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ABSTRACT

The scientific and medical community is reaching an era of inexpensive whole genome sequencing,
opening the possibility of precision medicine for millions of individuals. Here we present tiling: a flexible
representation of whole genome sequences that supports simple and consistent names, annotation,
queries, machine learning, and clinical screening. We partitioned the genome into 10,655,006 tiles:
overlapping, variable-length sequences that begin and end with unique 24-base tags. We tiled and
annotated 680 public whole genome sequences from the 1000 Genomes Project Consortium (1KG) and
Harvard Personal Genome Project (PGP) using ClinVar database information. These genomes cover
14.13 billion tile sequences (4.087 trillion high quality bases and 0.4321 trillion low quality bases) and
251 phenotypes spanning ICD-9 code ranges 140-289, 320-629, and 680-759. We used these data to
build a Global Alliance for Genomics and Health Beacon and graph database. We performed principal
component analysis (PCA) on the 680 public whole genomes, and by projecting the tiled genomes onto
their first two principal components, we replicated the 1KG principle component separation by population
ethnicity codes. Interestingly, we found the PGP self reported ethnicities cluster consistently with 1KG
ethnicity codes. We built a set of support-vector ABO blood-type classifiers using 75 PGP participants
who had both a whole genome sequence and a self-reported blood type. Our classifier predicts A
antigen presence to within 1% of the current state-of-the art for in silico A antigen prediction. Finally,
we found six PGP participants with previously undiscovered pathogenic BRCA variants, and using our
tiling, gave them simple, consistent names, which can be easily and independently re-derived. Given
the near-future requirements of genomics research and precision medicine, we propose the adoption of
tiling and invite all interested individuals and groups to view, rerun, copy, and modify these analyses at
https://curover.se/su92l-j7d0g-swtofxa2rct8495.
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INTRODUCTION
Precision medicine requires a collaboration between researchers, clinicians, and patients (Brenner, 2007;
Kohane, 2015). Clinicians must incorporate genetic findings made by a community of scientists and
other clinicians to inform diagnoses and treatments (Foley et al., 2015; Lee et al., 2015; Ellingford et al.,
2015; Soden et al., 2014). Patients must be able to understand their genetic diagnoses and treatment
recommendations. Researchers should be able to generate, agree with, or dispute genetic findings guiding
these recommendations (Rehm et al., 2015; Landrum et al., 2014). For millions of genomes, they should
be able to drill down into specific locations, examine whole genomes, and separate the population based
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on phenotypic data and intrinsic data discovered by machine learning algorithms. Extensive progress
has been made to foster these connections, leading to the creation of resources such as ClinGen (Rehm
et al., 2015), COSMIC (Forbes et al., 2015), LOVD (Fokkema et al., 2011), the UCSC Genome Browser
(Karolchik et al., 2014), and EMBL-EBI (Brooksbank et al., 2014). However, as we are poised to receive
genomic datasets on an unprecedented scale, there is an opportunity to revisit the representation of the
genome and ensure it enables all the aforementioned use cases.

We feel this representation must be open and public, since public solutions encourage reproducibility
and collaboration (Buck, 2015; McNutt, 2014; Angrist and Cook-Deegan, 2014; GA4GH, 015a; Collins
and Varmus, 2015). In addition, we feel this solution must be built using individual human genomic
data. It should be able to represent all types of genomes well, including somatic and germline (Levy
et al., 2007; Chaisson et al., 2015; Zhang et al., 2011). It must have a good machine representation
that can support standardized queries and machine learning techniques. Standardized queries, such as
those implemented by the Global Alliance for Genomics and Health (GA4GH) Beacon Project(GA4GH,
015b) and GA4GH Matchmaker Exchange (MatchmakerExchange, 2015), are gaining importance as
data volumes increase and more organizations are using these data in clinical settings. Machine learning
techniques on genome sequences are used to predict phenotype (Gonzalez-Recio and Forni, 2011; Ornella
et al., 2014; Yoon et al., 2012), generate disease prognoses (Abraham et al., 2012; Kourou et al., 2014),
strengthen genome-wide association studies (Botta et al., 2014; Mittag et al., 2012; Pirooznia et al., 2012;
Roshan et al., 2011), and elucidate ancestry (Hajiloo et al., 2013). Finally, we feel this whole genome
representation must be consistent: two researchers or clinicians, given the same called genome, should
be able to generate the same representation of that genome. Consistency vastly reduces the likelihood
of error, and thus simplifies collaboration, annotation aggregation, comparison between genomes, and
analyses that span multiple studies (Sboner and Elemento, 2015).

The VCF-like representation for called genomes, which includes variant call format files (Danecek
et al., 2011) (VCF) and genome variation format files (Reese et al., 2010) (GVF), stores the places where
the called genome differs from a mostly linear reference. This type of representation is excellent at
storing annotations both on specific variants (such as allele frequency or predicted effects on protein
sequence) and on genomic regions (such as introns and exons). It also represents quality and read
depth for called genomes well. With additional software and pre-processing, these files can be used for
queries and machine learning techniques. Unfortunately, this representation has unstandardized variant
representations, so one variant can be represented many different ways (Danecek et al., 2011; github,
2015). This lack of standardization complicates machine learning, requiring a greater number of samples
to find an effect. Finally, the use of a linear reference genome does not effectively represent highly
variable regions, such as the major histocompatibility complex and cancer genomes (Church et al., 2015;
Dilthey et al., 2015).

