Essential Design Modeling for Scientific Software Solutions Development

Zeeshan Ahmed^{1, 2, 3}, ¹The Jackson Laboratory for Genomic Medicine, CT, USA

²University of Massachusetts, School of Medicine, MA, USA

³University of Wuerzburg, Department of Bioinformatics, USA

Abstract

Software design and its engineering is essential for bioinformatics software impact. We propose a new approach 'Butterfly', for the betterment of modeling of scientific software solutions by targeting key developmental points: intuitive, graphical user interface design, stable methodical implementation and comprehensive output presentation. The focus of research was to address following three key points: 1) differences and different challenges required to change from traditional to scientific software engineering, 2) scientific software solution development needs feedback and control loops following basic engineering principles for implementation and 3) software design with new approach which helps in developing and implementing a comprehensive scientific software solution. We validated the approach by comparing old and new bioinformatics software solutions. Moreover, we have successfully applied our approach in the design and engineering of different well applied and published Bioinformatics and Neuroinformatics tools including DroLIGHT, LS-MIDA, Isotopo, Ant-App-DB, GenomeVX and Lipid-Pro.

Introduction

Computer Science has revolutionized almost all other fields of life. Common man including engineers, doctors, artists, technicians and scientist etc., somehow, every one's life is now partially depending on the usage of informatics. In the past (1980s), the informatics (IT) issues were related to the development of the large sized but small-scaled applications. Later on (1990s), with the passage of time systems started becoming complex but smaller in size, especially with the evolvement of the concept i.e. Component Based Systems (CBS)¹ and the innovations of advanced programming tools and technologies² e.g. Enterprise Java Beans, Microsoft COM and CORBA etc. So far the focus of the last decade (2000s) was to develop smart, intelligent and robotic applications.

Particularly in life science, with the front-runner field bioinformatics, the world has been changed by small, efficient, fast, logical, embedded and intelligent software, databases and management systems. Even this year's (2013) Nobel Prize winners (Arieh Warshel, Martin Karplus, Michael Levitt)³ in the field of Chemistry relied on powerful computational programs to understand and predict biochemical processes and molecular dynamics, giving testimony to the novelty and innovation of bioinformatics.

Software Engineering Principles

To establish and expedite the processes of scientific software engineering (SSE), many Software Development Life Cycle (SDLC)⁴ models have been introduced e.g. Waterfall Model, V-Model, Spiral Model, Iterative and Incremental Model, Rapid Prototype Model, Extreme Programming Model, Evolutionary Model, Agile Development Model, Code and Fix Model etc., and some other Process improvement models⁵.

SDLC is a goal-oriented approach toward the software development. Almost all of the proposed SDLC models provide distinct processes for the software implementations. Depending upon the nature of the end product, the right model has to be chosen and applied. Based on the process' artifacts and logical steps for developing a software project (e.g. time, quality, size, development effort etc.), it is not easily possible to compare different SDLCs⁶, but doing so reveals differences⁷. Own efforts did focus on quality improvement of software^{8, 9, 10, 11, and 12}.

Depending upon the observed commonalties, in general, we state that the software engineering is an integrated, cyclic and product line combination of following independent modular approaches: requirements engineering^{13, 14, 15}, design modelling^{16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28}, programming, testing and deployment.

Peer Preprints

These five modular approaches (Figure 1) follow the procedures of some life cycle management approaches, which can help them in performing their individual functionalities as well as regulating tasks in cyclic chain processes.

Figure 1. Traditional Software Development; consisting of integrated and cyclic combination of the following independent modular approaches: requirements engineering, design modeling, programming, testing and deployment ^{65, 66}.

Scientific Software Engineering

Testing of integrated and individual modules becomes time consuming (Figure 2), as new test cases have to be rewritten all the times or the application exists with a high expectation of ripple effects ²⁹ (i.e. unidentified logical or syntax errors in the system which arise while fixing the identified logical or syntax errors). The quality of a software application decreases with an increase in the ripples a change in software creates. Moreover measured optimum software maintenance can only be achieved with the accessibility of the concrete information about the ripples effect in the system [30]. Depending upon the nature of the system, many approaches have been proposed to improve the software quality measurement processes (e.g. ^{31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43} etc.), towards the traditional software development but one can also use these in the scientific software solution's quality assurance and for improvements as well.

Figure 2. Scientific Software Engineering (SSE)^{65, 66}. SSE integrates and combines in a development cycle the following independent main modular approaches: requirements engineering, design modeling, programming, testing and deployment. Each approach consists of its own sub-modular, integrated and cyclic combination of internal phases: requirement engineering consists of specification, functional, non-functional, and analysis; design modeling consists of use cases, system flows, data flow and source code; programming consists of languages, tools and technologies, development, and debugging; testing consists of test cases, modular, integrated and quality; finally, deployment consists of installation, con-figuration, training, feedback. Iterative cycles lead to continuous improvements, achievements translate the goals into good software.

Database manipulation and management system: If the target scientific software solution has this focus, then it requires to properly modeling the database schema (entity relationship model) by reducing the levels of data redundancy and dependency, using data normalization. There are five data normalization forms: 1NF, 2NF, 3NF, 4NF and 5NF, conceptual procedures for comprehensive database designing⁴⁴. These data normalization forms help in shaping the data types (1NF), developing relationships between non-key and key fields (2NF, 3NF)^{45, 46}, and deals with multi-valued facts corresponding to the many to many relationships (4NF and 5NF)^{47, 48}.

