
Potential Bias in the Indirect Methods for Extracting 
Summary Statistics in Literature-based Meta-Analyses: an 
empirical evaluation

Background: In literature-based meta-analyses of cancer prognostic studies, methods for 

extracting summary statistics from published reports have been extensively employed. 

However, no assessment of the magnitude of bias produced by these methods or 

comparison of their influence on fixed vs. random effects models have been published 

previously. Therefore, the purpose of this study is to empirically assess the degree of bias 

produced by the methods used for extracting summary statistics and examine potential 

effects on fixed and random effects models. Methods: Using published data from cancer 

prognostic studies, systematic differences between reported statistics and those obtained 

indirectly using log-rank test p-values and total number of events were tested using paired t 

tests and the log-rank test of survival-agreement plots. The degree of disagreement between 

estimates was quantified using an information-based disagreement measure, which was also 

used to examine levels of disagreement between expressions obtained from fixed and 

random effects models. Results: Thirty-four studies provided a total of 65 estimates of lnHR 

and its variance. There was a significant difference between the means of the indirect lnHRs 

and the reported values (mean difference = -0.272, t = -4.652, p-value <0.0001), as well as 

between the means of the two estimates of variances (mean difference = -0.115, t = -4.5556, 

p-value <0.0001). Survival agreement plots illustrated a bias towards under-estimation by the 

indirect method for both lnHR (log-rank p-value = 0.031) and its variance (log-rank p-value = 

0.0432). The magnitude of disagreement between estimates of lnHR based on the 

information-based measure was 0.298 (95% CI: 0.234 – 0.361) and, for the variances it was 

0.406 (95% CI: 0.339 – 0.470). As the disagreement between variances was higher than that 

between lnHR estimates, this increased the level of disagreement between lnHRs weighted 

by the inverse of their variances in fixed effect models. In addition, results indicated that 

random effects meta-analyses could be more prone to bias than fixed effects meta-analyses 

PeerJ PrePrints | https://peerj.com/preprints/142v1/ | v1 received: 5 Dec 2013, published: 5 Dec 2013, doi: 10.7287/peerj.preprints.142v1

P
re
P
rin

ts



as, in addition to bias in estimates of lnHRs and their variances, levels of disagreement as 

high as 0.487 (95% CI: 0.416 – 0.552) and 0.568 (95% CI: 0.496 – 0.635) were produced 

due to between-studies variance calculations. Conclusions: Extracting summary statistics 

from published studies could introduce bias in literature-based meta-analyses and undermine 

the validity of the evidence. These findings emphasise the importance of reporting sufficient 

statistical information in research articles and warrant further research into the influence of 

potential bias on random effects models.
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Introduction9
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One of the main objectives of research in oncology is the identification of prognostic factors 

associated with cancer outcomes. Yet, in spite of the growing research in this field over the last 

two decades, the prognostic value of many factors remains unclear and their clinical utility not 

established, partly due to the inconsistent and, sometimes, conflicting results reported in the 

literature (Simon & Altman, 1994; Bossard et al., 2003). A concern for these studies is the small 

sample size and inadequate statistical power (Altman et al., 1995; Pajak et al., 2000). Thus, to 

improve power and precision in results, pooling of estimates in the form of meta-analysis has 

been widely applied in cancer survival research (Hirooka et al., 2009). Pooling results through the

collection of individual patient data (IPD) is considered the ‘gold standard’ approach for 

meta-analyses, as it provides reliable results and circumvents several forms of bias such as 

outcome selection bias (Stewart et al., 1993; Williamson et al., 2005). However, collecting IPD is

not always possible and can be time-consuming and resource intensive (Stewart et al., 1993, 

Williamson et al., 2002). Therefore, most published meta-analyses use summary data extracted 

from published reports. In these instances, a series of methods have been described by Parmar et 

al. (1998) to extract summary statistics from individual studies.

