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Abstract 

Software design and its engineering is essential for bioinformatics software impact. We propose a new approach 
‘Butterfly’, for the betterment of modeling of scientific software solutions by targeting key developmental points: 
intuitive, graphical user interface design, stable methodical implementation and comprehensive output presentation. 
The focus of research was to address following three key points: 1) differences and different challenges required to 
change from traditional to scientific software engineering, 2) scientific software solution development needs 
feedback and control loops following basic engineering principles for implementation and 3) software design with 
new approach which helps in developing and implementing a comprehensive scientific software solution. We 
validated the approach by comparing old and new bioinformatics software solutions. Moreover, we have 
successfully applied our approach in the design and engineering of different well applied and published 
Bioinformatics and Neuroinformatics tools including DroLIGHT, LS-MIDA, Isotopo, Ant-App-DB, GenomeVX and 
Lipid-Pro. 

Introduction 

Computer Science has revolutionized almost all other fields of life. Common man including engineers, doctors, 
artists, technicians and scientist etc., somehow, every one’s life is now partially depending on the usage of 
informatics. In the past (1980s), the informatics (IT) issues were related to the development of the large sized but 
small-scaled applications. Later on (1990s), with the passage of time systems started becoming complex but smaller 
in size, especially with the evolvement of the concept i.e. Component Based Systems (CBS) 1 and the innovations of 
advanced programming tools and technologies2 e.g. Enterprise Java Beans, Microsoft COM and CORBA etc. So far 
the focus of the last decade (2000s) was to develop smart, intelligent and robotic applications.  

Particularly in life science, with the front-runner field bioinformatics, the world has been changed by small, 
efficient, fast, logical, embedded and intelligent software, databases and management systems. Even this year’s 
(2013) Nobel Prize winners (Arieh Warshel, Martin Karplus, Michael Levitt) 3 in the field of Chemistry relied on 
powerful computational programs to understand and predict biochemical processes and molecular dynamics, giving 
testimony to the novelty and innovation of bioinformatics. 

Software Engineering Principles 

To establish and expedite the processes of scientific software engineering (SSE), many Software Development Life 
Cycle (SDLC)4 models have been introduced e.g. Waterfall Model, V-Model, Spiral Model, Iterative and 
Incremental Model, Rapid Prototype Model, Extreme Programming Model, Evolutionary Model, Agile 
Development Model, Code and Fix Model etc., and some other Process improvement models5.  

SDLC is a goal-oriented approach toward the software development. Almost all of the proposed SDLC models 
provide distinct processes for the software implementations. Depending upon the nature of the end product, the right 
model has to be chosen and applied. Based on the process’ artifacts and logical steps for developing a software 
project (e.g. time, quality, size, development effort etc.), it is not easily possible to compare different SDLCs6, but 
doing so reveals differences7. Own efforts did focus on quality improvement of software8, 9, 10, 11, and 12.  

Depending upon the observed commonalties, in general, we state that the software engineering is an integrated, 
cyclic and product line combination of following independent modular approaches: requirements engineering13, 14, 15, 
design modelling16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, programming, testing and deployment.  
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These five modular approaches (Figure 1) follow the procedures of some life cycle management approaches, which 
can help them in performing their individual functionalities as well as regulating tasks in cyclic chain processes. 

 
Figure 1. Traditional Software Development; consisting of integrated and cyclic combination of the following 
independent modular approaches: requirements engineering, design modeling, programming, testing and 
deployment 65, 66. 

 

Scientific Software Engineering 

Testing of integrated and individual modules becomes time consuming (Figure 2), as new test cases have to be 
rewritten all the times or the application exists with a high expectation of ripple effects 29 (i.e. unidentified logical or 
syntax errors in the system which arise while fixing the identified logical or syntax errors). The quality of a software 
application decreases with an increase in the ripples a change in software creates. Moreover measured optimum 
software maintenance can only be achieved with the accessibility of the concrete information about the ripples effect 
in the system [30]. Depending upon the nature of the system, many approaches have been proposed to improve the 
software quality measurement processes (e.g. 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43etc.), towards the traditional software 
development but one can also use these in the scientific software solution’s quality assurance and for improvements 
as well. 
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Figure 2. Scientific Software Engineering (SSE)65, 66. SSE integrates and combines in a development cycle the 
following independent main modular approaches: requirements engineering, design modeling, programming, testing 
and deployment. Each approach consists of its own sub-modular, integrated and cyclic combination of internal 
phases: requirement engineering consists of specification, functional, non-functional, and analysis; design modeling 
consists of use cases, system flows, data flow and source code; programming consists of languages, tools and 
technologies, development, and debugging; testing consists of test cases, modular, integrated and quality; finally, 
deployment consists of installation, con-figuration, training, feedback. Iterative cycles lead to continuous 
improvements, achievements translate the goals into good software. 

