

A peer-reviewed version of this preprint was published in PeerJ
on 22 August 2016.

View the peer-reviewed version (peerj.com/articles/cs-79), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Avirneni NDP, Ramesh PK, Somani AK. 2016. Managing contamination
delay to improve Timing Speculation architectures. PeerJ Computer
Science 2:e79 https://doi.org/10.7717/peerj-cs.79

https://doi.org/10.7717/peerj-cs.79
https://doi.org/10.7717/peerj-cs.79

Managing contamination delay to improve Timing Speculation

architectures

Timing Speculation (TS) is a widely known method for realizing better-than-worst-case

systems. Aggressive clocking, realizable by TS, enable systems to operate beyond

specified safe frequency limits to effectively exploit the data dependent circuit delay.

However, the range of aggressive clocking for performance enhancement under TS is

restricted by short paths. In this paper, we show that increasing the lengths of short paths

of the circuit increases the effectiveness of TS, leading to performance improvement. Also,

we propose an algorithm to efficiently add delay buffers to selected short paths while

keeping down the area penalty. We present our algorithm results for ISCAS-85 suite and

show that it is possible to increase the circuit contamination delay by up to 30% without

affecting the propagation delay. We also explore the possibility of increasing short path

delays further by relaxing the constraint on propagation delay and analyze the

performance impact.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

1

Managing Contamination Delay to Improve Timing Speculation
Architectures

Naga Durga Prasad Avirneni, Prem Kumar Ramesh, Arun K. Somani

Electrical and Computer Engineering, Iowa State University, Ames, IA, USA

Abstract—Timing Speculation (TS) is a widely known method for realizing better-than-worst-case systems. Aggressive clocking,

realizable by TS, enable systems to operate beyond specified safe frequency limits to effectively exploit the data dependent circuit

delay. However, the range of aggressive clocking for performance enhancement under TS is restricted by short paths. In this paper, we

show that increasing the lengths of short paths of the circuit increases the effectiveness of TS, leading to performance improvement.

Also, we propose an algorithm to efficiently add delay buffers to selected short paths while keeping down the area penalty. We present

our algorithm results for ISCAS-85 suite and show that it is possible to increase the circuit contamination delay by up to 30% without

affecting the propagation delay. We also explore the possibility of increasing short path delays further by relaxing the constraint on

propagation delay and analyze the performance impact.

F

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

1 INTRODUCTION

Systems have traditionally been designed to function
reliably for the worst case timing delays under adverse
operating conditions. Such worst case scenarios occur
rarely, allowing possible performance improvement by
making common cases faster. Alternative to conventional
methods, the concept of latching data speculatively is
called Timing Speculation (TS) [1]–[7]. Dual latch based
TS is a widely accepted methodology for designing
better-than-worst-case digital circuits. Timing specula-
tion based aggressive systems are designed on the phi-
losophy that it is profitable to operate beyond worst-
case limits to achieve best performance by not avoiding,
but detecting and correcting a modest number of timing
errors. Aggressive design methodology exploit the fact
that timing critical paths are rarely exercised in a de-
sign and typical execution happens much faster. Recent
works have also shown that the performance loss due to
over provisioning based on worst-case design margins
is upward of 20% in terms of operating frequency and
upward of 50% in terms of power efficiency [8]. Timing
speculation combined with timing error tolerance is
a powerful technique to (1) achieve energy efficiency
by under-volting, as in Razor [3], or (2) performance
enhancement by overclocking, as in SPRIT3E [2].

Dual latch based TS require additional clock resources
for the replicated latches (or flip-flops), which are trig-
gered by a phase shifted clock of the original register.
Despite the area and routing overheads, the benefits
achieved by dual latched TS remain immense [3], [6], [7],
[9]–[12]. However, in [7] it has been pointed out that the
performance benefits realized through TS is limited by
the short paths of the circuit. It is due to the tight timing
constraints that need to met for error recovery. This prob-
lem is compounded when circuits have a significantly
lower contamination delay. The contamination delay is
defined as the smallest time it takes a circuit to change
any of its outputs, when there is a change in the input.
It has been shown that for a carry-look ahead (CLA)
adder significant performance enhancement is achieved
when its contamination delay is increased by adding
buffers [7]. Increasing the delay of all shorter paths
in the circuit above a desired lower bound, while not
affecting the critical path is one of the steps performed
during synthesis of sequential circuits to fix hold time
violations. However, increasing the contamination delay
of a logic circuit significantly, sometimes as high as half
the propagation delay, without affecting its propagation
delay is not a trivial issue [13]. At the first glance, it
might appear that adding delay by inserting buffers
to the shortest paths will solve the problem. However,
delay of a circuit is strongly input value dependent,
and the structure of the circuit plays a role in deciding
the value of an output in a particular cycle. Current
synthesis tools support increasing the delay of short
paths through their hold violation fixing option.

Our major goal in this paper is to extend the hold

time of the replicated register present in dual latch TS
framework. Traditional delay optimization approaches
consider only part of the problem, viz., to ensure that the
delay of each path is less than a fixed upper bound. The
closest work we are aware of is presented in [14], which
uses timing optimization algorithm, Sylon-Dream Level-
Reduction (SDLR), to speed up multi-level networks.
The non-critical paths are processed by an area reduction
procedure to reduce network area without increasing the
maximum depth. SDLR uses the concept of permissible
functions in both level and area reduction processes.

1.1 Contribution

The existing techniques only attempt to confine the
critical path delay under design specified threshold. For
TS architectures, the delay optimization algorithms must
also make sure that the short paths satisfy imposed
threshold requirements to increase the extent of perfor-
mance enhancement. This is, in addition to the exist-
ing short path timing constrains free of any hold time
violations. This aspect of our work makes it different
from any of the existing works. As far as we know, this
is the first work aimed at increasing the contamination
delay of digital circuits up to a given threshold, beyond
satisfying hold time violations. In this paper, we make
three significant contributions.