The summary statistic most appropriately used for the analysis of time-to-event outcomes is the 

natural logarithm of the hazard ratio (lnHR) and its variance (Michiels et al. 2005). The HR has 

the same interpretation as the relative risk and odds ratio (Clark et al., 2003), with the added 

benefit of incorporating censoring and time to event (Michiels et al., 2005). In meta-analyses of 

time-to-event outcomes, the overall pooled lnHR is expressed as a weighted average of the 

individual lnHRs, with the weights representing the inverse of the variances of lnHRs (Parmar, 

Torri & Stewart, 1998). Thus, calculation of the overall lnHR requires extraction of individual 

estimates and their variances from each study, which might not be always available. The three 

major methods described by Parmar et al. (1998), the direct, indirect, and survival curve methods,

allow for extracting these statistics when they are not reported. The direct method is based on 

calculating lnHR and its variance from the ‘observed’ and ‘expected’ number of events and the 

Mantel-Haenzel variance of lnHR. A number of indirect methods were described, which mainly 

use the reported p-value of the log-rank test and the number of events to estimate lnHR and its 

variance. The survival curve method relies on extracting data from the published survival curves 

by splitting the time axis into several intervals and calculating lnHR for each interval under the 

assumption of uniform censoring. The summary lnHR is then calculated as a weighted average of

lnHRs across all intervals. Based on empirical analyses, the authors conclude that the direct 
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method gives the most accurate estimates, and a simple average of the indirect methods would 

also perform well. While no evidence of systematic bias was found for the survival curve method,

it was deemed the least precise. In particular, due to the assumption of uniform censoring, the 

survival curve method tended to under-estimate the variance of the lnHR (Parmar, Torri & 

Stewart, 1998). Consequently, Williamson et al. (2002) proposed a modified survival curve 

approach that would yield improved estimates by incorporating the reported numbers at risk and, 

thus, providing information on censoring pattern.

Since its publication, the paper by Parmar et al. (1998) received 1097 citations according to 

Google Scholar. Most citations were from meta-analyses that have applied one or more of the 

methods described in the paper to extract summary statistics. However, few studies evaluated the 

performance of these methods. Tudur et al. (2001) compared estimates obtained from these 

methods with those obtained from IPD for seven randomised controlled trials (RCTs). The 

authors concluded that the indirect methods performed well, while the survival curve methods 

tended to under-estimate effect size and were the least consistent, especially under low event 

rates. Hirooka et al. (2009) used simulation to compare results from these methods for RCTs with

several combinations of sample sizes, HRs, and survival and censoring rates. The direct method 

was found to yield the most reliable results. The indirect method using total number of events and

log-rank test p-values was generally also accurate but tended to under-estimate effect sizes when 

there were large effects with large sample size. Similar to the results reported by Tudur et al. 

(2001), the survival curve methods were the least reliable and tended to under-estimate effect size

when event rates were low. As the study was based on simulated data, it was assumed that the 

true values of the lnHRs were known with no uncertainty and, therefore, no comparisons between

the methods in relation to variance estimates were done.

The previous two evaluation studies were based on RCTs. Although the methods described by 

Parmar et al. (1998) were originally intended for RTCs, they have been applied in several 

meta-analyses of prognostic factor studies in cancer. Prognostic factor studies are observational 

studies that are susceptible to several sources of bias (Egger, Schneider & Smith, 1998), and it is 

not known how the methods perform in these situations. Any potential biases introduced by the 

indirect and survival curve methods would threaten the validity of the results from these 

meta-analyses. Furthermore, it is important to quantify the magnitude of bias and to probe 

whether random effects meta-analyses, where weights assigned to studies are based on 
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within-study as well as between-studies variances (Borenstein et al., 2009; Borenstein et al., 

2010), are more prone to bias than meta-analyses based on fixed effect models. Therefore, using 

published data from cancer prognostic studies, the purpose of this study is to empirically assess 

the degree of bias produced by the methods used for extracting summary statistics and examine 

potential effects on fixed and random effects models. A survey of the literature revealed that data 

on the ‘expected number of events’ required for application of the direct method were not 

available in any of the studies. Thus, it was not possible to evaluate the direct method. Further, 

due to the low reliability of the survival curve methods and their sensitivity to figure quality and 

inter-reader variability (Williamson et al., 2002), the focus of this paper has been on evaluating 

bias produced by the indirect methods only. 

Methods

Data used for the analyses in this paper were obtained from studies that have assessed the 

prognostic role of microRNAs in cancer survival in humans. MicroRNAs are small non-coding 

RNAs that regulate many cellular processes such as cellular differentiation, cell cycle 

progression, and apoptosis. Sine the discovery of their role in chronic lymphocytic leukemia in 

2002 (Calin et al., 2002), numerous clinical studies investigated the potential prognostic value of 

microRNAs in cancer by comparing survival among groups of patients with high vs. low levels 

of microRNAs. Consequently, several meta-analyses that have pooled results from these 

prognostic studies have been published (Fu et al., 2011;Ma et al., 2012; He et al., 2013; Lin et al.,

2013; Yang et al., 2013). When summary statistics were not reported in individual studies, these 

meta-analyses have applied several of the methods proposed by Parmar et al. (1998). Validity of 

the results from these meta-analyses partly relies on the accuracy of estimates obtained from 

individual studies, and thus, this study ascertains whether there is evidence of potential bias in the

estimates obtained through the indirect methods.