Human Computer Interaction and Scientific Applications: The Human Computer Interaction (HCI), also known as Human Machine Interaction (HMI)^{49, 50, 51}, has to correlate with the Scientific Application development. HCI defines the implementation of the mechanisms to establish the efficient communication protocols between human

and machines. These protocols are based on the textual, visual, sensory, audio and event based information, provided by both the user and the machine (computer).

Butterfly Workflow Design and Software Examples

To implement the Butterfly model ^{65, 66}, we have designed a three-layered architecture (Figure 3), going from abstract planning (gray) to designers and developers (yellow) to implementation and user (green).

Figure 3. Butterfly three-layer model ^{65, 66}. Shown in grey is the abstract layer, the basis for design and development (yellow), followed by implementation and testing by the user (green) so that the software is released including installation and training.

Abstract planning: Scientific software solution planning is the first step towards a new scientific application development. It requires good knowledge of the field (e.g. biochemistry, neurobiology, genetics, metabolomics, proteomics etc.) as well as project related information (e.g. what could be the end product, in-put to the system, expected output from the system, methodology, ideas, user opinions etc.). The next important phase is to perform requirements engineering and analysis. The third phase is the conceptual software design and modeling. Before moving ahead, first go for some abstract designs based on functional requirements and discuss these in your team. The last phase is software solution planning. It concerns the design of a user-friendly graphical interface.

Software design: This layer involves the designers and developers. It consists of four steps: design and modeling and analysis, tools and technology selection, design implementation and graphical user interface implementation.

Implementation: The last layer concerns implementation and programming and involves in house testing and debugging (by the developers and tester). Steps include scientific software solution testing, debugging and creation of new versions, users involved in testing and feedback and finally installation and training.

The Butterfly workflow design accentuates experience from previous software developments including a number of larger efforts (Table 1). Most of these are team efforts that simply have come close to the Butterfly paradigm, but by chance and pressure, not by explicitly following a scientific approach. With rapid development of new software applications, the need to formalize the software solution development principles increases to ensure that all scientific applications follow the standard scientific paradigms.

Adopting the concepts of Butterfly model, some new scientific software applications have already been proposed, designed, implemented, tested and are in use (LS-MIDA^{52, 53} (Figure 4), DroLIGHT ^{54, 55, 56} (Figure 5), Isotopo ⁵⁷ (Figure 6), Lipid-Pro ⁶⁶ (Figure 7), App Ant Database⁶⁷ (Figure 8) and GenomeVX⁶⁸ (Figure 9).

NOT PEER-REVIEWED

LS-MIDA Drei											
	4	٢		U	ļ						
Metabolite	Mass to	Charge Ra	tio (m/e)		Relative	Intensity (RI)	Mass Atoms	Fragments	Constant Vlaue	Date & Time	•
Ala - 260	259,15#	260,1#261	1#262,1	#263,1#	0,07#8,5	53#2,3#2,39#44,59#8,79#3,	3#	3#	16#	18.01.2012	12:.
Gly - 246	245,15#	246,1#247,	1#248,1#	#249,05	0,27#61	,52#13,38#11,9#1,91#0,72#	2#	2#	68#	18.01.2012	12:.
Lys- 300	298,25#	299,2#300	2#301,2	#302,15	0,79#26	,4#100#27,88#13,3#4,59#1	6#	5#	135#	18.01.2012	12:. 🗉
Asp- 418	417,25#	418,15#41	9,15#420	,15#42	0,24#70	,49#25,14#13,5#52,81#18#	4#	4#	33#	18.01.2012	12:.
Thr- 404	404,15#	405,2#406	15#407.2	2#408,2	60,36#2	4,02#12,85#95,21#31,94#1	4#	4#	273#	18.01.2012	12:.
Pro - 184	183,25#	184,15#18	5,15#186	,15#18	0,28#10	0#16,73#4,76#0,53#0,09#0	5#	4#	230#	18.01.2012	12:.
Ala - 260	259,15#	260,1#261	1#262,1	#263,1#	0,07#8,5	53#2,3#2,39#44,59#8,79#3,	3#	3#	16#	18.01.2012	12:.
Gly - 246	245,15#	246,1#247,	1#248,1	#249,05	0,27#61	,52#13,38#11,9#1,91#0,72#	2#	2#	68#	18.01.2012	12:.
1 ve_ 200	208 254	000 0#200	2#201 2	#202 15	0 70#26	/#100#27 22#12 2#/ 50#1	6#	5#	125#	10 01 2012	12.
Coloriad Values											
Metaboli	te Lvs	- 300				ACUR 1 CONTRACT	Least Square	MID Spectrum Analysis of	Lys- 300		5
m	298	25#299.2#	300.2#30	01.2#302.1	5#303.1	50					
	BI 0.7	9#26 4#100	#27 88#	13 3#4 594	1 56#0 !	g so		•••••••••••••••••••••••••••••••••••••••	••••••		- P
Mana Atom	6#					2 70 4 E 60 4					Anal
Mass Aton	5#					50					. YZe
rragmen	LS 000										
M	lo 298			0							
M	-1 297	#		- X.		- •• • • • • • • • • • • • • • • • • •					Fa
M ma	ax 438	#	_			299	300	301 302	303	304	
Constant Valu	Je 135	#						mie Values			
								To dra	w or refresh spectrum, pl	ease click in the con	trol.
Natural Abund	dance (NA) % 94	.5718499	425015%	5,307652	61584471% 0,119152480606	485% 0,00° Abs	solute NA Enrichm	nent 13C % 1,11 %		1
Relative Abund	dance (RA) % 99	,3026844	773212%	0,658052	37403172% 0% 0,036134158	4972893% Abs	solute RA Enrichm	nent 13C % 0,1564	19960054521 %	
ſ	RAper	n/e % 1.2	29493119	012556%	17,30562	08343025% 54,85374321467	48% 15,4613301	062492% 7,322134	00130023% 2,526220	7584692% 0,858	560 8
											alle a
	NA Va	alues 0.9	94571849	9425015#	0,053070	65261584471#0,0011915248	0606485# 1	NA Enric	hment 13C 0,0111	#	S I
	RA Va	alues 1.1	14296346	863535#	0,007574	11371027734# 0# 0,00041590	036915581	RA Enrich	hment 13C 0.0018	0037731153732	# ¥
RA pe	r m/e Va	alues 2,0	02834033	3166822#	27,10699	14528587# 85,921213848057	2# 24,218151261	1536# 11,469165174	1561#3,957003785	88704# 1,344832	620