First, we present a detailed timing analysis of a dual
latch TS framework and quantify the margin for perfor-
mance enhancement while operating beyond worst case.

Second, we study the impact of short paths on per-
formance of Alpha processor core, where we present a
sensitivity analysis of the achievable performance gain
for different settings of contamination delay. In that
process, we establish a case for increasing contamination
delay of circuits in aggressive systems to improve the
extent of performance enhancement.

Third, we present an algorithm to add delay buffers
for dual latch TS framework. Specifically, we develop a
weighted graph model to represent a multi-level digi-
tal circuit. We showcase a new min-arc algorithm that
operates on the graph network to increase short path
delays by adding buffers to selective interconnections.
We consider each interconnection, whether it lies on the
critical path, short path, or not. Depending upon how
far each section of the circuit is from the maximum and
minimum delayed paths, fixed delay buffers are added.

The presented algorithm is evaluated using ISCAS’85
benchmark suite. In our simulations, we investigate the
increase in short path delays with and without relaxing
critical path delays of these circuits. Also, we analyze the
area and power overhead due to the addition of delay
buffers at extreme corners. Using our new algorithm, we
were able to increase the contamination delay to 30% of
the circuit critical path length and also without affecting
its propagation delay. We were further able to increase
the contamination delay by relaxing the propagation
delay constraint for a larger gain in performance.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

The remainder of this paper is organized as follows.
Section 2 provides an overview of dual-latch TS frame-
work. Section 3 investigates the timing constraints of
TS framework and Section 4 presents the challenges of
increasing short path delays. In Section 5, we present
our case study on Alpha processor. Following this, we
present the network model and the algorithm for manip-
ulating short paths of the circuit in Section 6. Results of
our experiments are presented in Section 7. We present
a brief literature review in Section 8 and summarize our
concluding remarks and future directions in Section 9.

2 TIMING SPECULATION FRAMEWORK

In a pipelined architecture, a timing error occurs if
changes in the input propagate through the combina-
tional logic before the computed results for the previous
input are latched. The timing errors also occur due to
the mismatch between the circuit propagation delay and
the clock cycle time. Therefore in a pipelined processor,
the clock frequency is determined based on the circuit
critical path across all stages under the most adverse
operating conditions. Traditional design methodologies
for the worst-case operating conditions are too con-
servative, as the critical timing delays rarely occur in
tandem during typical circuit operation. Such infrequent
occurrence of critical timing delays opens up a new
domain of study that allows improvement of proces-
sor performance to a greater extent. During execution,
delay incurred by the digital circuit is much less than
the worst-case delay. This can be exploited by making
common cases faster. Timing speculation is a technique
wherein data generated at aggressive speeds are latched
and sent forward speculatively assuming error free op-
eration. Error detection is deployed to detect a timing
violation. When an error is detected, the forwarded data
is voided and the computation is performed again as
part of the recovery action. A framework to achieve this
is described below.

2.1 Dual Latched System

We first present a brief description of a dual latched
timing speculation framework from [2]. We refer to
this framework as Local Fault Detection and Recovery
(LFDR). Figure 1 (a) presents the LFDR circuit in between
two pipeline stages. To reliably overclock a system dy-
namically using LFDR framework, we need two clocks:
MAINCLK and PSCLK . The two clocks relationship is
governed by timing requirements that are to be met at
all times. LFDR consists of two registers: a main register
clocked ambitiously by MAINCLK , which is running
at a frequency higher than that is required for error-
free operation; and a backup register clocked by PSCLK ,
which has same frequency as MAINCLK but is phase
shifted. This amount of phase shift is such that backup
register always sample the data by meeting the worst-
case propagation delay time of the combinational circuit.
The timing diagram shown in Figure 1 (b) illustrate the

phase relationship between these clocks. Here, case (i)
presents the worst case clock, WCCLK , with time period
Φ1, which covers the maximum propagation delay. Case
(ii) shows TS scenario, where the clock time period is
reduced to Φ3. However, PSCLK is delayed by Φ2 in
such a way that the next rising edge of PSCLK coincide
with next rising edge of WCCLK . Thus a computation
started at the rising edge of MAINCLK will successfully
complete by the next rising edge of PSCLK . The key
point to note here is that the amount of phase shift, Φ2,
for the PSCLK is limited by the contamination delay,
TCD, of the circuit.

Figure 2 shows timing waveforms that depict timing
speculation using LFDR. In the figure, inst0 moves
forward without any timing errors using speculation.
However, inst1 encounters a timing error in Stage i,
indicated by corrupted data “terr”. This error is detected
by the error detection mechanism, and the stage error
signal is asserted. This stage error signal triggers a
local and global recovery. Timing error recovery flushes
the data sent forward speculatively, indicated in the
figure as “xxx”, and voids the computation performed
by Stage i + 1. Once the timing error is fixed, the
pipeline execution continues normally. It is clear from
the waveform that the time gained by TS is Φ4, which
is equal to Φ2.

A balance must be maintained between the number of
cycles lost to error recovery and the gains of overclock-
ing. One important factor that needs to be addressed
while phase shifting the PSCLK is to limit the amount
of phase shift within the fastest delay path of the circuit.

3 PERFORMANCE IMPACT OF SHORT PATHS

The cardinal factor that limits data-dependent allowable
frequency scaling for LFDR frameworks is the contami-
nation delay of the circuit. The phase shift of the delayed
clock is restricted by the contamination delay to prevent
incorrect result from being latched in the backup register.
Reliable execution can be guaranteed only if the contents
of the redundant register are considered “golden”. To
overcome this limitation, it is important to increase the
contamination delay of the circuit. Case (iii) in Figure 1
(b) presents a TS scenario where the clock time period
is reduce Φ6 and PSCLK is delayed by Φ5. As phase
shift Φ5 is greater than Φ2, the range of achievable
overclocking is higher in case (iii) than case (ii). From this
example, we can conclude that having contamination
delay T ′

CD > TCD increases the range of aggressive
clocking under TS.