Literature Search and Eligibility Criteria

A search of the PubMed database for English language studies that have assessed the prognostic 

role of microRNAs in cancer survival was conducted in 06/07/2013. The search strategy 

consisted of combinations of the following terms: (“microRNA” OR “miRNA” OR “miR”) AND 

(“cancer” OR “malignancy” OR “tumour” OR “tumor” OR “lymphoma” OR “leukaemia” OR 

“leukemia”) AND (“prognosis” OR “prognostic” OR “survival” OR “recurrence” OR 
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“metastasis” OR “metastases” OR “outcome”) AND (“hazard rate” OR “hazard ratio” 

OR “kaplan meier” OR “Cox”).

For the indirect calculation of lnHR and its variance, the number of events and log-rank p-value 

are required (Parmar, Torri & Stewart, 1998). Therefore, to be included in the evaluation of the 

indirect methods, studies were eligible if they provided the following information: (1) HR or 

lnHR or coefficient derived from Cox regression, along with 95% confidence interval, variance, 

standard error, or p value, (2) the total number of events, (3) the number of patients in high and 

low levels of microRNAs, and (4) the p-value for the log rank test. Only original research articles

in humans were included. 

Data Extraction

For studies eligible for evaluation of the indirect methods, the following data were extracted: 

surname of first author, year of publication, microRNAs and outcomes investigated, total sample 

size, total number of events, number of patients in each microRNA group, p-value for log rank 

test, unadjusted HR, 95% CI for HR or variance, and its p-value. 

Statistical Analysis

For studies that did not report the variance, the confidence intervals were used to approximate the

variance of the reported lnHR using the following expression (Tierney et al., 2007):

Var(ln(HRi )) = ln(upperCI )− ln(lowerCI )
2 × z







2

Where upper CI and lower CI are the upper and lower confidence intervals of the reported HR, 

respectively, and z is the z score for the upper limit of the confidence interval. When 95% 

confidence intervalss are used, z would be equal to 1.96. 

Variances estimated from the confidence intervals were compared with indirect variances 

calculated using the following equations (Parmar, Torri & Stewart, 1998):

Vri = OiRriRci
(Rri +Rci )

2

Var(ln(HRi )) =1/Vri

Where, for study i:
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Vri = variance of the log-rank statistic

Oi = total observed number of events 

Rri = number of patients in the high risk group

Rci = number of patients in low risk group

The logarithms of the reported HRs were compared with indirect lnHRs calculated using the total

number of events, the log-rank p-value, and the variance of the log-rank statistic through the 

following equations (Parmar, Torri & Stewart, 1998):

Where, for study i:

Ori = observed number of events in high risk group

Eri = expected number of events in high risk group

Pi = the reported (two-sided) log-rank p-value

Φ = the cumulative distribution function of the Normal distribution

Log-rank test p-values that were reported as less than a particular level (e.g. p < 0.05) were 

rounded as p = 0.05 (Hirooka et al., 2009). In addition, to ensure consistency in the interpretation 

of hazard ratios, the low risk group was set as the reference category for all studies. Thus, for 

studies that reported HR for low-risk vs. high-risk groups for a certain microRNA level, the 

inverse of the reported HRs were used.

To assess agreement between measurements, the indirectly calculated estimates were plotted 

against the reported ones and the divergence of points from lines of equality, where all points 

would lie if there was perfect agreement between the two measurements, was examined (Bland &

Altman, 1986). Component Plus Residual (CPR) plots were used to assess deviations from 

linearity in the relationship between measurements (Vittinghoff et al., 2012). Systematic 

differences between measurements were tested using paired t tests and the log-rank test of 

survival-agreement plots (Luiz et al., 2003; Llorca & Delgado-Rodríguez, 2005). The degree of 

