

 Essential Design Modeling for Scientific Software Solutions Development

Zeeshan Ahmed1, 2, 3,
1The Jackson Laboratory for Genomic Medicine, CT, USA

2University of Massachusetts, School of Medicine, MA, USA

3University of Wuerzburg, Department of Bioinformatics, USA

Abstract

Software design and its engineering is essential for bioinformatics software impact. We propose a new approach
‘Butterfly’, for the betterment of modeling of scientific software solutions by targeting key developmental points:
intuitive, graphical user interface design, stable methodical implementation and comprehensive output presentation.
The focus of research was to address following three key points: 1) differences and different challenges required to
change from traditional to scientific software engineering, 2) scientific software solution development needs
feedback and control loops following basic engineering principles for implementation and 3) software design with
new approach which helps in developing and implementing a comprehensive scientific software solution. We
validated the approach by comparing old and new bioinformatics software solutions. Moreover, we have
successfully applied our approach in the design and engineering of different well applied and published
Bioinformatics and Neuroinformatics tools including DroLIGHT, LS-MIDA, Isotopo, Ant-App-DB, GenomeVX and
Lipid-Pro.

Introduction

Computer Science has revolutionized almost all other fields of life. Common man including engineers, doctors,
artists, technicians and scientist etc., somehow, every one’s life is now partially depending on the usage of
informatics. In the past (1980s), the informatics (IT) issues were related to the development of the large sized but
small-scaled applications. Later on (1990s), with the passage of time systems started becoming complex but smaller
in size, especially with the evolvement of the concept i.e. Component Based Systems (CBS) 1 and the innovations of
advanced programming tools and technologies2 e.g. Enterprise Java Beans, Microsoft COM and CORBA etc. So far
the focus of the last decade (2000s) was to develop smart, intelligent and robotic applications.

Particularly in life science, with the front-runner field bioinformatics, the world has been changed by small,
efficient, fast, logical, embedded and intelligent software, databases and management systems. Even this year’s
(2013) Nobel Prize winners (Arieh Warshel, Martin Karplus, Michael Levitt) 3 in the field of Chemistry relied on
powerful computational programs to understand and predict biochemical processes and molecular dynamics, giving
testimony to the novelty and innovation of bioinformatics.

Software Engineering Principles

To establish and expedite the processes of scientific software engineering (SSE), many Software Development Life
Cycle (SDLC)4 models have been introduced e.g. Waterfall Model, V-Model, Spiral Model, Iterative and
Incremental Model, Rapid Prototype Model, Extreme Programming Model, Evolutionary Model, Agile
Development Model, Code and Fix Model etc., and some other Process improvement models5.

SDLC is a goal-oriented approach toward the software development. Almost all of the proposed SDLC models
provide distinct processes for the software implementations. Depending upon the nature of the end product, the right
model has to be chosen and applied. Based on the process’ artifacts and logical steps for developing a software
project (e.g. time, quality, size, development effort etc.), it is not easily possible to compare different SDLCs6, but
doing so reveals differences7. Own efforts did focus on quality improvement of software8, 9, 10, 11, and 12.

Depending upon the observed commonalties, in general, we state that the software engineering is an integrated,
cyclic and product line combination of following independent modular approaches: requirements engineering13, 14, 15,
design modelling16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, programming, testing and deployment.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

These five modular approaches (Figure 1) follow the procedures of some life cycle management approaches, which
can help them in performing their individual functionalities as well as regulating tasks in cyclic chain processes.

Figure 1. Traditional Software Development; consisting of integrated and cyclic combination of the following
independent modular approaches: requirements engineering, design modeling, programming, testing and
deployment 65, 66.