Graphical representations are being developed to address these issues, including representing highly
variant regions (Dilthey et al., 2015). Graph-based designs are effective at conceptualizing and imple-
menting pan-genomes, the genomes of entire species (Church et al., 2015; Marcus et al., 2014). Graphical
representations will, over time, support queries and machine learning; however, the additional complexity
of using graphs will slow adoption.

We propose tiling, a new representation of whole genome sequences, as a genomic abstraction for
precision medicine. Tiling is designed to be a compromise between the VCF-like and graph representations
that includes basic quality and phasing information. It provides identical subsequences with unique
identical names, supports clinical analysis, and simplifies machine learning. Additionally, tiling allows
us to define an individual’s genome more rigorously (Text S3), providing a probabilistic estimate of the
compatibility of two genomes generated from the same sample. Here, as a demonstration of the tiling
abstraction’s use in precision medicine, we tiled 680 public genomes, and expressed them in a preliminary
GA4GH graphical representation and a GA4GH beacon query engine. We analyzed these 680 genomes
using supervised and unsupervised machine learning, found 14 pathogenic BRCA variations, and give
each variation a simple, consistent name. The open nature of our approach and data allows researchers to
use tiling to assign variants consistent names in any gene or region of interest.

RESULTS
All results described here may be found, replicated, and rerun on different data using Arvados at
http://curover.se/su92l-j7d0g-swtofxa2rct8495.
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Tiling the Genome
Tiling abstracts a called genome by partitioning it into overlapping shorter segments, termed tiles. Here we
chose each tile to be at least 250 reference bases long, with the beginning and ending 24 bases overlapping
with adjacent tiles. These overlapping 24-mers are termed “tags” and are chosen to be unique: they are
at least a 2 base distance from anywhere in the genome. Our choice of tags partitioned the GRCh37
human reference genome into 10,655,006 tiles, composed of 3.1 billion bases (an average of 314.5 bases
per tile). Each tile is labeled with an MD5 hash digest of the sequence it contains, which we term its
“variant value” and which serves as an unique, reproducible identifier for that tile. Since tags are unique,
identical sub-sequences from different tile positions in the genome are guaranteed different unique names.
Additionally, each tile is labeled with the number of tiles before it, which we term its “tile position”. One
tile position can have multiple tile variants - one for each sequence observed at that position. We term the
pan-genome of all tile variants for all tile positions a “tile library”. Note that choosing a different set of
unique 24-mer tags would result in a different tiling. Therefore, each tile is also labeled with the set of
tags used to create it, which we term a “tag set”. Detailed methods for tiling genomes are described in
Text S1.

Tiling 680 public genomes from the 1000 Genomes Project and the Harvard Personal Genome Project
(PGP) covered 14.13 billion tiles (4.519 trillion bases), resulting in a tile library containing 1.246 billion
tile variants (0.656 trillion bases, 116.9 tile variants per tile position). On average, each new genome
added 0.1719 new tile variants per position. 68.66% of these tile variants had no genomic variants but
contained at least one uncalled base, which we consider to be a poorly sequenced region. By representing
poorly sequenced regions outside the tile library, the tile library will take, at the most, 0.3904 billion tile
variants (0.299 trillion bases, 36.64 tile variants per tile position, 0.0539 new tile variants per position per
genome). The predicted growth of the tile library for one million tiled genomes is discussed in Text S2.

An individual called genome can be easily represented as an array referencing the tile library. Each
position in the array corresponds to a tile position and points to the tile variant observed at that position
for that individual. Since the variant value is the hash of the sequence observed at the tile position, the
variant value and the tag set used to generate the tile may be used to unambiguously refer to subsections
of the genome. This property provides consistency and reproducibility when representing genomes and
important variants.

Annotations may be added to the tile library for both tile positions and tile variants. Each tile position
may be annotated with its chromosome location to support translation between reference genomes and
queries defined by chromosomal loci. Additionally, tile positions may be annotated with gene names,
introns, and exons. Tile variants may be annotated similarly to variants in VCF-like representations.
Annotations are added to and stored in the tile library, which is population-wide. Since individual
sequences use pointers to tile variants in the tile library, all individuals with a pointer to a tile variant in an
annotated library will be annotated identically with all tile variant and tile position annotations.

After tiling the 680 public genomes, we annotated all tiles with ClinVar database information, exome
aggregation consortium (ExAC) database information, and the annotations produced from the clinical
annotation of variants (CAVA) tool (Muenz et al., 2015). We also expressed the BRCA1 and BRCA2
regions for the PGP whole genome sequences in the GA4GH graphical representation (Fig. 1), and
exposed them in a query engine.

Organizing the PGP Phenotype data
We collected the PGP reported and predicted phenotypes, organized them into an SQLite3 database,
and exposed them using Arvados at http://curover.se/su92l-j7d0g-k6xjjk9g0l5pmqh.
This information is recollected periodically to produce snapshots of the PGP data. Each snapshot is about
200 MB, and included in this database snapshot are pointers, often in the form of a URL, to the whole
genome files, user uploaded files, and reports for each. A snapshot is also included in the Arvados project
associated with this paper (http://curover.se/su92l-j7d0g-swtofxa2rct8495).