Ori −Eri =
(OiRriRci

(Rri +Rci )
× Φ−1(1− pi

2
)

ln(HRi ) = (
Ori −Eri

Vri
)
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disagreement between the reported and estimated measurements was quantified using an 

information-based disagreement measure described by Cost-Santos et al. (2010), which is 

calculated as follows:

d(A,B) = 1

n
log2

i=1

n

∑ (
ai −bi

max{ai,bi}
+1)

where,

d(A,B) = information-based measure of disagreement between reported and indirectly estimated 

measurements, 0≤d(A,B)≥1 and d(A,B) = d(B,A)

n = number of studies

ai = reported lnHR or its variance calculated from reported 95% CI

bi = indirectly estimated lnHR or its variance

For this measure, higher values correspond to higher disagreement. Further, the measure has 

differential weighting, which means that differences between high values of lnHR or its variance 

contribute less to the disagreement measure than equal differences between low values 

(Costa-Santos et al., 2010). 

To compare the potential influence of bias on fixed and random effects meta-analyses, the 

disagreement measure between reported and indirectly estimated statistics was calculated for 

each of the following expressions: lnHRi/Var(lnHRi), (lnHRi/Var(lnHRi))2 , (lnHRi)2/Var(lnHRi), 

and (1/Var(lnHRi))2, where the first of these expressions is used in the fixed effect model, while 

the second, third, and fourth expressions are used for the calculation of between-studies variance 

in random effects models (DerSimonian & Laird, 1986; Borenstein et al., 2009).

For the paired t test and the log-rank test of the survival-agreement plots, two-sided p values 

<0.05 were considered significant. For the information-based measure of disagreement, 

non-parametric bootstrapping was employed, where 95% confidence intervals were obtained 

from the 2.5th and 97.5th percentiles of the 1000 bootstrapped samples (Costa-Santos et al., 

2010). Analyses were performed using Excel for Mac (Version 14.3.6, Microsoft Corporation) 

and R for Mac (Version 3.0.0, R Foundation for Statistical Computing, Vienna, Austria), with the 

following packages: ‘car’ (Fox & Weisberg, 2011), ‘boot’ (Canty and Ripley, 2013), and 

‘survival’ (Therneau, 2013).
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Results

Literature Search Results

The electronic search identified 358 articles. Of these, 10 were reviews and meta-analyses and 

181 were excluded based abstract relevance. Of the remaining 167 articles that underwent full 

text review, 5 were not prognostic studies. Thus, a total of 162 papers used survival analyses 

techniques to investigate the prognostic role of one or more microRNAs in cancer. The HR was 

provided in 136 (84%) of all papers, while only 4 (2.5%) studies reported the variance or 

standard error of lnHR. The 95% confidence intervals for HR, on the other hand, were given in 

123 (76%) studies. None of the studies reported the expected number of events required for the 

application of the direct method. The total number of observed events required for the application

of one of the indirect methods was reported by around 82 (50.6%) studies. Based on the literature

search results, the indirect method of estimating lnHR and its variance using log-rank p-value and

total number of events was applicable in 68 studies.

As the log-rank test does not adjust for confounders except in cases of stratified analysis, 

estimates derived from the indirect method were compared to reported HRs that were unadjusted 

for confounders. Of the 68 studies suitable for the application of the indirect method, 8 did not 

report HR, and 26 did not report unadjusted HRs. Therefore, 34 studies providing a total of 65 

estimates of lnHR and its variance were eligible for evaluation of the indirect method. As none of

the 34 studies reported the variance of the lnHR, variances were calculated using the 95% 

confidence intervals and were compared with variances calculated using the indirect method. 

Table 1 summarises the medians (and ranges) of statistics extracted from the 65 analyses. List of 

references for the 34 studies is provided in Supplemental File 1, and the data used for analyses 

are provided in Supplemental File 2.

Table 1: Statistics from 34 studies (consisting of 65 analyses)

Evaluation of the Performance of the Indirect Method

Figures 1 and 2 show plots of the indirectly estimated lnHRs against reported lnHRs and 

indirectly estimated variances against variances calculated from reported 95% confidence 

intervals. It can be seen that at low values of lnHR and its variance, numerous points lie about 

and close to the line of equality, especially in the case of lnHR. However, both plots show a 
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tendency for indirect estimates to under-estimate effect sizes especially at higher values. CPR 

plots shown in Figures 3 and 4 suggest marked deviations from linearity between reported and 

indirect estimates for both lnHRs and their variances. Thus, linear regression analyses were not 

applied to assess bias.