Let us denote the worst-case propagation delay
and minimum contamination delay of the circuit as
TPD and TCD, respectively. Let TWCCLK , TMAINCLK

and TPSCLK represent the clock periods of WCCLK ,
MAINCLK and PSCLK , respectively. Let TPS repre-
sent the amount of phase-shift between MAINCLK and
PSCLK . Also we will denote TOV as the overclocked
time period.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

WCCLK

Stage i LFDR

MAINCLK PSCLK

Data

in

Data

out

Stage Error

(a)

φ3

TPD

TCD

MAINCLK

PSCLKStage

i+1

(b) T’CD

MAINCLK

PSCLK

φ1

φ5

φ6

(i)

(ii)

(iii)

φ2

Fig. 1: (a) Typical pipeline stage in a reliably overclocked processor (b) Illustration of aggressive MAIN and PS clocks for
circuits with different contamination delays

Φ2

Φ3

Φ4

inst 0

inst 0

inst 0

inst 0

inst 1

inst 1

inst 1

terr inst 1

inst 0

inst 0

xxx

xxx

inst 1

inst 1

inst 2

inst 2

inst 2

inst 2

inst 2

inst 2

WCCLK

MAINCLK

PSCLK

Main Reg

Backup Reg

Main Reg

Backup Reg

Main Reg

Backup Reg

Stage

i-1

Stage

i

Stage

i+1

Stage Error

Φ1

Fig. 2: Timing diagram showing pipeline stage level timing speculation

At all times, the following equations hold.

TWCCLK = TPD =
1

FMIN
(1)

TMAINCLK = TPSCLK = TOV (2)

TPD = TOV + TPS (3)

Let FMIN be the setting when there is no overclocking
i.e., TOV = TPD. In this case, TPS = 0. The maximum
possible frequency, FMAX permitted by reliable over-
clocking is governed by TCD. This is because short paths
in the circuit, whose delay determine TCD, can corrupt
the data latched in the backup register. If the phase
shift TPS is greater than TCD, then the data launched
can corrupt the backup register at PSCLK edge. If such
a corruption happens, then the backup register may
latch incorrect result and cannot be considered “golden”.
Hence, it is not possible to overclock further than FMAX .
The following equations should hold at all times to
guarantee reliable overclocking.

TPS ≤ TCD (4)

FMAX ≤
1

TPD − TCD
(5)

For any intermediate overclocked frequency, FINT , be-
tween FMIN and FMAX , TPS ≤ TCD. During operation,
FINT is determined dynamically based on the number of

timing errors being observed during a specific duration
of time. The dependence of phase shift on contamination
delay leads directly to the limitation of the aggressive
frequency scaling. A simplistic notion of the maximum
speed-up that is achievable through reliable overclocking
is given by Equation 6.

Maximum Speedup =
TPD

TPD − TCD
(6)

4 INCREASING SHORT PATH DELAYS

It is clear from Equation 6 that the maximum speedup is
achieved when the difference between the contamination
delay and propagation delay is minimal. However, it
must be noted that increasing TCD also affects the mar-
gin for overclocking. To overcome this challenge, we de-
velop a technique for increasing the contamination delay
to a moderate extent without affecting the propagation
delay of the circuit. As outputs of the combinational logic
depends on several inputs, and more than one path to
each output exists, with both shorter and longer paths
overlapping, adding buffer delays to shorter paths may
increase the overall propagation delay of the circuit. The
main challenge is to carefully study the delay patterns,
and distribute the delay buffers across the interconnec-
tions. More importantly, the overall propagation delay
must remain unchanged. However, it may not be possi-
ble to constrain propagation delay of the critical paths
due to logic/interconnection sharing in the network.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

Most practical circuits have significantly lower con-
tamination delay. For instance, we verified that an 8-
bit CLA adder circuit, implemented in 0.18µm Cadence
Generic Standard Cell Library (GSCLib), has a propaga-
tion delay of 1.06ns, but an insignificant contamination
delay of 0.06ns, thus allowing almost no performance
improvement through reliable overclocking. It should be
noted that the outputs of CLA adder depends on more
than one inputs, thus a trivial addition of delay buffers
to short paths results in increased propagation delay of
the circuit. However, by re-distributing the delay buffers
all to one side (either input or output), it is possible
to increase contamination delay, without affecting the
propagation delay, by up to 0.37ns.

Increasing circuit path delay above a desired level
without affecting critical path is not uncommon in se-
quential circuit synthesis. In fact, it is performed as a
mandatory step during synthesis operation. In a sequen-
tial circuit, for an input signal to be latched correctly
by an active clock edge, it must become stable before
a specified time. This duration before the clock edge
is called the set up time of the latch. The input signal
must remain stable for a specified time interval after
the active clock edge in order to get sampled correctly.
This interval is called the hold time of the latch. Any
signal change in the input before the next set-up time
or after the current hold time does not affect the output
until the next active clock edge. Clock skew, which is the
difference in arrival times at the source and destination
flip-flops, also exacerbates hold time requirements in
sequential circuits. Hold time violations occur when the
previous data is not held long enough. Hence, adding
buffers to short paths that violate hold time criteria is a
step that is carried out without too much of a concern
regarding area and power overheads.

Increasing the contamination delay of a logic circuit
significantly without affecting its propagation delay is
not straightforward [13]. At first glance, it might appear
that adding delay by inserting buffers to the shortest
paths will solve the problem. However, delay of a circuit
is strongly input dependent, and several inputs play a
role in deciding the value of an output in a particular
cycle. Current synthesis tools support increasing the
delay of short paths through their hold violation fixing
option; in a broader sense, what we essentially want to
do is to extend the hold time of the backup register.