Database manipulation and management system: If the target scientific software solution has this focus, then it 
requires to properly modeling the database schema (entity relationship model) by reducing the levels of data 
redundancy and dependency, using data normalization. There are five data normalization forms: 1NF, 2NF, 3NF, 
4NF and 5NF, conceptual procedures for comprehensive database designing44. These data normalization forms help 
in shaping the data types (1NF), developing relationships between non-key and key fields (2NF, 3NF) 45, 46, and 
deals with multi-valued facts corresponding to the many to many relationships (4NF and 5NF) 47, 48. 

Human Computer Interaction and Scientific Applications: The Human Computer Interaction (HCI), also known as 
Human Machine Interaction (HMI) 49, 50, 51, has to correlate with the Scientific Application development. HCI 
defines the implementation of the mechanisms to establish the efficient communication protocols between human 
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and machines. These protocols are based on the textual, visual, sensory, audio and event based information, 
provided by both the user and the machine (computer). 

Butterfly Workflow Design and Software Examples 

To implement the Butterfly model 65, 66, we have designed a three-layered architecture (Figure 3), going from 
abstract planning (gray) to designers and developers (yellow) to implementation and user (green).  

 

 
Figure 3. Butterfly three-layer model 65, 66. Shown in grey is the abstract layer, the basis for design and development 
(yellow), followed by implementation and testing by the user (green) so that the software is released including 
installation and training. 

Abstract planning: Scientific software solution planning is the first step towards a new scientific application 
development. It requires good knowledge of the field (e.g. biochemistry, neurobiology, genetics, metabolomics, 
proteomics etc.) as well as project related information (e.g. what could be the end product, in-put to the system, 
expected output from the system, methodology, ideas, user opinions etc.). The next important phase is to perform 
requirements engineering and analysis. The third phase is the conceptual software design and modeling. Before 
moving ahead, first go for some abstract designs based on functional requirements and discuss these in your team. 
The last phase is software solution planning. It concerns the design of a user-friendly graphical interface.  

Software design: This layer involves the designers and developers. It consists of four steps: design and modeling and 
analysis, tools and technology selection, design implementation and graphical user interface implementation. 

Implementation: The last layer concerns implementation and programming and involves in house testing and 
debugging (by the developers and tester). Steps include scientific software solution testing, debugging and creation 
of new versions, users involved in testing and feedback and finally installation and training. 

The Butterfly workflow design accentuates experience from previous software developments including a number of 
larger efforts (Table 1). Most of these are team efforts that simply have come close to the Butterfly paradigm, but by 
chance and pressure, not by explicitly following a scientific approach. With rapid development of new software 
applications, the need to formalize the software solution development principles increases to ensure that all scientific 
applications follow the standard scientific paradigms. 

Adopting the concepts of Butterfly model, some new scientific software applications have already been proposed, 
designed, implemented, tested and are in use (LS-MIDA52, 53 (Figure 4), DroLIGHT 54, 55, 56 (Figure 5), Isotopo 57 

(Figure 6), Lipid-Pro 66 (Figure 7), App Ant Database67 (Figure 8) and GenomeVX68 (Figure 9).  
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Figure 4. Graphical user interface of LS-MIDA 

Figure 5. Graphical user interface of DroLIGHT 
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Figure 6. Graphical user interface of Isotopo 

 
Figure 7. Graphical user interface of Lipid-Pro 
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Figure 8. Graphical User interface of Ant-App-DB 

 
Figure 9. Graphical User interface of GenomeVX 
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To determine in a more objective way potential gains from scientific software de-sign following our proposed 
butterfly paradigm we have performed a short comparative analysis of some bioinformatics software applications 
(C13 58, Metatool 59, BioOpt 60, FiatFlux 61 ReMatch 62, Biolayout 63, LS-MIDA 52, 53, DroLIGHT 54, 55, 56, Isotopo 57), 
describing their type, methodology, implementation, user friendliness, configuration etc., based on the provided, 
published information (summarized in Table 2).   

 

Table 1. Comparative analysis of different Bioinformatics software applications. 

Butterfly  
 area  

Software 

Engineeri
ng  

Approach 

Scientific  
Methodol

ogy 

Scientific  
Applicatio

n 

Human  
Computer  
Interaction 

Reference 

BLAST Scientific  
Software  

Engineerin
g 

Advanced  
(2 Hit  

method) 

followed Intuitive S. F. Altschul, W. Gish, W. Miller, E. 
W. Myers and D. J. Lipman (1990). 
Basic local alignment search tool. J. 