Unsupervised Learning - Principal Component Analysis
We performed PCA on well-sequenced positions in the autosomal chromosomes for our 680 whole
genomes. Our tiling contains 10,080,498 tile positions per phase for the autosomal chromosomes
(20,160,996 total). We defined a tile position to be well sequenced if all tile variants at that position were
free of no-calls for the entire population. This definition is very stringent, since 680 genomes, each with
randomly distributed single-base no-calls in only 1% of tile positions, would be expected to have 11,867
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Figure 1. Tile library built from the Harvard Personal Genome Project participants’ whole
genomes for exon 11 of BRCA2, with the sequence of participant hu92C40A highlighted. The tile
library is shown in the context of the UCSC Genome Browser (Karolchik et al., 2014). Participant
hu92C40A has self-reported breast cancer and has a BRCA2 frameshift mutation. The two phases of
participant hu92C40A are highlighted (one with a red dashed line and one with an orange solid line) and
their sequences are shown - this participant is homozygous for all tile positions except 00.247.0b2e. Tile
variants are ordered into columns by tile position. Tags are the smaller rectangles and tile variants are the
larger ones. The zoomed-in tile variant is labeled with its tile position, tile variant value (which is the
MD5 digest of the start tag, the variant sequence, and the end tag), and the HGVS labels for the genomic
variation present in the tile. The number of haplotypes containing each tile variant are shown in
parenthesis.

well sequenced tile positions. At 2.5% no tile positions would be expected to be well sequenced. In our
data, only 29,366 (0.146%) of the autosomal tile positions were well sequenced for all 680 whole genome
sequences.

We then projected the 680 tiled sequences onto the first two principal components obtained from
PCA (Fig. 2). The projection of the 502 1000 Genomes sequences results in clusters corresponding
to ethnic background of the participants (Fig. S1). This replicates the ethnic clustering from the
1000 Genomes Consortium in 2012, who projected SNP data onto the first two principal components
(1000GenomesProjectConsortium, 2012). The projection of the 178 PGP whole genome sequences also
clusters the population based on ethnic background (Fig. S2). Colors shown in Fig. 2 for the PGP data
were obtained by examining both the PGP reported ethnicities and their reported grandparent country of
origin. Any participant reporting to be white and having at least one grandparent with a European country
of origin is colored magenta. Three participants (hu38168C, hu92FD55, and huCA017E, colored
olive) reported themselves to be Asian and have grandparents exclusively from China. One participant
(huEA4EE5, colored dark orange) reported being Hispanic or Latino and has grandparents exclusively
from Columbia. Finally, one participant (hu49F623, colored black) reported being Black or African
American and has grandparents exclusively from Ethiopia.

Supervised Learning - ABO Blood Type Classifiers
75 of the 178 PGP called genomes had self-reported ABO blood types as follows: Type O (32), Type A
(30), Type B (13), and Type AB (0). We trained two support vector machines (SVMs), one to predict A
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Figure 2. Projection of well sequenced positions in autosomal chromosomes along the first two
principal components for 680 whole genome sequences. In total, 29,366 tile positions are used out of
20,160,996 tiles per genome (10,080,498 tiles per phase) (0.146% of the genome). As expected from the
1000 Genome Project results (1000GenomesProjectConsortium, 2012), the first principal component
separates the participants of African descent from the other participants. The second principal component
separates the participants of European and Asian descent. PGP participants are marked with a circle,
1000 Genome participants are marked with a triangle. The African super population is colored with
brown shades, the Ad Mixed American super population is colored with red shades, the East Asian super
population is colored with green shades, the South Asian super population is colored in light blue shades,
and the European super population is colored in purple shades. The legend labels each specific color with
its 1000 Genomes population description, if applicable, and provides the number of whole genome
sequences with this ethnicity in parenthesis. Note the PGP european population cluster is less precise
than the 1000 Genomes cluster, and the PGP Ethiopian participant, though separate from the other
clusters, does not fall into the African super population cluster. Interestingly, the PGP self reported
ethnicities cluster consistently with the 1000 Genomes population ethnicity codes.

antigen presence and another to predict B antigen presence, using these 75 called genomes as training
data. Each tile position that was well sequenced for the 178 PGP whole genomes (3,609,599 tile positions,
16.9% of total tile positions) was treated as a feature. To reduce the number of features without losing
information, we further restricted them to tile positions that were well sequenced and had more than one
tile variant at each position for the 178 PGP whole genomes (2,097,222 tile positions, 9.84% of total tile
positions). We used both classifiers to predict the ABO type of the remaining 103 unlabelled PGP called
genomes; the classifiers with the highest accuracies generated predictions as follows: Type O (103), Type
A (23), Type B (28), Type AB (18).
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The classifier that predicted A antigen presence with the highest accuracy (93.3% ± 24.9%), measured
by leave-one-out cross-validation, was an SVM with a linear kernel, l1 regularization, and an error penalty
of 0.01. This classifier had one non-zero coefficient, weighting the second phase tile position 00.1c4.038c,
which is in Intron 1 in the ABO gene (chr9:136,149,787-136,150,036). This classifier misclassified 5
A antigen positive called genomes in the training set as A antigen negative. It predicted 43 of the 103
unlabeled called genomes to have the A antigen phenotype.