Figure 4. Graphical user interface of LS-MIDA

OM		Line Signals	
Port: Baud Rate	e: Parity:	Data Bits: Stop Bits: DTR RTS CTS Clear with DTR	
COM3 - 115200	* None	▼ 8 ▼ One ▼ □ DSR □ CD □ Clear on Open	
Control		Experimenta	ation
63550	•	Status C1 W/M^2 Photon V PWM	19
Light 1		Date Time C1	
		22 01 2014 - 12 43 40 🖉 22 01 2014 - 12 43 40 🖉	
50000	- 6	Light 2 ON	-
Light 2		Start : Date	Time
40000	- 🔊	Status C3	
Light 3		ON: 23.01.2014 12:43:40 OFF: 26.01.2014 12:43:40 Note	
Light o		23 01 2014 - 12 43 40 🖉 26 01 2014 - 12 43 40 🖉 Mew Experim	ient
15000	- 6	Light 4 ON	
Light 4			
			•
20000	- 68	ON: 23 01 2014 12:43:40 OFF: 24 01 2014 12:43:40	
Light 5			
		Light 6 ON	<i>~</i>
63550	- 0	Date Time C6	••_
Light 6		22 01 2014 - 12 43 40 2 22 01 2014 - 12 43 40 2	
		Status C7	8 6
63550	•	ON: 24.01.2014 12:43:40 OFF: 26.01.2014 12:43:40	
Light 7		24 01 2014 - 12 43 40 🔍 26 01 2014 - 12 43 40 🔍 🚳	2

Figure 5. Graphical user interface of DroLIGHT

NOT PEER-REVIEWED

al all a	11.7	014	010	010	04.011	A	C	Durd	Data	
abolite	M/Z	RII	RIZ	RI 3	Std RI 1	Atom Mass	Fragment	Fixed	Date	â (
260	259,15#260,1#261,1#	0.07#8,53#2,3#2,	0.07#8,5#2,3#2,3	0.04#8,56#2,3#2	0.06#43,99#9,94	3#	3#	16#	07.09.2011	
246	245,15#246,1#247,1#	0,27#61,52#13,38	0,25#60,48#13,18	0,26#61,58#13,46	0,17#62,01#13,45	2#	2#	68#	07.09.2011	
300	298,25#299,2#300,2#	0,79#26,4#100#2	0,48#25,37#100#	0,48#25,98#100#	0,44#25,68#100#	6#	5#	135#	07.09.2011	
418	417,25#418,15#419,1	0,24#70,49#25,14	0,27#74,51#27,04	0,28#74,76#27,36	0,19#67,37#24,23	4#	4#	33#	07.09.2011	- 6
104	404,15#405,2#406,15	60,36#24,02#12,8	61,77#24,23#13,0	65.04#25.38#13.6	87,67#28,41#10,8	4#	4#	273#	07.09.2011	-
184	183,25#184,15#185,1	0.28#100#16,73#	0.3#100#16.69#4	0.31#100#16.57#	0.35#100#16.66#	5#	4#	230#	07.09.2011	
302	301,25# 302,15# 303,	0,19# 100# 26,13	0,19#100#25,81#	0,19# 100# 26,09	0,12# 100,00# 27,	9#	2#	288#	11.09.2012	
260	259,15#260,1#261,1#	0,07#8,53#2,3#2,	0,07#8,5#2,3#2,3	0,04#8,56#2,3#2,	0,06#43,99#9,94	3#	3#	16#	07.09.2011	
246	245,15#246,1#247,1#	0.27#61.52#13.38	0.25#60.48#13.18	0.26#61.58#13.46	0.17#62.01#13.45	2#	2#	68#	07.09.2011	
800	298,25#299,2#300,2#	0.79#26.4#100#2	0.48#25.37#100#	0,48#25,98#100#	0,44#25,68#100#	6#	5#	135#	07.09.2011	
418	417,25#418,15#419,1	0,24#70,49#25,14	0,27#74,51#27,04	0,28#74,76#27,36	0,19#67,37#24,23	4#	4#	33#	07.09.2011	
404	404,15#405,2#406,15	60,36#24,02#12,8	61,77#24,23#13,0	65,04#25,38#13,6	87,67#28,41#10,8	4#	4#	273#	07.09.2011	
184	183,25#184,15#185,1	0,28#100#16,73#	0,3#100#16,69#4	0,31#100#16,57#	0,35#100#16,66#	5#	4#	230#	07.09.2011	
302	301,25# 302,15# 303,	0,19# 100# 26,13	0,19#100#25,81#	0,19# 100# 26,09	0,12# 100,00# 27	9#	2#	288#	11.09.2012	-
				111		• • •				
80	Absolute Enrichment — A	bsolute Enrichment	Absolute Enrichment	ISOTOPO - MID/	A		Bar 🗹	Curve 🗹	Filled Curve	☑ Lab
80	Absolute Enrichment — A		Absolute Enrichment)	ISOTOPO - MID/	A		Bar <table-cell></table-cell>	Curve 🖌	Filled Curve	Lab
80 70 60 40 30 20	Absolute Enrohment — Als - 260		Absolute Enrichment] Oy - 245	ISOTOPO - MID/	A 		Bar <table-cell></table-cell>	Curve 🗹	Filed Curve	₽ Lab
80 70 60 50 40 30 10 0	Absolute Enrichment — Als - 260		Absolute Enrichment) (3y - 246	ISOTOPO - MID/	A		Bar 🗹	Curve 🗹	Filed Curve	✓ Lab
80 70 60 50 40 30 10 0	Absolute Enrichment ————————————————————————————————————		Absolute Enrichment	ISOTOPO - MID/	A 	-	Bar <table-cell></table-cell>	Curve 🖌	Filed Curve	Lab
30 50 50 40 20 10 0	Absolute Enrichment — Ala - 260	Absolute Enrichment	Absolute Enrichment	ISOTOPO - MID/	A 		Bar <table-cell></table-cell>	Curve 🖌	Filed Curve	✓ Lab
80 70 60 50 40 30 10 0	Absolute Enrichment O		Absolute Enrichment	ISOTOPO - MID/	A.		Bar <table-cell></table-cell>	Curve 🗹	Filed Curve	