Mol. Biol.  215, 403-410. 
FASTA Traditional 1 Hit  

method 
Steps to  
scientific  

application 

Simple  
Command  

line  

Pearson, W.R. & Lipman, D.J. (1988) 
“Improved tools for biological 
sequence comparison.”  
Proc. Natl. Acad. Sci. USA 85:2444-
2448. 

Genbank Traditional
, 

but work 
in a team, 
iterative 

refinement 

SQL World-
wide 

multiuser 
scenario 

Command 
Line, web 
interface, 
BioPerl, 
SOAP, differ. 
downloads  

Benson DA, Karsch-Mizrachi I, 
Lipman DJ, Ostell J, Sayers EW. 

GenBank. Nucleic Acids Res. 
2010;38:D46-D51. 

EBI  
databank 

Traditional 
but work 
in a team, 
iterative 

refinement 

XML World-
wide 

multiuser 
scenario 

Command  
Line, SOAP, 

BioPerl,  
many 

download 
options 

Kulikova T, Akhtar R, Aldebert P, 
Althorpe N, Andersson M, Baldwin 
A, Bates K, Bhattacharyya S, Bower 
L, Browne P, et al. EMBL nucleotide 

sequence database in 2006. NAR 
2007;35:D16-D20. 

EMBOSS Traditional
, but work 
in a team 

AJAX 
Command  
Definition  

(ACD 
files) 

ANSI C 

 General 
software 
design 

rules for 
knowledge
able users 

´Jemboss´, 
Java based  
Interface 

Rice,P. et al. (2000) EMBOSS: the 
european molecular biology open 
software suite. TIG, 16, 276–277. 

Carver, T. J. and Mullan, L. J. (2002), 
Website Update: A new graphical 
user interface to EMBOSS. Comp 

Funct Genom, 3: 75–78. 
doi: 10.1002/cfg.136 

Bioperl 
suite 

Traditional Perl 

Followed 
general 

software 
design 

rules for 
knowledge
able users 

Command  
Line 

Stajich JE, Block D, Boulez K, 
Brenner SE, Chervitz SA, Dagdigian 

C, Fuellen G, Gilbert JG, Korf I, 
Lapp H, Lehväslaiho H, Matsalla C, 

Mungall CJ, Osborne BI, Pocock 
MR, Schattner P, Senger M, Stein 
LD, Stupka E, Wilkinson MD, and 
Birney E. The Bioperl toolkit: Perl 

modules for the life sciences. 
Genome Res. 2002 Oct;12(10):1611-

8. 
KEGG 
databank 

Scientific  
Software  

Engineerin
g 

Oracle Bottom-up 
and top-

down 
effort, 

coordinate
d by Prof. 
Kanehisa 

Charts, maps, 
Intuitive user 

interface, 
Export 

options, new 
KEGG api is 

restricted 

Ogata, H., Goto, S., Sato, K., 
Fujibuchi, W., Bono, H., and 
Kanehisa, M.; KEGG: Kyoto 
Encyclopedia of Genes and 

Genomes. NAR. 27, 29-34 (1999). 
Kanehisa M, Goto S, Sato Y, 

Kawashima M, Furumichi M, Tanabe 
M. Data, information, knowledge and 

principle: back to metabolism in 
KEGG. Nucleic Acids Res. 2013  

COPASI Traditional C++ General 
software 
design 

 Copasi GUI  
Command  

Line  

Hoops S., Sahle S., Gauges R., Lee 
C., Pahle J., Simus N., Singhal M., 
Xu L., Mendes P. and Kummer U. 
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rules for 
expert s 

 (CopasiSE) (2006). COPASI: a COmplex 
PAthway SImulator. Bioinformatics 

22, 3067-74. 
COBRA Traditional 

but large-
scale team 

effort, 
multiple 

user-
feedback 

COBRA  
For  

Python  
 
 

COBRA  
Toolbox  

For  
MATLAB 

 Command  
Line  

Options 

Ebrahim A, Lerman JA, Palsson BO, 
Hyduke DR. 2013  COBRApy: 

COnstraints-Based Reconstruction 
and Analysis for Python. BMC Syst 

Bio 7:74. 
Schellenberger J, Que R, Fleming 

RMT, Thiele I, Orth JD, Feist AM, 
Zielinski DC, Bordbar A, Lewis NE, 
Rahmanian S, Kang J, Hyduke DR, 

Palsson BØ. 2011 Quantitative 
prediction of cellular metabolism 
with constraint-based models: the 

COBRA Toolbox v2.0. Nature 
Protocols 6:1290-1307. 