Though it is possible to phase shift to a maximal
extent, reducing the clock period by that amount may
result in higher number of errors. Having a control
over the increase in contamination delay gives us an
advantage to tune the circuit’s frequency to the optimal
value depending on the application and the frequency
of occurrence of certain input combinations. Also, intro-
ducing delay to increase contamination delay increases
the area of the circuit. Therefore, while judiciously in-
creasing contamination delay we must also ensure that
the increase in area is not exorbitant.

5 PERFORMANCE & CONTAMINATION DELAY:
A STUDY ON ALPHA PROCESSOR

To demonstrate the effect of increasing short paths on
performance, we conducted a simple study on Alpha
processor model for different contamination delay set-
tings. We ran selected set of SPEC 2000 benchmark
workloads on SimpleScalar - a cycle accurate simulator
[15]. In order to embed timing aspects in SimpleScalar,
we examined a hardware model of Alpha processor
datapath and obtained the number of timing errors
occurring at different clock period, for each workload.
For this purpose we synthesized Illinois Verilog Model
(IVM) for Alpha 21264 configuration using 45nm OSU
standard cell library [16]. Although we are aware of the
fact that the pipeline in IVM is simplistic, it does not
have any impact on our results as we are performing
a comparative study of different settings for the same
circuit. In this experiment, we are exploring the impact
of contamination delay on timing speculation framework
at circuit level. Therefore, we believe our analysis and
insights are applicable to other architectures as well.

We adopt the configuration close to hardware model
for SimpleScalar simulations as well. The details of the
settings are presented in Table 1 and more details about
our hardware model can be found in [10]. It is important
to note that, for our hardware model, the timing critical
path is in the Issue stage of the processor pipeline. There-
fore, applications which are core bound will be effected
more than the applications that are memory bound. In
this study, we have presented the benchmarks which
has higher error rate than the rest of the suite for all
32 equal intervals of the operating frequency. Therefore,
performance results from this study present the lower
bounds of speed-up that can be observed for SPEC
benchmarks. Performance results for other benchmarks
are bound to be higher than speed-up observed in our
study.

5.1 Experimental Results

Figure 3(a) shows the cumulative error rate of selected
SPEC 2000 workloads for 32 equal intervals, for worst-
case delay of 7ns and minimum contamination delay of
3.5ns. The error profile obtained is the average values
obtained by running the experiment for 100, 000 cycles,
and repeating the experiment with different sequences
of 100, 000 instructions for each workload. Benchmarks
gap and bzip2 are core bound and therefore have a dom-
inating timing error rate. Benchmark equake is memory
bound and its timing error rate is less than the core
bound applications for the entire operating frequency
range.

A random timing error injector induces appropriate
number of errors in SimpleScalar. Pipeline stall of one
cycle per error occurrence is added correspondingly. As
increasing the contamination delay affects path distribu-
tion of the whole circuit, it is likely that the overall error
rate for each workload may go up. In our experiment, we

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

sparta-user
Highlight

sparta-user
Highlight

(a) (b) (c)

Interval number

Fig. 3: (a) Cumulative error rate at different clock periods for the IVM Alpha processor executing instructions from SPEC
2000 benchmarks (b) Average error rate per clock cycle (c) Normalized speed-up relative to reliably overclocked original
unmodified circuit

Parameter Value
Fetch/Decode/Issue/Commit width 4 inst/cycle
Functional units 4 INT ALUs, 1 INT

MUL/DIV, 4 FP ALUs, 1
FP MUL/DIV

L1 D-cache 128K
L1 I-cache 512K
L2 Unified 1024K
Technology node 45nm
Base frequency 2.5GHz
No. of freq levels 32
Freq sampling 10µs
Freq penalty 0µs (Assuming Dual PLL)

TABLE 1: Simulator Parameters

assume uniform increase in error rate, denoted as Dev,
for each workload. For our study, we used Dev = 0, 3, 5
and 7%. Further, we analyze the performance impact of
varying CDs with different target error rates (Tgt). Fig-
ure 3(b) shows the error occurrence per cycle for bzip2,
equake and gap. Quite evidently, we observed smaller
error occurrences for small/no deviation of circuit, and
the error rate tend to increase as the error rate due
deviation, Dev, goes up. However, a small increase in
target error rate allows more margins for performance
increase. But, this may not hold true for higher error
rates. In general, it was generally observed that when
Dev gets closer to Tgt, there was an increase in error
occurrences. This is more noticeable in the case of gap.

Since it may not always be possible to increase the
contamination delay without affecting the critical paths,
we increase the CD to a threshold limit. As a result, we
may end up increasing the PD. We also experimented
with the possibility of increasing PD by allowing a
leeway of a small percentage. We study the speed-up
obtained for different combinations of CD threshold and
PD leeway relative to the performance of aggressive
clocking framework with the original circuit. L 〈l〉−T 〈t〉
denotes l% leeway of PD and t% minimum threshold of
CD. We performed our study for l = 0, 10, 20 and 30%
and t = 10, 20, 30 and 40%.

We found that in all the cases, performance goes
up with threshold values, which is in agreement with
our intuition. In other words, increasing the short path
delays provides more allowance for reliable aggressive
clocking assuming a moderate target error rate occur-

��

�� ��

��

�� ��

�
� � �

� � �� � �

� � �� 	 �

� � ��
 �

� � �� � �

� � � �� � �

� � � �� 	 �

� � � ��
 �

� � � �� � �

� 	 � �� � �

� 	 � �� 	 �

� 	 � ��
 �

� 	 � �� � �

�
 � �� � �

�
 � �� 	 �

�
 � ��
 �

�
 � �� � �

�
�

��
�

��
�
�

	

�

�
�

�
	

�
�

� � �� �

� � � � �� � � �
� � � � �� � � 	
� � �
 �� � � �
� � �
 �� � �

Fig. 4: Normalized speed-up of bzip2 benchmark for different
L and T configurations

rence. It should also be noted that allowing a leeway
on critical paths induces performance overhead. Nor-
malized speed-up trend of bzip2 workload for various
modes of operation is exemplified in Figure 3(c). We
have illustrated the results for the modes that yielded
performance gains. The performance of bzip2 benchmark
for all the configurations we implemented is shown in
Figure 4. From the point of view of leeway on PD, our
investigation on relative performance is summarized as
follows:

• L = 0 is the best case scenario for performance
benefits, yielding from 10− 30% speed-up.