Figure 8. Graphical User interface of Ant-App-DB

🖗 GenomeV-eXtractor												
VCF File Editor	VCF Extracted & C	Converted Information										
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13 ^
ID	REF	ALT	INFO	NA06984	NA06986	NA06989	NA06994	NA07000	NA07037	NA07048	NA07051	NA07056
rs188098171	A	G	THETA=0.0002;	AA	AA	AA	AA	AA	AA	AA	AA	AA
rs697675	A	C	RSQ=0.9988;A	AA	AA	AA	CA	AA	AA	AA	AA	AA
rs116416205	A	G	AA=A;AC=1;AF=	AA	AA	AA	AA	AA	AA	AA	AA	AA
rs57351330	т	A	AA=T;AC=1;AF=	TT	TT	TT	TT	TT	TT	TT	TT	TT
rs75457749	т	C	SNPSOURCE=L	TT	TT	TT	TT	TT	TT	TT	TT	TT
rs190161339	A	G	ERATE=0.0004;	AA	AA	AA	AA	AA	AA	AA	AA	AA
rs182108146	C	т	THETA=0.0004;	CC	CC	CC	CC	CC	CC	CC	CC	CC
rs186584801	G	A	ERATE=0.0004;	GG	GG	GG	GG	GG	GG	GG	GG	GG
rs707460	С	т	ERATE=0.0004;	CT	CT	CT	TT	TT	CC	CC	TT	CC
rs143041819	C	т	AVGPOST=0.99	CC	CC	CC	CC	CC	CC	CC	CC	CC
rs139407564	CTTGT	С	AA=.;AC=267;A	CTTGTCTTGT	CTTGTCTTGT	CTTGTCTTGT	CCTTGT	CTTGTCTTGT	CTTGTCTTGT	CTTGTCTTGT	CTTGTCTTGT	CTTGTCT1
rs201212608	TTTG	т	AA=.;AC=245;A	TTTGTTTG	TTTGTTTG	TTTGTTTG	TTTTG	TTTGTTTG	TTTGTTTG	TTTGTTTG	TTTGTTTG	TTIGTTIC
rs202204937	TGTTA	т	AA=.;AC=244;A	TGTTATGTTA	TGTTATGTTA	TGTTATGTTA	TTGTTA	TGTTATGTTA	TGTTATGTTA	TGTTATGTTA	TGTTATGTTA	TGTTATG
rs191422570	G	A	THETA=0.0004;	GG	GG	GG	GG	GG	GG	GG	GG	GG
rs697676	т	A	THETA=0.0002;	TA	AA	TA	TA	AT	TT	TT	AT	AA
rs185651139	C	т	AVGPOST=1.00	CC	CC	CC	CC	CC	CC	CC	CC	CC
rs697677	G	т	LDAF=0.5429;A	GT	GT	GT	TT	TT	GG	GG	TT	GG
rs188961483	C	Т	AVGPOST=1.00	CC	CC	CC	CC	CC	CC	CC	CC	CC
rs193023290	A	G	AVGPOST=1.00	AA	AA	AA	AA	AA	AA	AA	AA	AA
rs185217854	C	Т	AVGPOST=1.00	CC	CC	CC	CC	CC	CC	CC	CC	CC
rs144345842	Т	C	AVGPOST=1.00	TT	TT	TT	TT	TT	TT	TT	TT	TT
rs189716933	т	С	AVGPOST=1.00	TT	TT	TT	TT	TT	TT	TT	TT	TT
rs200029799	G	Т	AA=G;AC=1;AF=	GG	GG	GG	GG	GG	GG	GG	GG	GG
rs148779340	G	С	LDAF=0.0004;A	GG	GG	GG	GG	GG	GG	GG	GG	GG
rs115611376	Т	С	AVGPOST=1.00	TT	TT	TT	TT	TT	TT	TT	TT	TT
rs181353020	G	С	AA=G;AN=2184;	GG	GG	GG	GG	GG	GG	GG	GG	GG
rs697678	C	A	RSQ=0.9759;LD	CC	CC	CC	CC	CC	CC	CC	CC	CC
rs142391561	т	С	AA=T;AN=2184;	TT	TT	TT	TT	TT	TT	TT	TT	TT 👻
•												F.
Total Values:105	8											
Contact: Dr. Zees Copyright (c) 2014	Total Values:1058 Cortact: Dr. Zeeshan AHMED (zeeshan ahmed@uri-wuerzburg.de) Copylight (c) 2014, Bocenter, University of Wuerzburg. All Rights Reserved.											