Rasmol Traditional C Simple  
In  

PDB file  
Submissio

n 

 Sayle, R. and Bissell, A. (1992) 
RasMol: A Program for Fast Realistic 

Rendering of Molecular Structures 
with Shadows. In Proceedings of the 

10th Eurographics UK 1992 
Conference, University of Edinburgh 

Pymol Traditional 
small team  

C and  
Python 

 Command  
Line Options 

The PyMOL Molecular Graphics 
System, Version 1.5.0.4 Schrödinger, 

LLC. 
GROMOS 
package 

Traditional 
but team 

work 

FORTRA
N77 

  W. R. P. Scott, P. H. Hünenberger, I. 
G. Tironi, A. E. Mark, S. R. Billeter, 
J. Fennen, A. E. Torda, T. Huber, P. 
Krüger, and W. F. van Gunsteren, 

The GROMOS Simulation Package, 
J. Phys. Chem. A 103 (1999) 3596-

3607. 
 

Table 2. Comparative analysis of different scientific software applications. 

Application
s 
/ 

Comparativ
e Measures 

C13 Metatool BioOp
t 

Fiatlu
x 

ReMatc
h 

Biolayou
t 

LS-
MIDA 

Dro- 
LIGHT 

Isotopo 

SSE? Yes Yes Yes Yes Yes Yes Yes Yes Yes 

App. Type Desktop Desktop Deskto
p 

Deskto
p 

Web Desktop Deskto
p 

Desktop Desktop 

Data 
Manageme
nt 

No DM 
Sys. 

No DM 
Sys. 

No 
DM 
Sys. 

No 
DM 
Sys. 

DB No DM 
Sys. 

 File 
based 

File 
based 

File 
based 

and DB 
Script or 
Prototype 

Script Script Prototy
pe 

Script Prototy
pe 

Prototyp
e 

Prototy
pe 

Prototy
pe 

Prototy
pe 

Algorithm 
Type 

Parallel  Sequenti
al 

Sequen
tial 

Paralle
l 

Sequent
ial 

Parallel Sequen
tial 

Parallel Sequent
ial 

Algorithm / 
Methodolog
y 

Isotopic 
Labellin

g 

Schuster 
Algorith

m 

Mass 
Balanc
e 
Equati
on 

Isotopi
c 

Labelli
ng  

Carbon 
Mappin

g 

Markov 
Clusterin

g 

Least 
Square 

Circadia
n 

Rhythm
s 

Partial 
Least 

Square 

Running 
Mode 

Interacti
ve 

Interactiv
e 

Batch Interac
tive 

Interacti
ve 

Interactiv
e 

Interac
tive 

Interacti
ve 

Interacti
ve 

Publishing, 
licensing 

Publish
ed, Free 

Publishe
d, Free 

Publis
hed, 

Publis
hed, 

Publish
ed, Free 

Publishe
d, Free 

Publis
hed, 

Publish
ed, Free 

Publish
ed, Free 
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Free Free Free 

SDLC 
Informatio
n 

Not 
Provide

d 

Not 
Provided 

Not 
Provid

ed 

Not 
Provid

ed 

Not 
Provide

d 

Not 
Provided 

V-
Model 

Spiral V-
Model 

HCI 
Informatio
n 

Not 
Provide

d 

Not 
Provided 

Not 
Provid

ed 

Not 
Provid

ed 

Not 
Provide

d 

Not 
Provided 

HCI 
Pattern

s 
Imple

mented 

HCI 
Patterns 
Implem
ented 

HCI 
Patterns 
Implem
ented 

User 
Friendly 

No No No No Yes Yes Yes Yes Yes 

Easy to 
configure 

No No No No Yes Yes Yes Yes Yes 

Easy to 
train 

No No No No No No Yes Yes Yes 

Software 
Re-
Engineerin
g  

Yes No Yes Yes Yes No Yes No No 

Cyclic or 
Repetitive 

No No Yes Yes Yes No Yes No Yes 

Easy to  
learn and 
Use 

Yes Yes No No Yes No Yes Yes Yes 

User 
Training 

No No No No No No No Yes No 

 

Conclusions 

Conscious adaptation of SSE principles as exemplified here by the suggested butterfly design and its multilayered 
architecture, might look like an increase in developmental workload in comparison to many current bioinformatics 
programming methods. However, on the long run, it will reduce the burden by making the scientific application well 
designed, flexible, structured and reusable. It allows a product line development, is analytical and allows qualitative 
software improvement. Furthermore, HCI concepts make it user friendly, easy to learn and to deploy. 
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