The classifier that predicted B antigen presence with the highest accuracy (84.0% ± 36.7%) was an
SVM with a linear kernel. This classifier had 1,786,803 non-zero coefficients (85.2% of the available
tile positions). The largest coefficient magnitude was 2.11∗10−5, 4 orders of magnitude less than the
coefficients of the A antigen classifiers. This classifier did not misclassify any of the training called
genomes, and it predicted 44 out of 103 called genomes have the B antigen phenotype. An in-depth
summary of the classifier parameterization results are in Text S5.

Clinical Analysis of the BRCA regions
We found 6 PGP participants with confidently called pathogenic tile variants, which we associated with
their simple, consistent tile variant values (Tables 1 and 2). All 6 variations were predicted by CAVA
to have a severe impact. We considered a tile variant pathogenic if it contains a variation generating
a premature termination codon in BRCA1 or BRCA2, excluding variations that generate a premature
termination codon in exon 27 after codon 3010 of BRCA2 (Rebbeck et al., 2015). Tile variants containing
genomic variants that result in large in-frame deletions spanning 1 or more exons or that delete transcription
regulatory regions would also be considered pathogenic tile variants; however, we did not observe any
such tile variants in our population. 4 of the 6 pathogenic tile variants contained variations in ClinVar
that were classified as pathogenic by multiple submitters. We submitted the two new variants to ClinVar,
along with the Harvard PGP identifiers associated with the genomic sequences containing these variants.

We added an evaluation of these variants to GET-Evidence, a community-edited database of variants
where researchers, the general public, and PGP participants can learn about and discuss the significance
of variants in a public, collaborative forum (Ball et al., 2012). We informed the Harvard PGP staff
of our findings. The PGP tracks the recommendations of the regulatory and ethical standards of the
GA4GH and, thus, simplifies the process of adhering with these recommendations. Additionally, by using
GET-Evidence, researchers can be assured that PGP participants will be notified of new findings in their
genomes once they are well supported by evidence. The open nature of these methods and data allows
researchers to evaluate their own genes and regions of interest.

First, we found participant huFFB09D is heterozygous for a BRCA2 Asn1198Lys frameshift variant in
exon 11, which is not in ClinVar. huFFB09D is a female in her 40’s with no self-reports relating to cancer,
though she reports Hashimoto’s thyroiditis. GET-Evidence reports she is also heterozygous for variant
CASP10-V410I, which is documented by GET-Evidence to have a dominant, likely protective effect
on breast cancer. Second, we found participant hu92C40A is heterozygous for a BRCA2 Phe1866Leu
frameshift variant in exon 11, which is also not in ClinVar. hu92C40A is a 71 year-old female who
reports having had breast cancer and breast biopsies in 2010. Third, we found participant huD3A569
is heterozygous for a BRCA2 Ser1982Arg frameshift variant in exon 11, which ClinVar associates
with familial breast-ovarian cancer, complementation group D1 fanconi anemia, and pancreatic cancer.
huD3A569 is a male in his 40’s. He reports having 2 skin cancer incidents that occurred in his 30’s
and a mother who has had 20+ occurrences of skin cancer. Fourth, we found participant hu72C17A
is heterozygous for a BRCA2 Lys3084Asn frameshift variant and/or splice region variant in exon 24.
ClinVar associates this variant with familial breast-ovarian cancer. hu72C17A is a male in his 50’s with
no self-reports relating to cancer. Participant hu72C17A has a cell line, GM24077, available from Coriell.
Fifth, we found participant hu82436A is heterozygous for a BRCA1 Asp1162Val frameshift variant in
exon 10, which ClinVar associates with familial breast-ovarian cancer. hu82436A is a 29 year-old male
with no self-reports relating to cancer. Finally, we found participant huCD380F is heterozygous for a
BRCA1 Val340Gly frameshift variant in exon 10, which ClinVar associates with familial breast-ovarian
cancer. huCD380F is a 33 year-old female with no self-reports relating to cancer, though she reports
Hashimoto’s thyroiditis. Further details about all participants are in Text S4.

No PGP participants in our population reported having fanconi anemia, ovarian cancer, or pancreatic
cancer, so we did not perform Fisher’s exact tests for these phenotypes. Unsurprisingly, we did not find a
significant correlation between BRCA frameshift presence and breast cancer in our relatively young cohort
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Table 1. Details about the pathogenic tile variants. Tile variants are named by their tile position, which is separated into tag set,
“paths” , and “steps” , and the MD5 digest of their sequence (see Text S1 for the description of path and step). Each tile variant is
shown with variations from the GRCh37 reference genome. All genomic variations contained within a pathogenic tile are shown
regardless of the genomic variant’s likely pathogenicity. The predicted protein change was produced by CAVA (Muenz et al., 2015)
and GET-Evidence (Ball et al., 2012). Harvard PGP ids of the Harvard PGP participants who have these variants are shown, as well
as their genotype for the tile (heterozygous is abbreviated to het; homozygous is abbreviated to hom). All loci use 0-based GRCh37
coordinates.