Figure 9. Graphical User interface of GenomeVX

To determine in a more objective way potential gains from scientific software de-sign following our proposed butterfly paradigm we have performed a short comparative analysis of some bioinformatics software applications (C13 ⁵⁸, Metatool ⁵⁹, BioOpt ⁶⁰, FiatFlux ⁶¹ ReMatch ⁶², Biolayout ⁶³, LS-MIDA ^{52, 53}, DroLIGHT ^{54, 55, 56}, Isotopo ⁵⁷), describing their type, methodology, implementation, user friendliness, configuration etc., based on the provided, published information (summarized in Table 2).

Butterfly	Engineeri	Scientific	Scientific	Human	Reference
area	ng	Methodol	Applicatio	Computer	
Software	Approach	ogy	n	Interaction	
BLAST	Scientific Software Engineerin g	Advanced (2 Hit method)	followed	Intuitive	S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410.
FASTA	Traditional	1 Hit method	Steps to scientific application	Simple Command line	Pearson, W.R. & Lipman, D.J. (1988) "Improved tools for biological sequence comparison." Proc. Natl. Acad. Sci. USA 85:2444- 2448.
Genbank	Traditional , but work in a team, iterative refinement	SQL	World- wide multiuser scenario	Command Line, web interface, BioPerl, SOAP, differ. downloads	Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2010;38:D46-D51.
EBI databank	Traditional but work in a team, iterative refinement	XML	World- wide multiuser scenario	Command Line, SOAP, BioPerl, many download options	Kulikova T, Akhtar R, Aldebert P, Althorpe N, Andersson M, Baldwin A, Bates K, Bhattacharyya S, Bower L, Browne P, et al. EMBL nucleotide sequence database in 2006. NAR 2007;35:D16-D20.
EMBOSS	Traditional , but work in a team	AJAX Command Definition (ACD files) ANSI C	General software design rules for knowledge able users	'Jemboss', Java based Interface	Rice,P. et al. (2000) EMBOSS: the european molecular biology open software suite. TIG, 16, 276–277. Carver, T. J. and Mullan, L. J. (2002), Website Update: A new graphical user interface to EMBOSS. Comp Funct Genom, 3: 75–78. doi: 10.1002/cfg.136
Bioperl suite	Traditional	Perl	Followed general software design rules for knowledge able users	Command Line	Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JG, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, and Birney E. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002 Oct;12(10):1611- 8.
KEGG databank	Scientific Software Engineerin g	Oracle	Bottom-up and top- down effort, coordinate d by Prof. Kanehisa	Charts, maps, Intuitive user interface, Export options, new KEGG api is restricted	Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M.; KEGG: Kyoto Encyclopedia of Genes and Genomes. NAR. 27, 29-34 (1999). Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2013
COPASI	Traditional	C++	General software design	Copasi GUI Command Line	Hoops S., Sahle S., Gauges R., Lee C., Pahle J., Simus N., Singhal M., Xu L., Mendes P. and Kummer U.

Table 1. Comparative analysis of different Bioinformatics software application	ations.
--	---------