Scientific Software Engineering

Testing of integrated and individual modules becomes time consuming (Figure 2), as new test cases have to be
rewritten all the times or the application exists with a high expectation of ripple effects 29 (i.e. unidentified logical or
syntax errors in the system which arise while fixing the identified logical or syntax errors). The quality of a software
application decreases with an increase in the ripples a change in software creates. Moreover measured optimum
software maintenance can only be achieved with the accessibility of the concrete information about the ripples effect
in the system [30]. Depending upon the nature of the system, many approaches have been proposed to improve the
software quality measurement processes (e.g. 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43etc.), towards the traditional software
development but one can also use these in the scientific software solution’s quality assurance and for improvements
as well.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

Figure 2. Scientific Software Engineering (SSE)65, 66. SSE integrates and combines in a development cycle the
following independent main modular approaches: requirements engineering, design modeling, programming, testing
and deployment. Each approach consists of its own sub-modular, integrated and cyclic combination of internal
phases: requirement engineering consists of specification, functional, non-functional, and analysis; design modeling
consists of use cases, system flows, data flow and source code; programming consists of languages, tools and
technologies, development, and debugging; testing consists of test cases, modular, integrated and quality; finally,
deployment consists of installation, con-figuration, training, feedback. Iterative cycles lead to continuous
improvements, achievements translate the goals into good software.

Database manipulation and management system: If the target scientific software solution has this focus, then it
requires to properly modeling the database schema (entity relationship model) by reducing the levels of data
redundancy and dependency, using data normalization. There are five data normalization forms: 1NF, 2NF, 3NF,
4NF and 5NF, conceptual procedures for comprehensive database designing44. These data normalization forms help
in shaping the data types (1NF), developing relationships between non-key and key fields (2NF, 3NF) 45, 46, and
deals with multi-valued facts corresponding to the many to many relationships (4NF and 5NF) 47, 48.

Human Computer Interaction and Scientific Applications: The Human Computer Interaction (HCI), also known as
Human Machine Interaction (HMI) 49, 50, 51, has to correlate with the Scientific Application development. HCI
defines the implementation of the mechanisms to establish the efficient communication protocols between human

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

and machines. These protocols are based on the textual, visual, sensory, audio and event based information,
provided by both the user and the machine (computer).

Butterfly Workflow Design and Software Examples

To implement the Butterfly model 65, 66, we have designed a three-layered architecture (Figure 3), going from
abstract planning (gray) to designers and developers (yellow) to implementation and user (green).

Figure 3. Butterfly three-layer model 65, 66. Shown in grey is the abstract layer, the basis for design and development
(yellow), followed by implementation and testing by the user (green) so that the software is released including
installation and training.

Abstract planning: Scientific software solution planning is the first step towards a new scientific application
development. It requires good knowledge of the field (e.g. biochemistry, neurobiology, genetics, metabolomics,
proteomics etc.) as well as project related information (e.g. what could be the end product, in-put to the system,
expected output from the system, methodology, ideas, user opinions etc.). The next important phase is to perform
requirements engineering and analysis. The third phase is the conceptual software design and modeling. Before
moving ahead, first go for some abstract designs based on functional requirements and discuss these in your team.
The last phase is software solution planning. It concerns the design of a user-friendly graphical interface.

Software design: This layer involves the designers and developers. It consists of four steps: design and modeling and
analysis, tools and technology selection, design implementation and graphical user interface implementation.

Implementation: The last layer concerns implementation and programming and involves in house testing and
debugging (by the developers and tester). Steps include scientific software solution testing, debugging and creation
of new versions, users involved in testing and feedback and finally installation and training.

The Butterfly workflow design accentuates experience from previous software developments including a number of
larger efforts (Table 1). Most of these are team efforts that simply have come close to the Butterfly paradigm, but by
chance and pressure, not by explicitly following a scientific approach. With rapid development of new software
applications, the need to formalize the software solution development principles increases to ensure that all scientific
applications follow the standard scientific paradigms.

Adopting the concepts of Butterfly model, some new scientific software applications have already been proposed,
designed, implemented, tested and are in use (LS-MIDA52, 53 (Figure 4), DroLIGHT 54, 55, 56 (Figure 5), Isotopo 57

(Figure 6), Lipid-Pro 66 (Figure 7), App Ant Database67 (Figure 8) and GenomeVX68 (Figure 9).

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

Figure 4. Graphical user interface of LS-MIDA

Figure 5. Graphical user interface of DroLIGHT

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

Figure 6. Graphical user interface of Isotopo

Figure 7. Graphical user interface of Lipid-Pro

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

Figure 8. Graphical User interface of Ant-App-DB

Figure 9. Graphical User interface of GenomeVX

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

To determine in a more objective way potential gains from scientific software de-sign following our proposed
butterfly paradigm we have performed a short comparative analysis of some bioinformatics software applications
(C13 58, Metatool 59, BioOpt 60, FiatFlux 61 ReMatch 62, Biolayout 63, LS-MIDA 52, 53, DroLIGHT 54, 55, 56, Isotopo 57),
describing their type, methodology, implementation, user friendliness, configuration etc., based on the provided,
published information (summarized in Table 2).