Tile position, Variant Value Loci Cov-
ered by Tile
Variant

Harvard
PGP IDs

Genomic Variants in Tile Predicted
Protein
Change

Predicted
Stop-Gain
Variant

00.247.0b24,
91e94cf32f709225f17f37c159930451

chr13:
32,911,657 -
32,912,133

huFFB09D
(het)

32,911,887 SNP A→G - -

32,912,080 INDEL -→A BRCA2
N1198Kfs

BRCA2
1199

00.247.0b2e,
3552b9fc68c47f5e7783addc4c2877a2

chr13:
32,913,918 -
32,914,167

hu92C40A
(het)

32,914,086 INDEL AT→C BRCA2
F1866Lfs

BRCA2
1873

00.247.0b30,
b0ee262cb5737ac19d609912fa2f0d40

chr13:
32,914,368 -
32,914,617

huD3A569
(het)

32,914,437 INDEL T→- BRCA2
S1982Rfs

BRCA2
2003

00.247.0bc8,
d16d51ee6d027ae066ea827dc181d038

chr13:
32,954,218 -
32,954,467

hu72C17A
(het)

32,954,277 INDEL AACA→TT BRCA2
K3084Nfsa

BRCA2
3086

00.2c5.04c0,
84fa1b2665461533586d77aa8c21393e

chr17:
41,243,883 -
41,244,132

hu82436A
(het)

41,243,999 SNP T→C BRCA1
K1183R

-

41,244,062 INDEL T→- BRCA1
D1162Vfsb

BRCA1
1209

00.2c5.04cb,
e318e2ddb54bb3d6cc3a5ca6749482c5

chr17:
41,246,365 -
41,246,614

huCD380F
(het)

41,246,531 INDEL -→T BRCA1
V340Gfs

BRCA1 345

aThis frameshift results in a stop-gain variant at BRCA2 3086 and removes the exon-splice site in Exon 24.
bThis frameshift results in the next variant changing from BRCA1 Lys1183Arg to Lys1183Glu and inserts a stop-gain variant at
BRCA1 1209. Next variant will change if the phasing called in the GFF file is accurate.
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Table 2. Details provided by ClinVar for the pathogenic tile variants. Tile variants are named by their tile position, which is
separated into tag set, “paths”, and “steps” , and the MD5 digest of their sequence. If variants were not present in ClinVar as of 23
July, 2015, N/A is shown.

Tile position, Variant value HGVS identifier Associated ClinVar Conditions Clinical Signifi-
cance

00.247.0b24,
91e94cf32f709225f17f37c159930451

NC 000013.10:
g.32911888A<G • Familial cancer of the breast

• Breast-ovarian cancer, familial 2
• Hereditary cancer-predisposing syndrome

Benign

NC 000013.10:
g.32912081
32912082insA

N/A N/A

00.247.0b2e,
3552b9fc68c47f5e7783addc4c2877a2

NC 000013.10:
g.32914087
32914088delAT
insC

N/A N/A

00.247.0b30,
b0ee262cb5737ac19d609912fa2f0d40

NC 000013.10:
g.32914438delT • Familial cancer of breast

• Breast-ovarian cancer, familial 2
• Fanconi anemia, complementation group D1
• Pancreatic cancer 2
• BRCA1 and BRCA2 hereditary breast and ovar-

ian cancer
• Hereditary cancer-predisposing syndrome

Pathogenic

00.247.0bc8,
d16d51ee6d027ae066ea827dc181d038

NC 000013.10:
g.32954278
32954281delAA-
CAinsTT

• Breast-ovarian cancer, familial 2

Pathogenic

00.2c5.04c0,
84fa1b2665461533586d77aa8c21393e

NC 000017.10:
g.41244000T<C • Familial cancer of breast

• Breast-ovarian cancer, familial 1
• BRCA1 and BRCA2 hereditary breast and ovar-

ian cancer
• Hereditary cancer-predisposing syndrome

Benign

NC 000017.10:
g.41244063delT • Familial cancer of breast

• Breast-ovarian cancer, familial 1
• BRCA1 and BRCA2 hereditary breast and ovar-

ian cancer

Pathogenic

00.2c5.04cb,
e318e2ddb54bb3d6cc3a5ca6749482c5

NC 000017.10:
g.41246532dupT • Familial cancer of breast

• Breast-ovarian cancer, familial 1
• BRCA1 and BRCA2 hereditary breast and ovar-

ian cancer

Pathogenic
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(Table S2). Since two participants with a BRCA frameshift mutation reported Hashimoto’s thyroiditis, we
performed a Fisher’s exact test to test the association between Hashimoto’s thyroiditis and having a BRCA
frameshift variant. This test yielded a significant p-value of 0.0125 (n = 151), uncorrected for multiple
hypothesis testing (Table S1).

DISCUSSION
Several authors have shown that human genomes can be compactly represented and queried using
reference-based compression(Layer et al., 2015; Purcell et al., 2007; Christley et al., 2009; Glusman et al.,
2011; Deorowicz and Grabowski, 2013, 2011; Kelleher et al., 2013; Wittelsbuerger et al., 2014; Rahn
et al., 2014; Durbin, 2014; Fritz et al., 2011). Tiling allows for a compact representation and enables
fast queries without decompression. By storing these compact representations in random access memory
(RAM), extremely fast queries can be achieved. Given ten racks of standard hardware with 32 nodes, each
with 256 GiB of RAM, we can store 1 million genomes in RAM if we use less than 84 MB per genome.
We can already encode 680 ethnically diverse genomes in less than 84 MB per genome, and we estimate
tiled genomes to be compressible to a few megabytes. A typical node costs about $8000, has a three year
lifetime, and requires power, cooling, space and maintenance. Consequently, this encoding enables a fully
amortized operating cost, supporting a variety of analyses and queries, of just $2.4 per genome per year
for a million genome data warehouse. This cost is 10 times better than reported previously (Haussler
et al., 2012) and does not take into account another order of magnitude in potential improvement with
better tiling encodings (Text S2).