• 0 ≤ L ≤ 10 is the effective range for any perfor-
mance benefit, irrespective of T

• L = 20% gives a small increase in performance in
the range 0% ≤ Dev ≤ 7%

• L = 30% gives a little increase in performance for
few cases in the range 0% ≤ Dev ≤ 5%

• L > 30% causes performance overhead even for
higher values of T and smaller Dev

Similar trends were observed for equake and gap as well.
Our experiments reveal that by increasing the delays
of short paths up to 40%, subject to moderate increase
in PD (typically 10%), yields up to 30% performance
enhancement. Also, it is very important to keep the
increase in error rate due to circuit deviation within 5%.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

This guarantees zero overhead even at maximum leeway
(L = 30%).

This study establishes a case for change in the existing
synthesis algorithms to incorporate minimum path delay
constraints. The major change in this revised algorithm is
to increase the short path delays without (or minimally)
affecting the critical path delays of the circuit. A sec-
ondary and passive constraint is to maintain the circuit
variation (if not make it better), so that the deviation
causing increase in error occurrences is kept minimal.
We will discuss more on this constraint later. We provide
a systematic approach to realize circuits with path delay
distribution that allows greater margin for aggressive
clocking for performance enhancement.

6 MIN-ARC ALGORITHM FOR INCREASING

SHORT PATH DELAYS

It is easy to understand that increasing short path delays
invariably increases the area of the circuit and, if not
done carefully, affects its propagation delay. An ideal
solution is to have logic moved from the critical path
to the non-critical paths without using the specified
components at the output terminals. This is not always
possible. The next best approach would be to increase the
delay of short paths as much as possible without increas-
ing the propagation delay, and keep the area increase
within a limit. As mentioned earlier, short path delays
can be increased without affecting propagation delay
for carry look-ahead adders and other smaller circuits.
However, this is done manually, and the area overhead
is very high for 64-bit adders. Minimizing short path
constraints, without increasing propagation delay may
not be possible for many practical circuits. In that case,
we can allow a small increase in the propagation delay,
if that increase can allow higher margin for TS.

We introduce Min-arc algorithm for increasing con-
tamination delay of logic circuits up to a defined thresh-
old. We adopt an approach closely resembling min-
cut algorithm for flow networks. The basic idea of the
algorithm is to identify a set of edges, referred to as the
cut-set, such that adding a fixed amount of delay to the
set does not affect the delays of any long paths. However,
an important difference between this and traditional
flow networks is that the cut-set for the Min-arc may
not necessarily break the flow of the network. But rather,
the cut-set is a subset of edges in the actual (rather
traditional) min-cut. The reason why we do not consider
a traditional min-cut is to not unnecessarily add delay
buffers where it is not needed. However, a subset of the
min-cut edges is essential to keep the addition of delays
minimal. Another reason for increasing path delay in
batches is to keep the structure of the logic network
close to unaltered from the original network. Benefits of
maintaining path delay distribution is explained further
in Section 7.

The basic outline of the Min-arc algorithm to increase
the short path delay of the circuit is presented in Algo-
rithm 1. The entire procedure is divided into six basic

Terms Definitions
MAX(i, j) Maximum delay path from node i to j, incl. i and j
MIN(i, j) Minimum delay path from node i to j, incl. i and j
MAX(S,D) Propagation delay of the circuit, TPD

MIN(S,D) Contamination delay of the circuit, TCD

e(i, j) Edge from node i to j
wt(i, j) Weight of edge from node i to j, not incl i and j
emax(i, j) MAX(S, i) + wt(i, j) + MAX(j,D)
emin(i, j) MIN(S, i) + wt(i, j) + MIN(j,D)
LWY Percentage of leeway [0-1] on critical path while adding

buffer. E.g., LWY = x% allows the target network to
have TPD(1 + x/100) as the final propagation delay

THD Normalized threshold (from TCD to TPD) below which
we do not want any short paths

INF A very large integer value
SCALE A moderate integer value, (> TPD), to scale the weight

to a new range.
func() A function dependent on TPD , TCD , emax(i, j)

and emin(i, j). Returns a real number, 0-1. In this

work, we define this as

√

(emax(i,j)−THD)
(TPD−THD)

×

√

(emin(i,j)−TCD)

(THD−TCD)

TABLE 2: Definitions

steps, in which the first and last steps are one-time
operations, converting the logic circuit to an equivalent
graph network and vice-versa. The remaining parts of
the algorithm modify the graph into a weighted graph
network and iteratively update the prepared network by
adding the necessary delay to the selected interconnec-
tion using the modified min-cut procedure. We explain
these steps in detail below.