			rules for	(CopasiSE)	(2006). COPASI: a COmplex
			expert s		PAthway SImulator. Bioinformatics
			_		22, 3067-74.
COBRA	Traditional	COBRA		Command	Ebrahim A, Lerman JA, Palsson BO,
	but large-	For		Line	Hyduke DR. 2013 COBRApy:
	scale team	Python		Options	COnstraints-Based Reconstruction
	effort,				and Analysis for Python. BMC Syst
	multiple	CODDA			B10/:/4
	user-	COBRA			Schellenberger J, Que R, Fleming
	feedback	Toolbox			RMT, Thiele I, Orth JD, Feist AM,
		FOR			Zielinski DC, Bordbar A, Lewis NE,
		MAILAD			Railinanian S, Kalig J, Hyduke DK,
					prediction of cellular metabolism
					with constraint based models: the
					COBRA Toolbox v2 0 Nature
					Protocols 6:1290-1307
Rasmol	Traditional	С	Simple		Sayle, R. and Bissell, A. (1992)
		-	In		RasMol: A Program for Fast Realistic
			PDB file		Rendering of Molecular Structures
			Submissio		with Shadows. In Proceedings of the
			n		10th Eurographics UK 1992
					Conference, University of Edinburgh
Pymol	Traditional	C and		Command	The PyMOL Molecular Graphics
	small team	Python		Line Options	System, Version 1.5.0.4 Schrödinger,
CDOMOG					LLC.
GROMOS	Iraditional	FORTRA			W. K. P. Scott, P. H. Hünenberger, I.
раскаде	but team	IN / /			G. HIRONI, A. E. Mark, S. R. Billeter,
	WOLK				J. Feinien, A. E. Torua, T. Huber, P. Krüger and W. E. von Cunsterer
					The GPOMOS Simulation Package
					I Phys. Chem. A 103 (1000) 2506
					3.1 mys. Chem. A 103 (1999) 3390-
L	1		1		5007.

Table 2. Comparative analysis of different scientific software applications.

Application	C13	Metatool	BioOp	Fiatlu	ReMatc	Biolayou	LS-	Dro-	Isotopo
S			t	Х	h	t	MIDA	LIGHT	
Comparativ									
e Measures									
SSE?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
App. Type	Desktop	Desktop	Deskto	Deskto	Web	Desktop	Deskto	Desktop	Desktop
			р	р			р		
Data	No DM	No DM	No	No	DB	No DM	File	File	File
Manageme	Sys.	Sys.	DM	DM		Sys.	based	based	based
nt			Sys.	Sys.					and DB
Script or	Script	Script	Prototy	Script	Prototy	Prototyp	Prototy	Prototy	Prototy
Prototype			pe		pe	e	pe	pe	pe
Algorithm	Parallel	Sequenti	Sequen	Paralle	Sequent	Parallel	Sequen	Parallel	Sequent
Туре		al	tial	1	ial		tial		ial
Algorithm /			Mass	Tastani				Circadia	Partial
Methodolog	Isotopic	Schuster	Balanc	Isotopi	Carbon	Markov	Logat	n	Least
У	Labellin	Algorith	e	C Laballi	Mappin	Clusterin	Least	Rhythm	Square
	g	m	Equati on	ng	g	g	Square	S	
Running	Interacti	Interactiv	Batch	Interac	Interacti	Interactiv	Interac	Interacti	Interacti
Mode	ve	e		tive	ve	e	tive	ve	ve
Publishing,	Publish	Publishe	Publis	Publis	Publish	Publishe	Publis	Publish	Publish
licensing	ed, Free	d, Free	hed,	hed,	ed, Free	d, Free	hed,	ed, Free	ed, Free

			Free	Free			Free		
SDLC	Not	Not	Not	Not	Not	Not	V-	Spiral	V-
Informatio	Provide	Provided	Provid	Provid	Provide	Provided	Model	_	Model
n	d		ed	ed	d				
HCI	Not	Not	Not	Not	Not	Not	HCI	HCI	HCI
Informatio	Provide	Provided	Provid	Provid	Provide	Provided	Pattern	Patterns	Patterns
n	d		ed	ed	d		S	Implem	Implem
							Imple	ented	ented
							mented		
User	No	No	No	No	Yes	Yes	Yes	Yes	Yes
Friendly									
Easy to	No	No	No	No	Yes	Yes	Yes	Yes	Yes
configure									
Easy to	No	No	No	No	No	No	Yes	Yes	Yes
train									
Software	Yes	No	Yes	Yes	Yes	No	Yes	No	No
Re-									
Engineerin									
g									
Cyclic or	No	No	Yes	Yes	Yes	No	Yes	No	Yes
Repetitive									
Easy to	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes
learn and									
Use									
User	No	No	No	No	No	No	No	Yes	No
Training									

Conclusions

Conscious adaptation of SSE principles as exemplified here by the suggested butterfly design and its multilayered architecture, might look like an increase in developmental workload in comparison to many current bioinformatics programming methods. However, on the long run, it will reduce the burden by making the scientific application well designed, flexible, structured and reusable. It allows a product line development, is analytical and allows qualitative software improvement. Furthermore, HCI concepts make it user friendly, easy to learn and to deploy.

Conflict of Interests

The authors declare no conflict of interest.

References

- 1. Mahmood S, Lai R. A Component-Based System Requirements Analysis Language. Comput. J. Vol. 2013; 56: 901-922.
- 2. Szyperski C, Gruntz D, Murer S. Component Software-Beyond Object-Oriented Programming, Addison-Wesley, 2002.
- 3. The computer your Virgil in the world of atoms. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/press.html (12 November 2013, date last accessed)
- 4. Boehm B. Software Engineering. IEEE Trans. on Com., 1976; 12: 1226-1242.
- 5. Rook P. Controlling Software Projects. Software Engin. J., 1986; 1: 7-16.
- 6. Benediktsson O, Dalcher D, Thorbergsson H. Comparison of software development life cycles: a multiproject experiment. IEE Proc. Soft., 2006; 153: 87-101.
- Munassar NMA, Govardhan A. A Comparison Between Five Models Of Software Engineering. Int. Jr. Comp. Sci., 2010; 7: 94-101.
- Ahmed Z. Towards Performance Measurement and Metrics based Analysis of PLA Applications. Int. J. Soft. Engin. App., 2010; 1: 66-80.