Public domain data is ideally suited to demonstrate tiling because it facilitates openness and collabora-
tion (Buck, 2015; McNutt, 2014; Angrist and Cook-Deegan, 2014; GA4GH, 015a; Collins and Varmus,
2015). We focus on the PGP data for clinical analysis, despite its ethnic homogeneity (Fig. S2), because
it is associated with extensive phenotypes. Using the PGP data allowed us to submit variants alongside
PGP IDs to ClinVar. Having both of these identifiers enhances the accuracy of variation frequency reports,
since the variants associated with participant identifiers will not be overrepresented when other researchers
observe the same variant and have no way to tell it is from the same individual. Although we choose
to implement tiling on public data and publish the entire resulting library, this is not the only privacy
model enabled by tiling. The simple, consistent hashes tiling uses provides a mechanism to easily extend
public tile libraries. These extensions on the tile library may be kept private, fostering as much scientific
collaboration as possible without compromising patient privacy.

Graphical genome abstractions are gaining popularity, partially due to their ability to represent highly
variable regions well (Church et al., 2015; Dilthey et al., 2015). They are better suited than linear reference
genomes to represent the genome of a species (Church et al., 2015; Marcus et al., 2014). Graphical
genomes are particularly suited for cancer encodings (Oesper et al., 2012), with chromosome-scale
insertions, deletions, and inversions, which are one of the most anticipated areas of precision medicine
(Collins and Varmus, 2015). A genome tiling can naturally support these use cases, since it can be simply
converted to a graphical genome representation. To demonstrate that tiling is compatible with graphical
encoding, we encoded the BRCA1 and BRCA2 region tilings for the PGP genomes into the preliminary
GA4GH graphical database specification required for the HGVR pilot project.

Most clinicians and researchers rely on linear genome abstractions to hold annotation information.
Unfortunately, reasoning about graphical coordinate systems, annotations on these coordinates, and
annotations on specific sequences will require considerable deliberation by the clinical community. The
simplest solution, and one that will be useful for the adoption of a new genome representation, is the ability
to convert tiling into VCF-like genome representations, which we implemented for tiling. Converting
a tile to a VCF-like genome representation can be done by aligning a tile variant sequence against the
tile variant sequence of the desired reference. Both of these sequences are about 250 bases long, have
the same 24 starting bases, and have the same 24 ending bases. Additionally, we can annotate specific
tile variants to indicate they are a reference sequence. Therefore, we can obtain multiple standardized
VCF-like genome representations, including GVF, VCF, and gVCF, by precomputing an inexpensive
global alignment on a tile variant sequence against the tile variant associated with GRCh38 or GRCh37 at
the same tile position.

Tiling’s use of tile positions enables many common use cases, such as annotation and querying,
without requiring conversion to VCF-like representations. We demonstrated tiling supports common tools
by annotating the BRCA1 and BRCA2 region tilings for 680 genomes with CAVA, an open-source variant
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annotator, and with information aggregated from ExAC and ClinVar. Since tile positions and tile variants
are annotated at a population level via the tile library, these annotations apply to all 680 called genomes
identically, removing the possibility of conflicting annotations within the same population as a source of
ambiguity and error.

We demonstrate tiling enables machine learning by replicating the 1000 Genomes principal component
results (1000GenomesProjectConsortium, 2012), and extending those results to the PGP data. Interestingly,
we found the PGP self reported ethnicities cluster consistently with the 1000 Genomes population ethnicity
codes. This clustering demonstrates that self-reported data can be of sufficient quality for at least some
machine learning applications in genomics. Since VCF-like and graph abstractions of whole genome
sequences can represent one sequence in multiple ways (Danecek et al., 2011; Dilthey et al., 2015), data
gathered from multiple studies using multiple tools can be hard to combine without ambiguity. This
ambiguity further reduces the power of machine learning, requiring more samples to discover an effect.
Tiling’s simplicity, naming consistency, and native matrix representation is extremely advantageous for
machine learning applications.

As an example of tiling’s use in supervised machine learning, we built an ABO classifier on the PGP
tiled genomes. Currently, in silico ABO blood type classifiers use known variants associated with ABO
blood type phenotype to build their predictions. BOOGIE, a predictor using SNV databases, predicts the
ABO blood type group with 94.2% accuracy for well sequenced whole genome sequences (Giollo et al.,
2015). Our A antigen classifier was given 75 labeled whole genomes with no prior knowledge, and it
selected, out of over 2 million tile positions across the genome, a position in the ABO gene. This classifier
provides an accuracy of 93%, about one percent less than the BOOGIE ABO classifier, which relies on
SNP-blood type databases. Our B antigen classifier did not have enough participants with the B antigen
phenotype to accurately train the classifier.

We believe that adding feature selection, along with a larger and more varied training set, will increase
the accuracies of our ABO blood type classifiers, since our current classifiers have a very large discrepancy
between the number of features and the number of training sets. The Harvard PGP is currently in the
process of releasing a blood type survey to participants and making their responses publicly available. We
plan to incorporate these responses and grow our training set. Additionally, developing a less exclusive
mechanism that incorporates poorly sequenced regions might allow the classifiers access to the underlying
variants producing the ABO phenotype, which might also increase the accuracies of our classifiers.
Finally, including known phenotypes, such as ethnicity, could strengthen the predictive accuracies of our
classifiers.

