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Abstract

Emotion recognition can improve the quality of patient care, product devel-

opment and human-machine interaction. Psychological studies indicate that

emotional state can be expressed in the way people walk, and the human gait

can be used to reveal a person’s emotional state. This paper proposes a nov-

el method to do emotion recognition by using Microsoft Kinect to record gait

patterns and train machine learning algorithms for emotion recognition.

59 subjects are recruited, and their gait patterns are recorded by two Kinec-

t cameras. Joint selection, coordinate system transformation, sliding window

gauss filtering, differential operation, and data segmentation are used for data

preprocessing. We run Fourier transformation to extract features from the gait

patterns and utilize Principal Component Analysis(PCA) for feature selection.

By using NaiveBayes, RandomForests, LibSVM and SMO classifiers, the accu-

racy of recognition between natural and angry emotions can reach 80%, and the

accuracy of recognition between natural and happy emotions can reach above

70%. The result indicates that Kinect can be used in the recognition of emotions

with fairly well performance.
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1. Introduction

Emotion is a state that comprehensively represents human feeling, thought

and behavior, thus takes an important role in inter-personal human commu-

nication. Emotion recognition aims to automatically discriminate different e-

motional states by using physiological and non-physiological signals acquired

from people. In patient care, emotion recognition can find patients’ different

emotional states ,then help take corresponding nursing intervention. In prod-

uct development, emotion recognition can find users’ different emotional states

when they use different products, then help improve the products. Emotion

recognition can also improve the performance of human-machine interaction

and to increase intuitive communication[1], make human-machine interaction

more friendly and naturally.

Emotion identification is generally based on facial expressions, gestures, lin-

guistic as well as acoustic feature in speech[2] etc. Body motion is regarded

as additional modality to identify emotion states. Affective body movement

provides important visual cues to distinguish emotions[3]. Since walking is a

natural day to day motion, human gait is an ideal way to reveal a persons e-

motional state. In this paper, we propose to recognize emotions based on gait

patterns.

Psychological studies found that emotional states can somehow be expressed

in the way of walking. In recent years, much research has been done to ana-

lyze general gait patterns, which is very challenging, since gait is as unique as

fingerprint[4]. Furthermore, gait can be influenced by many factors such as age,

weight, and possible gait disorders. How such factors or their combinations af-

fect gait is still unknown. So recognizing emotion by gait patterns’ analysis is

pretty difficult.

In this paper, we propose a novel method to recognize emotions by using

Microsoft Kinect to record gait patterns and train machine learning algorithms

for emotion recognition. The Microsoft Kinect is camera-based sensor primarily

used to directly control computer games through body movement. The track of
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the position of limb and body without the need for handheld controllers or force

platforms. Kinect uses a depth sensor to capture three-dimensional movement

patterns. The system’s software enables feature extraction to recognize body

joints. Differing from conventional motion capture systems, such as the VICON

system, Kinect is low-cost[5], portable, no-marker[6], and easy to deploy[7].

We recruit participants and collect the timing sequence data of people’s gait

patterns by using Kinect system, then use machine learning method for feature

extraction and training classifiers.

The remainder of this paper is organized as follow. Section 2 introduces

the related work of recognition of emotions in walking and the Kinect appli-

cation. Section 3 describes the method of our work, including the experiment,

the database, and the data processing. Classification and results are presented

in section 4 and discussed in section 5. The paper ends with a conclusion in

section 6.

2. Related work

In psychology, evidence exists that emotion can be expressed in walking

and recognized by human observers. In 1987, Montepare et al. found that

observers can identify emotion from variations in walking style[8]. In 2008,

Janssen used the conventional camera to acquire kinetic and kinematic data

and do recognition of emotions in gait[9]. Krag made person-dependent and

inter-Individual recognition of emotions by marker-based gait analysis using

motion capturing system[10, 11, 1]. Although conventional 3-dimension video-

based motion analysis systems allow for comprehensive kinematic and kinetic

analysis of gait, they require considerable expertise and are expensive. And the

marker-based motion capture systems (i.e., the VICON system) require precise,

tedious and time-consuming maker preparation, which may affect the subjects’

emotional states and also expensive.

Low cost options could include inertial monitoring sensors such as accelerom-

eters [12] and gyroscopes, however, these sensors possess sources of error such
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as signal drift and noise which impedes their accuracy[13].