- 9. Ahmed Z, Majeed S. Measurement, Analysis with Visualization for better Reliability. Artificial Intelligence and Hybrid Systems: iConcept Press, 2013.
- 10. Ahmed Z, Majeed S. Towards Increase in Quality by Preprocessed Source Code and Measurement Analysis of Software Applications. IST Tran. Inf. Tech. Theo. App., 2010; 1: 8-13.
- 11. Ahmed Z. Measurement Analysis and Fault Proneness Indication in Product Line Applications (PLA). In: Sixth International Conference on New Software Methodologies, Tools, and Techniques, Rome, Italy, 2007; 391-400.
- 12. Ahmed Z. Integration of variants handling in M-system NT. Blekinge Institute of Technology, Karlskrona, Sweden. 2006.
- 13. Lee J, Xue NL. Analyzing user requirements by use cases: a goal-driven approach. IEEE Soft., 1999; 16: 92–101.
- 14. Sommerville I. Integrated requirements engineering: a Tutorial. IEEE Soft., 2005; 22: 16-23.
- 15. van Lamsweerde A, Darimont R, Letier R. Managing conflicts in goal-driven requirements engineering. IEEE Trans. Soft. Eng., 1998; 24: 908–926.
- 16. Kaur H, Singh P. UML (Unified Modeling Language): Standard Language for Software Architecture Development. In: International Symposium on Computing, Communication, and Control, Singapore, 2011.
- 17. Garlan D, Shaw M. An introduction to software architecture. Adva. Soft. Eng. Know. Eng., 1993; 2: 1-39.
- Garlan D. Formal Approaches to Software Architecture. In: Workshop on Studies of Software Design, UK, 1993; 64-76.
- 19. Garlan D, Notkin D. Formalizing design spaces: Implicit invocation mechanisms. In: Fourth International Symposium of VDM Europe on Formal Software Development, UK, 1991; 31–44.
- Dashofy EM, Hoek A, Taylor RN. An infrastructure for the rapid development of XML-based architecture description languages. In: Twenty Fourth International Conference on Software Engineering, USA, 2002; 266-276.
- 21. Egyed A, Kruchten PB. Rose/Architect: A Tool to Visualize Architecture. In: Thirty Second Annual Hawaii Conference on Systems Sciences, USA, 1999; 8066.
- 22. Booch G, Rumbaugh J, Jacobson I, Unified Modeling Language User Guide. In: the 2nd Edition, Addison-Wesley Professional, 2005.
- 23. Jacobson I, Christerson M, Jonsson P, Oevergaard G. Object-Oriented Software Engineering: A Use Case Driven Approach. In: Reading, MA Addison-Wesley, 1992.
- 24. Dumas M, ter-Hofstede AHM. UML Activity Diagrams as a Workflow Specification Language, In: Fourth International Conference on The Unified Modeling Language, Modeling Languages, Concepts, and Tools, UK, 2001, 76-90.
- 25. Bruza PD, van-der-Weide TP. The Semantics of Data Flow Diagrams, In: International Conference on Management of Data, 1993.
- 26. Latronico E, Koopman P. Representing Embedded System Sequence Diagrams as a Formal Language, In: Fourth International Conference on The Unified Modeling Language, Canada, 2001; 302-316.
- 27. Marilyn B, A guide for programmers, Prentice-Hall, 1978.
- 28. Berardi D, Calvanese D, Giacomo G E. Reasoning on UML class diagrams. Artif. Intell., 2005; 168: 70-118.
- 29. Haney F M. Module connection analysis- a tool for scheduling of software debugging activitie. In: Proceedings of Fall Joint Computer Conference, 1972; 173-179.
- 30. Moreton R. A Process Model for Software Maintenance. J. Info. Tech., 1990; 5: 100-104.
- 31. Kan SH, Basili VR, Shapiro LN. Software Quality: An overview from the perspective of total quality management, IBM Sys. J., 1994; 33.
- 32. Li W, Henry S. An Empirical Study of Maintenance Activities in Two Object-oriented Systems, J. Soft. Main. Res. Prac., 1995; 7: 131-147.
- 33. Pfleeger SL, Bohner SA. A Framework for Software Maintenance Metrics. In: the proceedings of Conference on Software Maintenance, 1990; 320-327.
- 34. Moreton R. A Process Model for Software Maintenance. J. Info. Tech., 1990; 5: 100-104.
- 35. Soong NL. A program stability measure. In: the proceedings of Annual ACM conference, Boulder Colorado, 1977; 163-173.
- 36. 36 Yau SS, Collofello JS, McGregor TM. Ripple effect analysis of software maintenance. In: the Proceedings of Annual International Computers, Software & Applications Conference, 1978; 60-65.
- 37. Black S. Automating ripple effect measurement. In: the 5th World Multiconference on Systemics, Cybernetics and Informatics, Florida, USA, 2001.
- 38. Davis A. Software Requirements: Analysis and Specification. Prentice-Hall, New Jersey, 1989.
- 39. Martin J, McClure C. Software Maintenance: The Problem and its Solutions. Prentice- Hall, London, 1983.