Table 1. Comparative analysis of different Bioinformatics software applications.

Butterfly
 area

Software

Engineeri
ng

Approach

Scientific
Methodol

ogy

Scientific
Applicatio

n

Human
Computer
Interaction

Reference

BLAST Scientific
Software

Engineerin
g

Advanced
(2 Hit

method)

followed Intuitive S. F. Altschul, W. Gish, W. Miller, E.
W. Myers and D. J. Lipman (1990).
Basic local alignment search tool. J.

Mol. Biol. 215, 403-410.
FASTA Traditional 1 Hit

method
Steps to
scientific

application

Simple
Command

line

Pearson, W.R. & Lipman, D.J. (1988)
“Improved tools for biological
sequence comparison.”
Proc. Natl. Acad. Sci. USA 85:2444-
2448.

Genbank Traditional
,

but work
in a team,
iterative

refinement

SQL World-
wide

multiuser
scenario

Command
Line, web
interface,
BioPerl,
SOAP, differ.
downloads

Benson DA, Karsch-Mizrachi I,
Lipman DJ, Ostell J, Sayers EW.

GenBank. Nucleic Acids Res.
2010;38:D46-D51.

EBI
databank

Traditional
but work
in a team,
iterative

refinement

XML World-
wide

multiuser
scenario

Command
Line, SOAP,

BioPerl,
many

download
options

Kulikova T, Akhtar R, Aldebert P,
Althorpe N, Andersson M, Baldwin
A, Bates K, Bhattacharyya S, Bower
L, Browne P, et al. EMBL nucleotide

sequence database in 2006. NAR
2007;35:D16-D20.

EMBOSS Traditional
, but work
in a team

AJAX
Command
Definition

(ACD
files)

ANSI C

 General
software
design

rules for
knowledge
able users

´Jemboss´,
Java based
Interface

Rice,P. et al. (2000) EMBOSS: the
european molecular biology open
software suite. TIG, 16, 276–277.

Carver, T. J. and Mullan, L. J. (2002),
Website Update: A new graphical
user interface to EMBOSS. Comp

Funct Genom, 3: 75–78.
doi: 10.1002/cfg.136

Bioperl
suite

Traditional Perl

Followed
general

software
design

rules for
knowledge
able users

Command
Line

Stajich JE, Block D, Boulez K,
Brenner SE, Chervitz SA, Dagdigian

C, Fuellen G, Gilbert JG, Korf I,
Lapp H, Lehväslaiho H, Matsalla C,

Mungall CJ, Osborne BI, Pocock
MR, Schattner P, Senger M, Stein
LD, Stupka E, Wilkinson MD, and
Birney E. The Bioperl toolkit: Perl

modules for the life sciences.
Genome Res. 2002 Oct;12(10):1611-

8.
KEGG
databank

Scientific
Software

Engineerin
g

Oracle Bottom-up
and top-

down
effort,

coordinate
d by Prof.
Kanehisa

Charts, maps,
Intuitive user

interface,
Export

options, new
KEGG api is

restricted

Ogata, H., Goto, S., Sato, K.,
Fujibuchi, W., Bono, H., and
Kanehisa, M.; KEGG: Kyoto
Encyclopedia of Genes and

Genomes. NAR. 27, 29-34 (1999).
Kanehisa M, Goto S, Sato Y,

Kawashima M, Furumichi M, Tanabe
M. Data, information, knowledge and

principle: back to metabolism in
KEGG. Nucleic Acids Res. 2013

COPASI Traditional C++ General
software
design

 Copasi GUI
Command

Line

Hoops S., Sahle S., Gauges R., Lee
C., Pahle J., Simus N., Singhal M.,
Xu L., Mendes P. and Kummer U.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

rules for
expert s

 (CopasiSE) (2006). COPASI: a COmplex
PAthway SImulator. Bioinformatics

22, 3067-74.
COBRA Traditional

but large-
scale team

effort,
multiple

user-
feedback

COBRA
For

Python

COBRA
Toolbox

For
MATLAB

 Command
Line

Options

Ebrahim A, Lerman JA, Palsson BO,
Hyduke DR. 2013 COBRApy:

COnstraints-Based Reconstruction
and Analysis for Python. BMC Syst

Bio 7:74.
Schellenberger J, Que R, Fleming

RMT, Thiele I, Orth JD, Feist AM,
Zielinski DC, Bordbar A, Lewis NE,
Rahmanian S, Kang J, Hyduke DR,

Palsson BØ. 2011 Quantitative
prediction of cellular metabolism
with constraint-based models: the

COBRA Toolbox v2.0. Nature
Protocols 6:1290-1307.

Rasmol Traditional C Simple
In

PDB file
Submissio

n

 Sayle, R. and Bissell, A. (1992)
RasMol: A Program for Fast Realistic

Rendering of Molecular Structures
with Shadows. In Proceedings of the

10th Eurographics UK 1992
Conference, University of Edinburgh

Pymol Traditional
small team

C and
Python

 Command
Line Options

The PyMOL Molecular Graphics
System, Version 1.5.0.4 Schrödinger,

LLC.
GROMOS
package

Traditional
but team

work

FORTRA
N77

 W. R. P. Scott, P. H. Hünenberger, I.
G. Tironi, A. E. Mark, S. R. Billeter,
J. Fennen, A. E. Torda, T. Huber, P.
Krüger, and W. F. van Gunsteren,

The GROMOS Simulation Package,
J. Phys. Chem. A 103 (1999) 3596-

3607.

Table 2. Comparative analysis of different scientific software applications.

Application
s
/

Comparativ
e Measures

C13 Metatool BioOp
t

Fiatlu
x

ReMatc
h

Biolayou
t

LS-
MIDA

Dro-
LIGHT

Isotopo

SSE? Yes Yes Yes Yes Yes Yes Yes Yes Yes

App. Type Desktop Desktop Deskto
p

Deskto
p

Web Desktop Deskto
p

Desktop Desktop

Data
Manageme
nt

No DM
Sys.

No DM
Sys.

No
DM
Sys.

No
DM
Sys.

DB No DM
Sys.