Microsoft Kinect is a rapidly developing, inexpensive, portable and no-

marker motion capture system. Previous research suggests that Kinect can

identify pose[14] and simple stepping movements[15] in healthy adults. Recent-

ly, clinical researchers have reported interesting applications using Kinect. For

example, an interactive game-based rehabilitation tool for balance training[16]

and a 3-D body scanner[17]. And methods have been proposed to detect gait

patterns in walking data obtained with Kinect: in 2014, Auvinet used Kinect to

detect the gait cycles in treadmill[18]; Yeung evaluated the Kinect as a clinical

assessment tool of body sway[19]; Galna used Kinect to measure the movement

in people with Parkinson’s disease[20].

Previous studies also have validated the Kinect as a motion capture system.

Accuracy and sensitivity of kinematic measurements obtained from Kinect, such

as reaching distance, joint angles, and spatial-temporal gait parameters, were

comparable to a VICON system[21]. Evidence exists that it can accurately

assess the gait patterns dynamics during walking[22].

Given the emotion can be indicated by the gait patterns, and Kinect is able

to acquire the gait patterns without any interference, we propose to identify

emotion by using gait patterns acquired by Kinect.

3. Methods

3.1. Experiment

59 healthy young subjects(32 females and 27 males) from University of Chi-

nese Academy of Sciences(UCAS) participated in this study. They reported

no injuries, illnesses or other condition influence their gait patterns. This study

was approved by Institute of Psychology, Chinese Academy of Sciences(approved

number:H15010), and all subjects provided informed consent.

There was a 6 meters long footpath in the experiment environment, and

two Kinects were placed at the two sides of the footpath. The experiment

environment is shown in Figure 1 and Figure 2.
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Figure 1: the description of the experiment environment

Figure 2: the scene of the experiment environment
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In order to acquire subjects’ gait patterns with different emotions, we con-

ducted two-round experiments. Subjects took part in each round of experiment

one by one. At the beginning of each round, subject was instructed to stand in

front of the starting line which was located at one side of the footpath. Then

the subject kept walking back and forth on the footpath for 2 minutes. At the

same time, two Kinect cameras recorded the subject’s gait patterns. When the

subject finished walking, he/she was asked to report his/her current emotional

score on a scale of 1 to 10. In the first-round experiment, subjects reported their

scores of anger. In the second-round, happy scores were reported instead. Then

the subject watched a film clip[23] for emotion priming, since previous studies

have validated that the film can elicit people’s emotion [24]. At the first-round

experiment, the film clip attempted to arouse subjects’ angry emotion. There

was a happy emotional film clip instead in the second-round experiment. Af-

ter watching the file clip, the subject continued walking back and forth on the

footpath for another 1 minute. Each subject was asked to report his/her cur-

rent emotional score on a scale of 1 to 10 when finished the second walking,

and recall the emotional score just after watching the film clip. To ensure the

emotion aroused by the film clip can last during subjects’ walking, we didn’t

ask subject to report his/her emotional score immediately when the subject

finished watching the film clip. To avoid the subject’s emotional states in the

first-round experiment influence his/her gait in the second-round experiment,

each subject was allowed to do the second-round experiment at least 3 hours

later. We acquired the subjects’ gait patterns from two Kinects separately.

3.2. Database

The Kinect cameras are placed at the two sides of the footpath, 30Hz video

data is acquired from each Kinect camera using the official Microsoft software

development SDK Beta2 version and customized software(Microsoft Visual S-

tudio 2012). One frame data contains the 3-dimensional position of 25 joints

over time. The 25 joints include head, shoulders, elbows, wrists, hands, spine

(shoulder, mid and base),hips, knees, ankles and feet as shown in Figure 3.
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Figure 3: Stick figure and location of body joint centers estimated by Kinect

The 3D coordinate system of Kinect use the Kinect camera as the origin and

the unit of 3 dimension is meter. The 3D coordinate system of Kinect is shown

in Figure 4.