We identified previously undetected, pathogenic BRCA mutations in 6 persons in the PGP. Using tiling,
we provided simple, consistent identifiers of these variations, which we converted into human-friendly
VCF-like representations and HGVS identifiers. We submitted the previously new variations to ClinVar,
and added relevant clinical evidence to GET-Evidence, enabling the PGP to inform these 6 participants.
We note that 6 participants with pathogenic BRCA mutations out of a total of 178 is a higher number
of pathogenic mutations than the expected 2.67 participants in randomly selected, non-Jewish, healthy
population (Frank et al., 2002). We hypothesize this high incidence rate results from the self-selection
process of joining the PGP. One might think the PGP is enriched for the worried well; however, the high
number of BRCA frameshifts found here might indicate participants are indeed ill.

Of the six PGP participants with BRCA frameshift mutations, three are male and three are female.
The oldest female participant, hu92C40, reports having breast cancer at the age of 66. The second
oldest female participant, huFFB09D, does not report breast cancer. Participant huFFB09D is also
heterozygous for CASP10-V410I, which is reported to have a dominant, likely protective effect on breast
cancer (Frank et al., 2006), but is reported to not protect against BRCA frameshift mutations (Engel et al.,
2010). The youngest female participant, huCD380F, who is 33 years old, also does not report breast
cancer. This 2:1 ratio of healthy to cancerous patients can be expected, given the ages of the two healthy
participants (Levy-Lahad and Friedman, 2007), and the fact that one also has a possibly protective variant.
Of the three males, two report no cancers, which also can be expected, given that BRCA variants have
a greater increase of cancer risk in females than males (Levy-Lahad and Friedman, 2007). The other
participant, huD3A569, reports multiple occurrences of skin cancer before the age of 40 and reports his
mother, at age 72, has had over 20 basal cell carcinomas and squamous cell carcinomas on her head and
face. He is a carrier of a BRCA2 variant, which is reported to strongly increase the likelihood of skin
cancers (Levy-Lahad and Friedman, 2007; Ginsburg et al., 2010).
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The two Fisher’s exact tests we performed examined the correlation between breast cancer and having
a BRCA frameshift variant (Table S2) and the correlation between Hashimoto’s thyroiditis and having a
BRCA frameshift variant (Table S1). We did not observe a significant correlation between breast cancer
and having a BRCA frameshift variant. Given the small size of our cohort (Table S1), the young age of the
participants with the BRCA frameshift variants, and the number of factors contributing to breast cancer,
we are not surprised by these results. We estimate 131 females need to join the PGP to achieve a power of
95% with Fisher’s exact test (current power is 48%). We observed a significantly increased likelihood of
presenting with Hashimoto’s thyroiditis if the patient has a BRCA frameshift variant. This correlation has
both supporting (Chen et al., 2013) and contradicting (Sarlis et al., 2002) evidence, and we suggest further
investigation into the effect BRCA frameshift variants have on Hashimoto’s thyroiditis and possibly other
diseases.

Tiling, by using sequence hashes, provides a consistent and unambiguous representation of genomic
sequences. Because tiling uses the hash of the sequence to refer to the sequence, tiling reduces variant
naming ambiguities. A tile variant’s sequence allows anyone to generate a simple and identical identifier
of that sequence, which can then be associated with more human-friendly names provided by HGVS
or other standards bodies. While a VCF-like representation (Danecek et al., 2011) can give the same
underlying sequence a variety of names, tiling vastly simplifies information aggregation and collaboration
by using a tag set to give each sequence exactly one name.

Finally, tiling is, to our knowledge, the first decomposition of a genome into smaller pieces that
can be easily verified by molecular biology techniques. Exome capture (Hodges et al., 2007) and tiling
arrays (Mockler and Ecker, 2005) have already demonstrated the promise of using tag-like sequences in
genomics. Our 24-base tags were inspired by PCR primers. Therefore, we postulate that in the process of
designing an optimal tag set, we may consider the utility of these tags as PCR primers for high-throughput
amplification and sequencing. Thus, one tag set may represent a called genome and be used to biologically
query a sequence.

We have demonstrated tiling can support clinical screening, supervised machine learning, and un-
supervised machine learning on the whole genome. Furthermore, this approach is scalable to millions
of individual complex data-sets and can, thus, enable population-wide precision medicine and genomic
screening. We hope our open approach to tiling, in addition to collaborations with the GA4GH and the
wider genomics community, will ensure tiling addresses the problems faced by the scientific and medical
communities. We invite all interested individuals and groups to contribute to the open-source project at
http://github.com/curoverse/lightning.

METHODS
Tiling
We tiled 680 called, whole genome sequences, aligned to GRCh37. 178 of these called genomes
were tiled using the Harvard Personal Genome Project (PGP) CGI-var files (obtained at http://
curover.se/su92l-j7d0g-nf54gdds5jj03tc via Arvados). 69 of these genomes were tiled
using the 1000 Genomes Project CGI-var files (obtained from Complete Genomics at ftp://ftp2.
completegenomics.com/vcf_files/Build37_2.0.0/), and 433 were tiled using the 1000
Genomes Project CGI-var files (obtained from NCBI at ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp/data/). In total, 502 called genomes are from the 1000 Genomes and 178
called genomes are from the Harvard Personal Genome Project (PGP). All CGI-var files were converted to
GFF (general feature format) files, which we tiled as described in Text S1. We preserved the phase called
by Complete Genomics, found in each GFF file. Further details, source code for tiling, and source code
for other custom functions can be found at https://github.com/curoverse/lightning and
http://curover.se/su92l-j7d0g-swtofxa2rct8495.