 File
based

File
based

File
based

and DB
Script or
Prototype

Script Script Prototy
pe

Script Prototy
pe

Prototyp
e

Prototy
pe

Prototy
pe

Prototy
pe

Algorithm
Type

Parallel Sequenti
al

Sequen
tial

Paralle
l

Sequent
ial

Parallel Sequen
tial

Parallel Sequent
ial

Algorithm /
Methodolog
y

Isotopic
Labellin

g

Schuster
Algorith

m

Mass
Balanc
e
Equati
on

Isotopi
c

Labelli
ng

Carbon
Mappin

g

Markov
Clusterin

g

Least
Square

Circadia
n

Rhythm
s

Partial
Least

Square

Running
Mode

Interacti
ve

Interactiv
e

Batch Interac
tive

Interacti
ve

Interactiv
e

Interac
tive

Interacti
ve

Interacti
ve

Publishing,
licensing

Publish
ed, Free

Publishe
d, Free

Publis
hed,

Publis
hed,

Publish
ed, Free

Publishe
d, Free

Publis
hed,

Publish
ed, Free

Publish
ed, Free

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

Free Free Free

SDLC
Informatio
n

Not
Provide

d

Not
Provided

Not
Provid

ed

Not
Provid

ed

Not
Provide

d

Not
Provided

V-
Model

Spiral V-
Model

HCI
Informatio
n

Not
Provide

d

Not
Provided

Not
Provid

ed

Not
Provid

ed

Not
Provide

d

Not
Provided

HCI
Pattern

s
Imple

mented

HCI
Patterns
Implem
ented

HCI
Patterns
Implem
ented

User
Friendly

No No No No Yes Yes Yes Yes Yes

Easy to
configure

No No No No Yes Yes Yes Yes Yes

Easy to
train

No No No No No No Yes Yes Yes

Software
Re-
Engineerin
g

Yes No Yes Yes Yes No Yes No No

Cyclic or
Repetitive

No No Yes Yes Yes No Yes No Yes

Easy to
learn and
Use

Yes Yes No No Yes No Yes Yes Yes

User
Training

No No No No No No No Yes No

Conclusions

Conscious adaptation of SSE principles as exemplified here by the suggested butterfly design and its multilayered
architecture, might look like an increase in developmental workload in comparison to many current bioinformatics
programming methods. However, on the long run, it will reduce the burden by making the scientific application well
designed, flexible, structured and reusable. It allows a product line development, is analytical and allows qualitative
software improvement. Furthermore, HCI concepts make it user friendly, easy to learn and to deploy.

Conflict of Interests

The authors declare no conflict of interest.

References

1. Mahmood S, Lai R. A Component-Based System Requirements Analysis Language. Comput. J. Vol. 2013; 56:
901-922.

2. Szyperski C, Gruntz D, Murer S. Component Software—Beyond Object-Oriented Programming, Addison-
Wesley, 2002.

3. The computer - your Virgil in the world of atoms.
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/press.html (12 November 2013, date last
accessed)

4. Boehm B. Software Engineering. IEEE Trans. on Com., 1976; 12: 1226-1242.
5. Rook P. Controlling Software Projects. Software Engin. J., 1986; 1: 7-16.
6. Benediktsson O, Dalcher D, Thorbergsson H. Comparison of software development life cycles: a multiproject

experiment. IEE Proc. Soft., 2006; 153: 87-101.
7. Munassar NMA, Govardhan A. A Comparison Between Five Models Of Software Engineering. Int. Jr. Comp.

Sci., 2010; 7: 94-101.
8. Ahmed Z. Towards Performance Measurement and Metrics based Analysis of PLA Applications. Int. J. Soft.

Engin. App., 2010; 1: 66-80.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

9. Ahmed Z, Majeed S. Measurement, Analysis with Visualization for better Reliability. Artificial Intelligence and
Hybrid Systems: iConcept Press, 2013.

10. Ahmed Z, Majeed S. Towards Increase in Quality by Preprocessed Source Code and Measurement Analysis of
Software Applications. IST Tran. Inf. Tech. Theo. App., 2010; 1: 8-13.

11. Ahmed Z. Measurement Analysis and Fault Proneness Indication in Product Line Applications (PLA). In: Sixth
International Conference on New Software Methodologies, Tools, and Techniques, Rome, Italy, 2007; 391-400.

12. Ahmed Z. Integration of variants handling in M-system NT. Blekinge Institute of Technology, Karlskrona,
Sweden. 2006.

13. Lee J, Xue NL. Analyzing user requirements by use cases: a goal-driven approach. IEEE Soft., 1999; 16: 92–
101.

14. Sommerville I. Integrated requirements engineering: a Tutorial. IEEE Soft., 2005; 22: 16–23.
15. van Lamsweerde A, Darimont R, Letier R. Managing conflicts in goal-driven requirements engineering. IEEE

Trans. Soft. Eng., 1998; 24: 908–926.
16. Kaur H, Singh P. UML (Unified Modeling Language): Standard Language for Software Architecture

Development. In: International Symposium on Computing, Communication, and Control, Singapore, 2011.
17. Garlan D, Shaw M. An introduction to software architecture. Adva. Soft. Eng. Know. Eng., 1993; 2: 1-39.
18. Garlan D. Formal Approaches to Software Architecture. In: Workshop on Studies of Software Design, UK,

1993; 64-76.
19. Garlan D, Notkin D. Formalizing design spaces: Implicit invocation mechanisms. In: Fourth International

Symposium of VDM Europe on Formal Software Development, UK, 1991; 31–44.
20. Dashofy EM, Hoek A, Taylor RN. An infrastructure for the rapid development of XML-based architecture

description languages. In: Twenty Fourth International Conference on Software Engineering, USA, 2002; 266-
276.

21. Egyed A, Kruchten PB. Rose/Architect: A Tool to Visualize Architecture. In: Thirty Second Annual Hawaii
Conference on Systems Sciences, USA, 1999; 8066.

22. Booch G, Rumbaugh J, Jacobson I, Unified Modeling Language User Guide. In: the 2nd Edition, Addison-
Wesley Professional, 2005.