3.3. Data processing

3.3.1. Preprocessing

Joint selection. According to sport anatomy theory, some joints’ position does-

n’t change much while walking, so we choose 14 significant joints to analyze gait

patterns, including spinebase, neck, shoulders, wrists ,elbows, hips , knees, and

ankles. The spinebase joint is used to reflect people’s position on the footpath

relative to Kinect, and will be used in coordinate system transformation. Af-

ter selecting the significant joints, one frame data contains the 3-dimmension

position of 14 significant joints, which affords a 42 dimension vector:

jt = [x1, y1, z1, x2, y2, z2, . . . , x14, y14, z14] (1)

We denote one walk as the way that one subject walks around the footpath
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Figure 4: Kinect 3D coordinate

one time (with an emotional state), which consists of T frames. The data of

one walk is described by the matrix:

J = [j1, j2, . . . , jt, . . . , jT ]T (2)

Coordinate system transformation. Given that different subjects may have d-

ifferent position relative to Kinect camera when they walk on the footpath, so

using Kinect coordinate system has error in gait patterns’ analysis. To eliminate

the bias, we change the coordinate system by use the position of spinebase joint

in each frame of data as the origin.

In the vector jt,the first three columns are the 3-dimension coordinates of

spinebase joint, so the coordinate transformation is given by:

xt
i = xt

i − xt
1

yti = yti − yt1

zti = zti − zt1

(1 ≤ t ≤ T, 2 ≤ i ≤ 14)

(3)

Sliding window gauss filtering. The gait patterns’ dataset acquired by Kinect

system has noises and burrs. To smooth the dataset, we apply sliding window
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gauss filtering to each column of J , the length of the window is 5 and the

convolution kernel c = [1, 4, 6, 4, 1]/16, which is frequently-used low pass gauss

filter[25].

The procedure of filtering is presented as follows:

xt
i = [xt

i, x
t+1
i , xt+2

i , xt+3
i , xt+4

i ] · c

yti = [yti , y
t+1
i , yt+2

i , yt+3
i , yt+4

i ] · c

zti = [zti , z
t+1
i , zt+2

i , zt+3
i , zt+4

i ] · c

(1 ≤ t ≤ T − 4, 1 ≤ i ≤ 14)

(4)

Differential operation. Since the change of joints’ position between each frame

can reflect the people’s gait patterns more than the joints’ position itself, we

apply the differential operation on J , then the change of 3-dimenmison position

of 14 joints between each frame is stored in J .

The differential operation is given by:

jt−1 = jt − jt−1(2 ≤ t ≤ T ) (5)

Data segmentation. Since there are several straight walk segments of one walk,

and the joints’ coordinate acquired by Kinect is not accurate when the partici-

pant turns around. So we divide one walk into several straight walk segments.

The segments record the gait patterns when subjects face to the Kinect, called

front segments, and the other segments are back segments. To ensure each seg-

ment covers at least one stride, we only choose the segment which contains at

least 40 frames.

Suppose one walk J contains n front segments and m back segments, which

is described by a series of matrices: Fronti, 1 ≤ i ≤ n

Backj , 1 ≤ j ≤ m

(6)

3.3.2. Feature Extraction

The gait patterns record by Kinect between the front segments and the back

segments are pretty different, so we extract features from front segments and
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back segments separately.

From what has been presented above, the process of one subject walk around

the footpath one time(with an emotion state), called one walk, described by a

matrix J , contains n front segments and m back segments.

First, we extract features from front segments. Given human walking is peri-

odic and each segment covers at least one stride, we run Fourier transformation

to acquire the behavior of the each front segment Fronti, we apply Fourier

transformation on each column of Fronti, the main frequency f i
1, f

i
2, . . . , f

i
42

and the corresponding phase ϕi
1, ϕ

i
2, . . . , ϕ

i
42, are extracted. Since one walk con-

tains n front segments, and different processes of walk has different number of

segments. We select mean features of all front segments, and finally we extract

84 features, denoted as Featurefront:

Featurefront =
1

n

n∑
i

[f i
1, f

i
2, . . . , f

i
42, ϕ

i
1, ϕ

i
2, . . . , ϕ

i
42] (7)

Second, extract features from back segments in same way, get another 84features,

denoted as Featureback:

Featureback =
1

m

n∑
i

[f i
1, f

i
2, . . . , f

i
42, ϕ

i
1, ϕ

i
2, . . . , ϕ

i
42] (8)

Combine Featurefront and Featureback to get 168 features, as Feature:

Feature = [Featurefront, Featureback] (9)

These 168 features describe the one subject’s gait patterns with an emotional

state (natural, angry or happy). Since the value of these features may vary

dramatically, in case some important features with small values are ignored

while training the model, which may seriously affect the recognition results, we

run Z-score normalization on these features.