Algorithm 1 Steps for Manipulating Short Path Delay in Logic
Circuits

STEP A: Convert combinational circuit to a graph
STEP B: Get minimum and maximum path through every edge
STEP C: Prepare graph for min-cut
STEP D: Do min-cut on the graph obtained in step C
STEP E: Add delay to the edges returned by min-cut
STEP F: Update the graph and repeat Steps B through F until contamination
delay is increased up to the required value
STEP G: Convert the graph back to combinational logic circuit

6.1 Construction of Weighted Graph Network

The first step is to convert the given combinational
logic into a directed graph, where the logic blocks are
nodes and the interconnections from each logic block to
others form directed edges. The nodes and edges may be
weighted depending on their time delays. To this graph
we add a source, S, and edges that connects S to all
the inputs. We also add a drain node, D, to which all
the outputs connect. The weights for S, D and all the
edges from/to them are set to zero. Figure 5 illustrates
an example network model for a 4-bit ripple carry adder
with S and D added. TPD and TCD of the logic circuit are
highlighted in the figure. It is necessary to preserve the
node types whether they are logic gates, buffer delays,
input or output pins. Also it is important to note the
type of logic for a logic gate node. This is important in
order to maintain functional correctness of the circuit.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

A1 B1

⊕
•

•
⊕+
• •

•
•

A3 B3

⊕
•

•
⊕+
• •

•
•

A0 B0 Cin

⊕
•

•
⊕
• •

•
•

Cout

S0S1S2S3

A2 B2

⊕
•

•
⊕
• •

•
•

+ +

D

S

Contamination Delay Path

Propagation Delay Path

i

j

emin(i,j)
emax(i,j)

Delay

Buffer

Fig. 5: Illustration: Network model for 4-bit ripple carry adder, assuming unit interconnect and logic delays

6.2 Finding the Minimum and Maximum Path

Once the directed network is constructed, the next step
is to mark the edge weights for generating the cut-set.
We use several terms and symbols as described in Table
2. We calculate the longest and shortest distances from
source to one end node of an edge and from the other
end of the edge to drain. That is, we obtain MAX(S, i),
MAX(j,D) MIN(S, i) and MIN(j,D) for every edge
e(i, j) in the weighted graph. We use Djikstra’s algorithm
to calculate MAX() and MIN() functions. From this, we
calculate emax(i, j) and emin(i, j) for every edge, e(i, j)
as described in Table 2, which corresponds to the longest
and shortest paths of the logic network through that
edge. The paths marking emin(i, j) and emax(i, j) for
randomly chosen nodes i and j for the 4-bit ripple carry
example is depicted in Figure 5. In a similar manner,
the minimum and maximum weights for every edge are
calculated.

6.3 Preparing Graph for Min-cut

We construct a weighted graph network to select a min-
imum weight interconnection to add the delay buffer.
Once we add a delay buffer, we recalculate new edge
weights. The edge weights are calculated in such a
manner that the minimum weighted arc gives the most
favorable interconnection where to add delay. The proce-
dure for calculating new weights for every edge, e(i, j),
is described in Algorithm 2. The edge, e(i, j) may fall
under one of the four categories listed in the algorithm.
For the first two cases, the edge weight is calculated as
the sum of emin(i, j) and emax(i, j). This is the general
scenario where the minimum and maximum paths are
added as edge weights. The first case is the scenario
of a short path, where emax(i, j) is smaller than the
threshold for contamination delay. The latter case is
when the selected edge, e(i, j), has a delay such that
the shortest path is closer to the threshold than the
longest path is to the propagation delay. In other words,
when a delay buffer is added to any edge in the path

to increase the short path delay by the given threshold,
the maximum delay increase affecting a critical path is
still within propagation delay of the circuit. The third
scenario is when the longest path exceeds propagation
delay including leeway. This edge is critical and by
no means any buffer can be added to this. Hence, we
assume a large number (INF) as the edge weight so that
this edge is never picked as part of the min-cut. Finally,
we have a case when delay buffer addition exceeds or
gets very close to the propagation delay. In this case,
we scale the edge weight moderately higher than the
original range. This addresses the case where addition
of buffer to this edge affects longer paths.

Algorithm 2 Re-calculation of Edge Weight for edge emax(i, j)

1: if emax(i, j) ≤ THD then
2: wt(i, j) = emin(i, j) + emax(i, j)
3: else
4: if (THD − emin(i, j) < (TPD − emax(i, j)) then
5: wt(i, j) = emin(i, j) + emax(i, j)
6: end if
7: else
8: if emax(i, j) > (TPD(1 + LWY)) then
9: wt(i, j) = INF

10: end if
11: else
12: wt(i, j) = SCALE ∗ func()
13: end if

6.4 Finding the Min-cut

Once the edge weights are re-assigned, the cut-set is
determined. We use a variant of Edmonds−Karp min-cut
algorithm for graph network [17]. The cut-set consists of
edges with minimum weight in the graph with assigned
weights. Figure 6 illustrates the different scenarios in
determining the cut-set. The cut-set re-definition is nec-
essary because the traditional min-cut always has at
least one edge in the critical path. Figure 6(a) shows
how a logic circuit is divided into critical and non-
critical paths. As long as the non-critcical paths are
independent of critical paths, buffer delays can be added
to the former ones. In this case, the min-cut excludes

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

K

<THD

∞

<THD

S D

∞

<THD

S D

K

∞

S D

∞

≥ THD

S D

(a) (b)

(c) (d)

Short paths independent of critical

paths. Add buffers to short paths.

Short paths with common edges with longer paths

(but not critical paths). Add buffers excluding the

common edges.

Short paths having common edges with longer paths.

There are no independent short paths. Add buffers to

common edges. Longer paths may become critical paths.

All short path delays have

reached the threshold value.

≥ THD

Fig. 6: Illustration of four different scenarios finding the cut-set in Min-arc algorithm

all the critical paths. Generally, the scenario is not this
straightforward. As illustrated in Figure 6(b), the short
paths are intertwined with longer paths that are not
critical paths. In such cases, the weights of the longer
paths are scaled to a different range (in this case K). If
there is a subset of short paths that exist independent of
the longer paths, buffer delays are added to this subset.
We noticed that this is the most common scenario in
the benchmark circuits. Once all the independent short
paths have been added with corresponding delays, the
new circuit is left out with paths that are scaled as
shown in Figure 6 (c). Buffer delay is added to the scaled
paths, which runs the risk of modifying longer paths into
critical paths. The final circuit is shown in Figure 6 (d),
where there are only critical paths and paths that have
delay meeting the threshold requirements. In the ripple
carry example, the case is similar to Figure 6 (a). The
cut-set is thus all the paths excluding the critical path.
Figure 5 also shows the min-cut where the buffers are
added.