23. Jacobson I, Christerson M, Jonsson P, Oevergaard G. Object-Oriented Software Engineering: A Use Case
Driven Approach. In: Reading, MA Addison-Wesley, 1992.

24. Dumas M, ter-Hofstede AHM. UML Activity Diagrams as a Workflow Specification Language, In: Fourth
International Conference on The Unified Modeling Language, Modeling Languages, Concepts, and Tools, UK,
2001, 76-90.

25. Bruza PD, van-der-Weide TP. The Semantics of Data Flow Diagrams, In: International Conference on
Management of Data, 1993.

26. Latronico E, Koopman P. Representing Embedded System Sequence Diagrams as a Formal Language, In:
Fourth International Conference on The Unified Modeling Language, Canada, 2001; 302-316.

27. Marilyn B, A guide for programmers, Prentice-Hall, 1978.
28. Berardi D, Calvanese D, Giacomo G E. Reasoning on UML class diagrams. Artif. Intell., 2005; 168: 70-118.
29. Haney F M. Module connection analysis- a tool for scheduling of software debugging activitie. In: Proceedings

of Fall Joint Computer Conference, 1972; 173-179.
30. Moreton R. A Process Model for Software Maintenance. J. Info. Tech., 1990; 5: 100-104.
31. Kan SH, Basili VR, Shapiro LN. Software Quality: An overview from the perspective of total quality

management, IBM Sys. J., 1994; 33.
32. Li W, Henry S. An Empirical Study of Maintenance Activities in Two Object-oriented Systems, J. Soft. Main.

Res. Prac., 1995; 7: 131-147.
33. Pfleeger SL, Bohner SA. A Framework for Software Maintenance Metrics. In: the proceedings of Conference

on Software Maintenance, 1990; 320-327.
34. Moreton R. A Process Model for Software Maintenance. J. Info. Tech., 1990; 5: 100-104.
35. Soong NL. A program stability measure. In: the proceedings of Annual ACM conference, Boulder Colorado,

1977; 163-173.
36. 36 Yau SS, Collofello JS, McGregor TM. Ripple effect analysis of software maintenance. In: the Proceedings of

Annual International Computers, Software & Applications Conference, 1978; 60-65.
37. Black S. Automating ripple effect measurement. In: the 5th World Multiconference on Systemics, Cybernetics

and Informatics, Florida, USA, 2001.
38. Davis A. Software Requirements: Analysis and Specification. Prentice-Hall, New Jersey, 1989.
39. Martin J, McClure C. Software Maintenance: The Problem and its Solutions. Prentice- Hall, London, 1983.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

40. Parikh G. Some Tips, Techniques and Guidelines for Program and System Maintenance. In: Winthrup
Publishers, Cambridge, Mass., 1982; 65-70.

41. Sharpley W K. Software Maintenance Planning for Embedded Computer Systems. In: the Proceedings of the
Annual International Computers, Software & Applications Conference, 1977, 520-526.

42. Osborne W M. Building and Sustaining Software Maintainability. In: the proceedings of Conference on
Software Maintenance, 1987; 13-23.

43. Yau S S, Collofello J S. Some Stability Measures for Software Maintenance, IEEE Trans. Soft. Eng., 1980; 6:
545-552.

44. Kent W. A simple guide to five normal forms in relational database theory. Commun. ACM, 1983; 26: 120-125.
45. Codd EF. Normalized data base structure: A brief tutorial. In: ACM SIG- FIDET Workshop on Data

Description, Access, and Control. Nov. 1971.
46. Codd EF. Further normalization of the data base relational model. In: IBM Research Report, San Jose,

California RJ909, 1971
47. Fagin R. Multivalued dependencies and a new normal form for relational databases. ACM Trans. Database

Syst., 1977; 2: 262-278.
48. Fagin R. Normal forms and relational database operators. In: ACM SIG- MOD International Conference on

Management of Data, 1979.
49. Ahmed Z, Ganti S K, Kyhlbäck H, Design Artifact’s, Design Principles, Problems, Goals and Importance. In:

Fourth International Conference of Statistical Sciences, Pakistan, 2008; 57-68.
50. Ahmed Z. Designing Flexible GUI to Increase the Acceptance Rate of Product Data Management Systems in

Industry. Int. J. Comp. Sci. Emerg. Tech., 2011; 2: 100-109.
51. Klemmer SR, Lee B. Notebooks that Share and Walls that Remember: Electronic Capture of Design Education

Artifacts. In: ACM Symposium on User Interface Software and Technology, 2005.
52. Ahmed Z, Zeeshan S, Huber C et al. Software LS-MIDA for efficient Mass Isotopomer Distribution Analysis.