In general, training data with high dimension not only increases compu-

tational complexity, but also brings much redundant information. For efficient

dimension reduction, we utilize Principal Component Analysis (PCA) to do fea-
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ture selection, since previous study found that PCA can perform much better

than other techniques on small size of train sets[26].

4. Results

For recognition, several standard classifiers are compared. NaiveBayes, Ran-

dom Forests, LibSVM and SMO classifiers are used for classification. The recog-

nition rate is calculated using 10-fold cross validation.

4.1. The recognition of natural emotion and angry emotion

Table 1 shows the accuracy of each classifier to recognize the natural and

angry emotions, and the gait dataset is collected by KINECT1, in first-round

experiment.

Table 1: The accuracy of recognition between natural and angry emotions on KINECT1

Classifier NaiveBayes RandomForests LibSVM SMO

Accuracy(%) 80.5085 52.5424 72.0339 52.5424

Table 2 shows the accuracy of each classifier to recognize natural and angry

emotions, the gait dataset is collected by KINECT2, in first-round experiment.

Table 2: The accuracy of recognition between natural and angry emotions on KINECT2

Classifier NaiveBayes RandomForests LibSVM SMO

Accuracy(%) 75.4237 − 71.1864 −

4.2. The recognition of natural and happy emotion

Table 3 and Table 4 present the accuracy of each classifier to recognize the

natural and happy emotions, the gait datasets are collected by KINECT1 and

KINECT2, in second-round experiment.
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Table 3: The accuracy of recognition between natural and happy emotions on KINECT1

Classifier NaiveBayes RandomForests LibSVM SMO

Accuracy(%) 79.6610 51.6949 77.9661 −

Table 4: The accuracy of recognition between natural and happy emotions on KINECT2

Classifier NaiveBayes RandomForests LibSVM SMO

Accuracy(%) 61.8644 51.6949 52.5414 −

4.3. The recognition of angry and happy emotion

Table 5 and Table 6 present the accuracy of each classifier to identify angry

and happy, the gait datasets are collected by KINECT1 and KINECT2, in first-

round and second-round experiments.

Table 5: The accuracy of recognition between angry and happy emotions on KINECT1

Classifier NaiveBayes RandomForests LibSVM SMO

Accuracy(%) 52.5424 55.0847 − 51.6949

5. Discussion

Recognition of emotions based on gait patterns is a challenging data mining

task. Although the expression of emotions may vary from person to person, by

using machine learning technique and features extracted from gait patterns, it

is still possible to acquire cues about peoples’ emotion state.

Comparing with marker-based system, Kinect may be inaccurate since it

estimates joint locations by computation, which might influence the performance

of trained models.

From the result we can see that the recognition accuracy between natural and

angry can reach 80%, and 70% for classifying natural vs. happy. From the self-

report emotion score, we can see that the participants’ emotion have been really

elicited by the film clip. The participants also reported their emotion’s change,

which could be expressed by their gait to some extend. But the recognition
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Table 6: The accuracy of recognition between angry and happy emotions on KINECT2

Classifier NaiveBayes RandomForests LibSVM SMO

Accuracy(%) − 51.6949 − 50.8475

accuracy between different unneutral emotions (i.e., angry and happy) is not

very good. As people’s gait may be similar or less difference in joints’ position’s

change no matter whether for angry or happy, which makes it is difficult to

distinguish angry from happy using gait patterns acquired by Kinect.

After choosing relevant joints during data preprocessing, the result indicates

that the accuracy of identification increases. Using the whole 25 joints position

leads to lower recognition rates, which is less than 70%.

6. Conclusion and Future Work

This paper introduces a novel method to do emotion recognition, by using

Kinect to acquire gait data, training classifiers on features extracted. The emo-

tions can be recognized fairly well based on gait patterns, with 80% accuracy

for classifying natural and angry emotion as well as 70% accuracy for classifying

natural and happy emotion. Due to limited sample size of participants, there

still exists much spaces to improve the performance of trained models. In the

future, we plan to do more gait patterns data acquisition by recruiting more

subjects, extracting more new features, and training advanced classification al-

gorithms.
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K. Davids, Recognition of emotions in gait patterns by means of artificial

neural nets, Journal of Nonverbal Behavior 32 (2) (2008) 79–92. doi:

10.1007/s10919-007-0045-3.

URL http://dx.doi.org/10.1007/s10919-007-0045-3
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