a query graph (C). Note: Dashed red line

represents the inferred binds to relations, squares represent compounds, circles targets, diamonds proteins

and octagon diseases. For relation types: bi to = binds to, sim = similar to, h s s = has similar sequence.
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D-T interactions in DBv3Rel and Q108 is an example of a more complex semantic subgraph. Note:

Dashed red lines represent the inferred binds to relations, squares represent compounds, circles targets,

diamonds proteins and octagon diseases. For relation types: bi to = binds to, sim = similar to, h s s =

has similar sequence, ma tr = may treat, inv in = involved in and is a = is a.
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Figure 8. Validation of inferred D-T associations with known D-T associations from DBv3 and

DBv4.2. A, B and C show how DReSMin identifies and ranks the 2,919 known interactions from DBv3

when searching Dat. D, E and F show how DReSMin identifies and ranks the 333 known interactions

from DBv4.2. For A and D hypergeometric distribution of inferred knowns were calculated using the

scores of the validated associations. For B and E hypergeometric distribution of inferred knowns were

calculated using the ranked position of the validated interactions. C and F show the number of semantic

subgraphs that inferred knowns in comparison to the number of semantic subgraphs that inferred novel

interactions. Note: Blue line shows the highest scoring semantic subgraph; all scores above this line are

definitely inferred by >one semantic subgraph.
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Figure 9. DReSMin inferred D-T associations in comparison to those inferred using the

ligand-based similarity models provided by ChEMBL. Top graphs (A, B and C) show comparison to

those using the 1uM model from ChEMBL and bottom graphs (D, E and F) show comparison with the

10uM model. A and D show the %age crossover between the top ranked x associations from each method

for each drug. B and E show the comparative ranking of the 2,919 known D-T interactions from DBv3Rel.

C and F show the comparative ranking of the 333 known D-T interactions from DBv4Rel. In B, C, E and

F red diamonds show the mean ranking and numbers in red show the number of knowns captured by each

method. Only associations inferred by the 2,223 drugs with a mapping between DrugBank and ChEMBL

are included.
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Figure 10. Drug-target-disease pathways completed via inferred D-T associations. Data presented

is extracted from Dat with one association extracted from literature. Note: Dashed lines represent the

inferred binds to relations, zig-zag lines represent has Indication relation not captured in Dat and

extracted from literature, squares represent compound, circles target and octagon diseases.
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Figure 11. Diseases associated with Propranolol and DRD1. Drug-disease has Indication

associations involving Propranolol and gene-disease involved in associations were extracted from Dat.

Note: Dashed lines represent the inferred binds to relations, squares represent compound, circles target

and octagon diseases.
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