6.5 Adding Buffer Delays

The buffers are carefully placed on edges where they
would not affect the longest paths. Thus, the amount of
delay each buffer adds depend on the path connectivity,
which may have major impact on the timing error occur-
rence. For example, it is possible to add delays such that
all the paths have delay equal to the critical path delay.
In most practical circuits, increasing all path delays to a
certain delay interval can result in a rise in the timing
errors, causing overhead due to error recovery. Thus,
it is always necessary to keep this under control when

designing the algorithm so that there is a gentle rise in
path delays from one interval to the other. Buffers are
added on the edges present in the cut-set. The amount
of delay added, delay(i, j), for any edge e(i, j) is given
by Equation 7.

delay(i, j) = min((THD− emin(i, j)), (TPD − emax(i, j)))
(7)

The delays for all the edges in a cut-set, for a given
iteration, are added at the same time. While adding
delay, we ensure that in one iteration there are no other
edges to which the delay is added that are connected
to paths through this edge. Please note that there is a
relation between max-flow and min-cut problems and
the proposed formulation is in fact max-flow.

6.6 Satisfying Conditions

We iterate steps B through F until the minimum con-
dition for the shortest path is met or until there is no
other edge where delay can be added without affecting
TPD of the circuit (including LWY). Step F checks if the
desired value of contamination delay is reached. Once
the required conditions are met, no more buffers can be
added and the algorithm moves on to step G. From our
experiments, we found that the minimum condition for
contamination delay is achieved for all the circuits we
evaluated.

6.7 Converting Graph to Logic Circuit

The final step is to revert back to the original circuit once
the short paths lengths are increased to the desired level.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

Since we record the node types in the network graphs in
step A, it is possible to re-build the circuit from the graph
network with the added buffers. It should be noted that
we do not modify the logic of the circuit, as we only
add additional buffers preserving the original logic of
the circuit.

6.8 Complexity of Min-Arc Algorithm

The time complexity of Min-arc algorithm is mainly
affected by Steps B and D. Let |V | be the total number
of logic blocks (vertices) and |E| is the total number
of interconnections (edges) in the logic circuit. Using
Djikstra’s shortest path algorithm, the worst case time
to calculate MAX() and MIN() functions is O(|V |2).
For finding the minimum weighted edge min-cut for the
graph network, it takes O(|V ||E|2). In the worst case ev-
ery edge becomes a part of the cut-set. That is, there are
at most |E| iterations. Hence, the overall time complexity
of the Min-arc algorithm is O(|V |2|E| + |V ||E|3), which
is dominated by the second term as |V | < |E|.

6.9 Impact of Process Variation

Process variation can alter gate delays and hence can al-
ter the distribution of path delays. Therefore, we need to
take conservative estimates of circuit delays into account
while using our algorithm. Inter-die variations impact
all the paths and therefore impact on our algorithm
is minimal. To mitigate intra-die variation, conserva-
tive padding of buffers needs to be done on the short
paths to make sure that extreme variation is tolerated
at the expense of area overhead. If such additional area
overheads are to be ignored, process variation will only
reduce the range of aggressive clocking slightly; and
cannot eliminate the possibility of reliable overclocking
and the scope for performance improvement by TS.
Given that the scope of this paper is to demonstrate the
concept and develop an algorithm to realize it, we do
not evaluate the actual impact any further.

7 EVALUATION OF MIN-ARC METHOD

Although the time complexity of Min-arc algorithm is
polynomial order, it is necessary to consider its perfor-
mance on practical circuits. We evaluate the algorithm
on ISCAS’85 benchmark suite [18]. The suite provides
a diverse class of circuits in terms of number of IOs,
logic gates and interconnections (nets). Table 3 lists a
brief description and other relevant details of the circuits.
All the circuits were transformed into network graphs as
described in Section 6. The interconnect delays and logic
cell delays were obtained by synthesizing the circuits
for 45nm technology using OSU standard cell library
[16]. All circuits are synthesized for minimum area (max
area is set to zero) using Synopsys Design Compiler,
which acts as a starting point for our algorithm. All the
configurations (L 〈l〉 − T 〈t〉) described in Section 5 were
investigated.

Circuit Description Inputs Outputs Gates Nets Area(µm2)
c432 27-channel

interrupt
controller

36 7 205 386 5361

c499 32-bit SEC
circuit

41 32 277 513 7821

c880 8-bit ALU 60 26 471 841 11792
c1355 32-bit SEC

circuit
41 32 621 1169 17167

c1908 16-bit
SEC/DED
circuit

33 25 940 1581 24948

c2670 12-bit
ALU and
controller

233 140 1644 2665 36016

c3540 8-bit ALU 50 22 1743 3033 49140
c5315 9-bit ALU 178 123 2610 4810 71726
c7552 32-bit

adder/comparator
207 108 3830 6568 101953

TABLE 3: Brief description of ISCAS85 benchmarks with
netlist details

7.1 Results Analysis

Positive results were noted in this study. First, for all
the circuits, the Min-arc method was able to increase
the short path delays to the desired threshold levels
without any leeway on PD. We continued our evaluation
with all the configurations to include leeway in order
to study the effect of increasing PD. We include the
results only for a few selected circuits and average
of all circuits. It was found that circuit characteristics
(i.e., size and connectivity) have strong effects on how
the algorithm performs. Figure 7 illustrates the increase
in the short path delays and critical path delays for
different configuration in c432 and c5315 circuits. The
chart also shows the average increase of short and critical
path delays for all nine circuits. For smaller circuits (as
in c432), we notice that there is not much the algorithm
possibly could do, as there is a higher chance of affecting
the critical path by adding delay to any net. In c432, we
notice that the maximum delay increase of short paths
from the base circuit with 91ps, (with 0% leeway) is
around 225ps. However, in larger circuits (as in c5315),
delay buffers were more easily added. This is seen in
c5315, where short path delay is increased from 20ps
to 430ps, again with 0% leeway. In other words, as
the circuit size increases, the number of independent
short paths also become higher in number, allowing easy
inclusion of delay buffers.