Peer Preprints

- 40. Parikh G. Some Tips, Techniques and Guidelines for Program and System Maintenance. In: Winthrup Publishers, Cambridge, Mass., 1982; 65-70.
- 41. Sharpley W K. Software Maintenance Planning for Embedded Computer Systems. In: the Proceedings of the Annual International Computers, Software & Applications Conference, 1977, 520-526.
- 42. Osborne W M. Building and Sustaining Software Maintainability. In: the proceedings of Conference on Software Maintenance, 1987; 13-23.
- 43. Yau S S, Collofello J S. Some Stability Measures for Software Maintenance, IEEE Trans. Soft. Eng., 1980; 6: 545-552.
- 44. Kent W. A simple guide to five normal forms in relational database theory. Commun. ACM, 1983; 26: 120-125.
- 45. Codd EF. Normalized data base structure: A brief tutorial. In: ACM SIG- FIDET Workshop on Data Description, Access, and Control. Nov. 1971.
- 46. Codd EF. Further normalization of the data base relational model. In: IBM Research Report, San Jose, California RJ909, 1971
- 47. Fagin R. Multivalued dependencies and a new normal form for relational databases. ACM Trans. Database Syst., 1977; 2: 262-278.
- 48. Fagin R. Normal forms and relational database operators. In: ACM SIG- MOD International Conference on Management of Data, 1979.
- 49. Ahmed Z, Ganti S K, Kyhlbäck H, Design Artifact's, Design Principles, Problems, Goals and Importance. In: Fourth International Conference of Statistical Sciences, Pakistan, 2008; 57-68.
- 50. Ahmed Z. Designing Flexible GUI to Increase the Acceptance Rate of Product Data Management Systems in Industry. Int. J. Comp. Sci. Emerg. Tech., 2011; 2: 100-109.
- 51. Klemmer SR, Lee B. Notebooks that Share and Walls that Remember: Electronic Capture of Design Education Artifacts. In: ACM Symposium on User Interface Software and Technology, 2005.
- 52. Ahmed Z, Zeeshan S, Huber C et al. Software LS-MIDA for efficient Mass Isotopomer Distribution Analysis. BMC Bioinf., 2013; 14.
- 53. Ahmed Z, Majeed S, Dandekar T. Unified Modeling and HCI Mockup Designing towards MIDA. Int. Jr. Emerg. Sci., 2012; 2: 361-382.
- 54. Ahmed Z, Helfrich-Förster C, Dandekar T. Integrating Formal UML Designs and HCI Patterns with Spiral SDLC in DroLIGHT Implementation. Rec. Pat. Comp. Sci., 2013; 6: 58-98.
- 55. Ahmed Z, Helfrich-Förster C. DroLIGHT: Real Time Embedded System towards Endogenous Clock Synchronization of Drosophila, Front. Neuroinf., 2013.
- 56. Ahmed Z, Helfrich-Förster C. DroLIGHT-2: Real Time Embedded and Data Management System for Synchronizing Circadian Clock to the Light-Dark Cycles, Rec. Pat. Comp. Sci., 2013; 6. [Accepted]
- 57. Ahmed Z, Majeed S, Dandekar T. Formal UML Modelling of Isotopo, Bioinformatical Software for Mass Isotopomers Distribution Analysis. Soft. Eng., 2012; 2: 147-159.
- 58. Wiechert W, de Graaf AA. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 1997; 55: 101-117.
- 59. Schuster R, Schuster S. Refined algorithm and computer program for calculating all non-negative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed. Comput Appl Biosci 1993; 9: 79-85.
- 60. Cvijovic M, Olivares-Hernández R, Agren R et al. BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Research 2010; 38: 144-149.
- 61. Zamboni N, Fischer E, Sauer M. FiatFlux a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 2005; 6: 209.
- 62. Pitkänen E, Akerlund A, Rantanen A et al. ReMatch: a web-based tool to construct, store and share stoichiometric metabolic models with carbon maps for metabolic flux analysis. Journal of Integrative Bioinformatics 2008; 5: 1-13.
- 63. Klamt S, von Kamp A. An application programming interface for CellNetAnalyzer. Biosystems 2002; 105: 162-8.
- 64. Ahmed Z, Zeeshan S, Dandekar T. Developing sustainable software solutions for bioinformatics by the "Butterfly" paradigm. F1000Research. 3:71.
- 65. Ahmed Z, Zeeshan S. Cultivating Software Solutions Development in the Scientific Academia. Recent Patents on Computer Science. 7:1.
- 66. Ahmed Z, Michel M, Saman Z, Dandekar T, Mueller M J, Fekete A. Lipid-Pro: A computational lipid identification solution for untargeted lipidomics on data-independent acquisition tandem mass spectrometry platforms. Bioinformatics. 31:7, 2015.

- 67. Ahmed Z, Saman Z, Fleischmann P, Roessler W, Dandekar T. Ant-App-DB: A smart Solution for Monitoring the Arthropods' Activities, Experimental Data Management and Solar Calculations without GPS in Behavioural Field Studies. F1000Research. 3:311.
- 68. Ahmed Z, Saman Z, Peschel n, Dandekar T. GenomeVX: Bioinformatics Solution towards Understanding the Genome-Wide Comparative Analyses of Different Human Populations Front. Neurosci. Conference Abstract: Neuroinformatics 2015. doi: 10.3389/conf.fnins.2015.91.00059