Figure 1: Plot of indirect against reported values for lnHR. Straight line represents line of 

equality

Figure 2: Plot of indirect against reported values for variance. Straight line represents line of 

equality

Figure 3: CPR plot lnHR and (b) variance

Figure 4: CPR plot for variance

A significant difference between the means of the indirect lnHRs and the reported values was 

found (mean difference = -0.272, t = -4.652, p-value <0.0001), as well as between the means of 

the two estimates of variances (mean difference = -0.115, t = -4.5556, p-value <0.0001). Figures 

5 and 6 display the survival agreement plots, where the solid lines represent absolute differences 

when the indirect estimates are less than the reported ones, and the dashed lines represent 

absolute differences when indirect estimates are larger than the reported ones. As the solid lines 

lie above the dashed ones, the plots suggest a bias towards under-estimation by the indirect 

method (Llorca & Delgado-Rodríguez, 2005). Further, the log-rank p-values reveal significant 

differences between the lines (χ2 = 4.7, p = 0.031) and (χ2 = 4.1, p = 0.0432) for the curves of 

lnHR and its variance, respectively.

Figure 5: Survival agreement plots for absolute differences between reported and indirect lnHRs. 

(solid lines: indirect < reported, dashed lines: indirect > reported)

Figure 6: Survival agreement plot for absolute differences between variances estimated from 95%

CIs and indirect variances. (solid lines: indirect < reported, dashed lines: indirect > reported)
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The magnitudes of disagreements between reported and indirect estimates of lnHRs and their 

variances were quantified using the information-based measurement of disagreement 

(Costa-Santos et al, 2010). As shown in Table 2, the disagreement between estimates of lnHR is 

equal to 0.298 (95% CI: 0.234 – 0.361), while between variances, it is equal to 0.406 (95% CI: 

0.339 – 0.470). In addition, disagreements were measured for four expressions used in the 

calculation of the pooled lnHR in fixed and random effects meta-analyses. Table 2 shows how 

bias in the estimates of lnHRs and their variances influences calculations used for pooling results 

in meta-analyses. Weighting of lnHRs by the inverse of their variances in fixed effect models 

results in a disagreement level higher than that for lnHRs because of the magnitude of 

disagreement between estimates of variances. In addition, results suggest that random effects 

meta-analyses could be more prone to bias than fixed effects meta-analyses as, in addition to bias 

in estimates of lnHRs and their variances, levels of disagreement as high as 0.487 (95% CI: 0.416

– 0.552) and 0.568 (95% CI: 0.496 – 0.635) are produced as a result of between-studies variance 

calculations.

Table 2: Information-based Measurements of Disagreement

Discussion and Conclusions

As the number of meta-analyses of time-to-event outcomes assessing the prognostic role of 

microRNAs in cancer is rising, it is important to establish the degree of bias produced by 

methods of extracting summary statistics applied in these meta-analyses. Results from this paper 

suggest that estimates of lnHR and its variance calculated through the indirect methods were 

systematically different from the reported estimates, as the paired t tests and the log-rank tests of 

the survival agreement plots revealed significant under-estimation of effect sizes. In line with 

results by Hirooka et al. (2009), the tendency for the indirect methods to under-estimate 

measurements was particularly obvious at higher values of lnHR and its variance. In addition, 

bias in these estimates could potentially influence results from both fixed effects and random 

effect meta-analyses. Because effects sizes are weighted by the inverse of their variances in fixed 

effect models, under-estimation of variances would result in higher weights given to these effect 

sizes in meta-analysis (Williamson et al., 2002). Further, based on the measurements of 

disagreement, the random effects model is expected to be prone to a higher degree of bias as a 

result of between-studies variance calculations.
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Parmar et al. (1998) described a hierarchy in the methods, in which reported lnHRs and their 

variances should be used if they are available, followed by the direct method, an average of the 

indirect methods, and finally, the survival curve methods. Applicability of any of these methods 

relies on the data available in published reports. Results from the literature search indicated that 

84% of studies reported HRs, 76% studies reported HRs with their 95% confidence intervals, and

only 2.5% reported HRs with variance. These results compare favourably with those presented by

other authors. A survey of RCTs published during the years 2004 and 2005 in two oncology 

journals indicated that 50% of 129 articles reported HRs with their confidence intervals (Hirooka 

et al., 2009), while another study in 2005 showed that only 3% of 131 chemotherapy trials 

reported lnHR (Michiels et al., 2005). As the articles surveyed for the purposes of the current 

study were published between 2008 and 2013, these results could signify an improvement in 

reporting practices among cancer survival studies and less need to rely on the other methods for 

extracting summary statistics when conducting meta-analyses. 