Pythonic Tiling Representation for Machine Learning
For use in supervised and unsupervised machine learning, we converted the 680 tiled called genomes into
python numpy arrays: with one row per called genome in the population and one column per tile position.
To preserve space, we hashed each tile variant value with a non-negative integer for each tile position. All
phase A variant calls were placed on the left half of the array, and phase B variant calls were placed on
the right half. Tile variants that spanned multiple tile positions (described in Text S1) were assigned a
non-negative integer greater than their position to ensure tiles spanning into a different position would not
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be mistaken as a different tile variant starting at that different position. We also generated a second set of
numpy arrays where the variant value was set to -1 if the tile variant contained a poorly sequenced region.
We define a tile position as well sequenced if the tile is free of no-calls. The two resulting matrices were
used for machine learning, specifically principal component analysis (PCA) and classification.

Unsupervised Learning - Principal Component Analysis
To avoid capturing the noise generated by sequencing artifacts, we ran PCA only on tile positions where
all 680 called genomes were well sequenced. Spanning tiles (described in Text S1) that contained a no call
removed all tile positions it spans from being well-sequenced. The numpy arrays were then encoded using
a one-hot encoding scheme (Snoek et al., 2012). The resulting matrix was used as input for principal com-
ponent analysis, implemented by scikit-learn (Pedregosa et al., 2011), and projected onto the first two prin-
cipal components. The 502 callsets from the 1000 Genomes Project were colored based on their assigned
population ethnicities (obtained from the 1000 Genomes Project at ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/technical/working/20130606_sample_info/20130606_sample_
info.xlsx). The 178 PGP callsets were colored after visually examining their PCA projection, while
cross-validating using their reported ethnicity and ancestry.

Supervised Learning - ABO Blood Type Classifiers
To avoid capturing the noise generated by sequencing artifacts, we removed tile positions with any poorly
sequenced tile variants in any of the 178 genomes. Since each tile position is considered a feature, we
removed all tile positions where the variant value was the same in all 178 genomes, since the genomic
sequence is identical for those 178 genomes in that small region. To avoid training on random noise,
we used the scikit-learn (Pedregosa et al., 2011) StandardScaler functionality to transform the data by
centering all tile variant values around zero and dividing non-constant features by their standard deviation.
We fit on (found the mean and standard deviation of) the training data and transformed both the training
and unlabeled data. Blood types for the PGP participants were scraped from the Harvard PGP site on
April 29, 2015 using scrapy. 75 PGP participants have self-reported blood types associated with their
account; their whole genome sequence, including mitochondrial DNA and sex chromosomes, were used
as training inputs to the classifiers.

Due to the low number of training callsets, we used leave-one-out cross-validation to determine
the optimal classifier type and parameter values for the A-antigen and B-antigen classifiers. We tested
different parameters for three types of classifiers implemented by scikit-learn (Pedregosa et al., 2011):
SVC (linear and radial basis function kernels, varying C), NuSVC (linear and radial basis function
kernels, varying nu), and LinearSVC (l1 or l2 penalty, varying C). SVC implements C-Support Vector
Classification, where C is the penalty parameter of the error term. NuSVC implements Nu-Support Vector
Classification, where nu is an upper bound on the fraction of training errors and a lower bound of the
fraction of support vectors. LinearSVC implements C-Support Vector Classification with a linear kernel,
where C is the penalty parameter of the error, and allows the user to specify the norm used in penalization.
Using the classifier and the parameter which provided the highest accuracy (as measured by leave-one-out
cross-validation), we predicted the blood type for the remaining unlabeled 103 PGP callsets.

Personalized Medicine and Clinical Analysis of the BRCA region
We chose to examine the BRCA regions for possible pathogenic variants in our 680 called genomes.
We used the definition of a clearly pathogenic BRCA1/2 mutations used by Rebbeck et al. (2015).
Each tile variant falling in these regions was aligned back to GRCh37 and converted to gVCF, then
annotated using CAVA (Clinical Annotation of Variants) (Muenz et al., 2015), an open-source variant
annotation tool, downloaded from the Oxford Genomics Centre on March 30, 2015. The default impact
definitions, ensembl file, dbsnp, and GRCh37 reference provided by CAVA were used. Additional
annotations from ExAC and ClinVar were imported using custom-built open-source software that can
be accessed at https://github.com/curoverse/lightning. When called genomes from
the PGP were found to contain a pathogenic variant of high quality, the variant existence was first
confirmed by converting the called genome to VCF using cgatools and comparing them with ExAC
and ClinVar using bcftools isec (Details in Text S6). Then, if this variant was not already reported
by GET-Evidence (Genome-Environment-Trait Evidence) (Ball et al., 2012), the variant was added and
annotated, the relevant PGP reports were updated, and PGP participants were informed. Additionally, we
performed Fisher’s exact tests for any phenotype reported by two or more participants with pathogenic
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mutations in BRCA1/2 and for any phenotype associated with a ClinVar condition for a pathogenic variant,
with the exception of hereditary cancer-predisposing syndrome. We were unable to test for hereditary
cancer-predisposing syndrome given the little familial information in the PGP dataset.
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