BMC Bioinf., 2013; 14.
53. Ahmed Z, Majeed S, Dandekar T. Unified Modeling and HCI Mockup Designing towards MIDA. Int. Jr.

Emerg. Sci., 2012; 2: 361-382.
54. Ahmed Z, Helfrich-Förster C, Dandekar T. Integrating Formal UML Designs and HCI Patterns with Spiral

SDLC in DroLIGHT Implementation. Rec. Pat. Comp. Sci., 2013; 6: 58-98.
55. Ahmed Z, Helfrich-Förster C. DroLIGHT: Real Time Embedded System towards Endogenous Clock

Synchronization of Drosophila, Front. Neuroinf., 2013.
56. Ahmed Z, Helfrich-Förster C. DroLIGHT-2: Real Time Embedded and Data Management System for

Synchronizing Circadian Clock to the Light-Dark Cycles, Rec. Pat. Comp. Sci., 2013; 6. [Accepted]
57. Ahmed Z, Majeed S, Dandekar T. Formal UML Modelling of Isotopo, Bioinformatical Software for Mass

Isotopomers Distribution Analysis. Soft. Eng., 2012; 2: 147-159.
58. Wiechert W, de Graaf AA. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of

carbon isotope labeling experiments. Biotechnol Bioeng 1997; 55: 101-117.
59. Schuster R, Schuster S. Refined algorithm and computer program for calculating all non-negative fluxes

admissible in steady states of biochemical reaction systems with or without some flux rates fixed. Comput Appl
Biosci 1993; 9: 79-85.

60. Cvijovic M, Olivares-Hernández R, Agren R et al. BioMet Toolbox: genome-wide analysis of metabolism.
Nucleic Acids Research 2010; 38: 144-149.

61. Zamboni N, Fischer E, Sauer M. FiatFlux - a software for metabolic flux analysis from 13C-glucose
experiments. BMC Bioinformatics 2005; 6: 209.

62. Pitkänen E, Akerlund A, Rantanen A et al. ReMatch: a web-based tool to construct, store and share
stoichiometric metabolic models with carbon maps for metabolic flux analysis. Journal of Integrative
Bioinformatics 2008; 5: 1-13.

63. Klamt S, von Kamp A. An application programming interface for CellNetAnalyzer. Biosystems 2002; 105:
162-8.

64. Ahmed Z, Zeeshan S, Dandekar T. Developing sustainable software solutions for bioinformatics by the
“Butterfly” paradigm. F1000Research. 3:71.

65. Ahmed Z, Zeeshan S. Cultivating Software Solutions Development in the Scientific Academia. Recent Patents
on Computer Science. 7:1.

66. Ahmed Z, Michel M, Saman Z, Dandekar T, Mueller M J, Fekete A. Lipid-Pro: A computational lipid
identification solution for untargeted lipidomics on data-independent acquisition tandem mass spectrometry
platforms. Bioinformatics. 31:7, 2015.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

67. Ahmed Z, Saman Z, Fleischmann P, Roessler W, Dandekar T. Ant-App-DB: A smart Solution for Monitoring
the Arthropods’ Activities, Experimental Data Management and Solar Calculations without GPS in Behavioural
Field Studies. F1000Research. 3:311.

68. Ahmed Z, Saman Z, Peschel n, Dandekar T. GenomeVX: Bioinformatics Solution towards Understanding the
Genome-Wide Comparative Analyses of Different Human Populations Front. Neurosci. Conference Abstract:
Neuroinformatics 2015. doi: 10.3389/conf.fnins.2015.91.00059

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1423v1 | CC-BY 4.0 Open Access | rec: 8 Oct 2015, publ: 8 Oct 2015