As none of the studies surveyed in this paper reported the expected number of events, it was not 

possible to apply the direct method. Hirooka et al. (2009) also found that the direct method was 

applicable in only 1% of 129 articles reviewed. On the other hand, median survival times have 

been found to be reported in more than half of research articles (Michiels et al., 2005; Hirooka et 

al., 2009). Nevertheless, their use in the analysis of time-to-event outcomes is not recommended, 

as they have been shown to produce markedly imprecise estimates (Michiels et al., 2005). Taken 

together, these results indicate that when summary statistics are not reported, meta-analysts 

would have to use the indirect or survival curve methods to extract statistics due to the rare 

applicability of the direct method and the inappropriateness of using alternative survival 

measures such as median survival times. Although the indirect methods are more reliable than the

survival curves methods, findings from analyses in this paper suggest that they could be prone to 

systematic bias.

This study has some limitations that need to be taken into account when interpreting results. The 

effect of rounding log-rank p-values was not examined. Tudur et al. (2001) reported that their 

results were robust to rounding errors. Hirooka et al. (2009), on the other hand, found effect sizes 

to be under-estimated when rounded p-values were used in the indirect method.  Another 

limitation is that variances calculated indirectly using p-values and event numbers were 
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compared to those calculated using confidence intervals rather than to directly reported variances.

Thus, the degree of bias might be different when direct variances are used for comparison. 

Furthermore, methods used to assess bias have their own limitations. Paired t tests and survival 

agreement plots allow for the detection of fixed bias, where differences between measures are 

consistent, but not for the detection of proportional bias, where differences increase or decrease in

proportion to the values of the measurement (Ludbrook, 2002; Luiz & Szklo, 2005; Ludbrook, 

2010). Proportional bias is detected using linear regression techniques (Ludbrook, 2002; 

Ludbrook 2010), however, as the linearity assumption was not met, it was not possible to apply 

linear regression. Disagreements were quantified using the measure proposed by Costa-Santos et 

al. (2010). Although this measure provides a quantitative estimate of bias and is useful for 

comparing disagreement among groups, it does not detect proportional bias and has not been 

widely adopted. Due to the limitations in all of these methods, more than one strategy was 

employed as recommended by Luiz and Szklo (2005). Nevertheless, findings presented in this 

study might not be generalizable to other settings as they are based on a subset of studies in a 

particular field of research. 

In conclusion, extracting summary statistics from published studies could introduce bias in 

literature-based meta-analyses and undermine the validity of the evidence. These findings 

emphasise the importance of reporting sufficient statistical information in research articles and 

warrant further research into the influence of potential bias on random effects models. 
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Table 1(on next page)

Statistics from 34 studies
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Table 1: Statistics from 34 studies (consisting of 65 analyses)
Statistics Median (Range)

Sample Size 96 (29 - 470)
Total number of events 42 (11 - 186)
p-value for log-rank test 0.007 (0.0001 - 0.058)

HR 3.24 (1.54 - 20.36)
lnHR 1.174 (0.432 – 3.014)

Variance of lnHR 0.154 (0.017 – 1.070)

1
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Figure 1

Plot for Indirect Against Reported Values of lnHR

Straight line represents line of equality
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Figure 2

Plot of Indirect Against Reported Values for Variance

Straight line represents line of equality
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Figure 3

CPR Plot for lnHR
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Figure 4

CPR Plot for Variance
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Figure 5

Survival Agreement Plot for Absolute Differences between Reported and Indirect lnHRs

(solid lines: indirect < reported, dashed lines: indirect > reported)
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Figure 6

Survival Agreement Plot for Absolute Differences between Variances Estimated from 

95% CIs and Indirect Variances.

(solid lines: indirect < reported, dashed lines: indirect > reported)
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Table 2(on next page)

Information-based measurements of disagreement
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Table 2: Information-based measurements of disagreement

Statistic Disagreemen

t

Bootstrap 95% CI

Used in Fixed and Random Effects Models
lnHR 0.298 0.234 – 0.361

Variance 0.406 0.339 – 0.470
Used in Fixed Effect Models

lnHR/Var(lnHR) 0.329 0.276 – 0.388
Used in Random Effects Models

(lnHR/Var(lnHR))2 0.487 0.416 – 0.552
(lnHR)2/Var(lnHR) 0.304 0.242 – 0.367

(1/Var(lnHR))2 0.568 0.496 – 0.635

1
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