It should also be noted that there is not much impact
on increasing leeway from L0 to L5 or even higher levels
PD. On the other hand, increasing leeway tend to have a
great impact in increasing the CD. On an average, there
is a 1.5× factor of increase in short path delay for each
5% increase in leeway. Assuming LWY = 0, we were
able to achieve 300%−900% increase in CD, and increas-
ing LWY steadily from 5 to 30%, we observed increase
of CD in a saw tooth pattern achieving 315% − 1165%
increase in CD. It should be observed from the critical
path delay patterns that the algorithm strictly adheres to
the limit imposed on critical path delay.

One major side effect of adding buffers to circuits is
that it affects path delay distribution. Although our goal

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

Average increase in short path delay

Average increase in critical path delay

Fig. 7: Charts showing increase in contamination (short path) delay and propagation (critical path) delay of circuits

is to increase the CD to a threshold limit, pushing a set
of paths to one side may increase the timing error rate
during execution. Therefore, it is important to analyze
the delay distribution of the circuit paths. Even though
the structure of the circuit is maintained, as the short
paths are now pushed to offer higher delay, it increases
the possibility of error occurrences in TS framework. For
our case study in Section 5, we modelled this increase
in timing error rates as Dev.

Figure 8 illustrates the path delay distributions for
selected configurations of two circuits (c432 and c7552).
We have divided the range between CD and PD into ten
bins. X-axis in Figure 8 represent the bin number. For
c432, T30L0 and T30L5 configuration reduce the number
of paths having higher delay. This implies a reduction
in timing error rate in TS framework. Higher leeway
configuration T30L30 increases CD but path delay dis-
tribution matches the base line, implying no increase in
timing error rate. For c7552, even no leeway configuraion
(T30L0) performs better than baseline. Also, higher lee-
way configurations, T30L5 and T30L30, perform much
better than baseline in terms of paths having higher
delay. Overall, for c432 (and other smaller circuits), the
path structure is mostly maintained and in the case of
c7552 (and otherlarger circuits), the circuit structure was
altered moderately. Increase in number of paths having
higher delay implies increase in timing error rate of TS
framework. From these results, we conclude that for
smaller circuits, our algorithm maintains or does not
increase timing error rate of TS framework. For larger
circuits, our algorithm reduces the timing error rate for
higher leeway configurations. As timing error rate also
influence the possible performance gain, reduction in
timing error rate is favorable for TS framework.

To illustrate this point further, we present mean and
standard deviation of all the circuits. Figure 9 presents

Fig. 8: Path delay distribution from CD to PD for c432 and
c7552

plots of selected circuits and average of all the circuits.
We note that the smaller circuits (c432) suffer from neg-
ligible deviation from original circuit in spite of higher
mean, and the larger circuits ((c7552)) are vulnerable to
change in structure. From the average plot, it is also evi-
dent that higher leeway values cause more deviation. A
maximum deviation of −12% and +16% were observed
for T30L0 and T30L30 configurations, respectively.

7.2 Area Overhead

A major overhead for Min-arc algorithm is the area
penalty. More the circuit allows adding buffers, more
the overhead in chip real estate. We estimate the original
circuit area in terms of buffer delays, and compare the
area increase for each of the configurations. This study
facilitates to narrow down the choices of L and T for any
given circuit. Table 4 enlists the percentage area increase
for various L and T combinations, for all the circuits. It
is important to choose the configuration that has highest
increase in delay with moderate increase in area.

Without any leeway (corresponding to L0), with every
5% increase in T there is around 20% increase in area.
This holds for most circuits, except for smaller circuits as
in c499 and c880, where it is around 10%. A maximum
of 100% increase is observed for c2670 at T = 30%.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

Fig. 9: Average path delay distribution, in terms of mean and deviation. Mean values are represented by line while standard
deviation values are represented by bars

Ckt L0 L5 L10 L15 L20 L25 L30

c432 T10 0.0 0.0 0.0 0.0 0.0 0.1 0.3
T15 2.2 1.9 2.3 2.7 3.1 3.6 4.0
T20 10.9 14.4 5.7 6.4 7.2 8.0 8.9
T25 27.9 34.7 10.9 12.1 12.2 13.4 14.6
T30 55.9 62.2 70.7 19.9 20.0 19.5 21.0

c499 T10 1.3 2.3 3.3 4.2 5.3 6.2 7.2
T15 11.1 12.6 14.1 15.6 17.0 18.6 20.0
T20 21.0 22.9 24.9 26.9 28.9 30.8 32.8
T25 30.8 33.3 35.7 38.2 40.7 43.1 45.6
T30 40.6 43.6 46.5 49.5 52.4 55.4 58.3

c880 T10 0.9 1.1 1.3 1.7 2.0 2.4 2.8
T15 4.6 5.4 6.2 6.9 7.8 8.8 9.9
T20 13.3 15.1 13.6 15.3 17.1 18.8 20.6
T25 25.0 35.4 23.2 25.4 27.6 29.7 31.9
T30 32.7 37.8 49.3 35.4 38.0 40.6 43.3

c1355 T10 0.0 0.1 0.9 1.6 2.4 3.2 3.9
T15 7.9 9.6 9.2 10.3 11.5 12.6 13.7
T20 23.0 26.0 29.0 19.0 20.5 22.0 23.5
T25 38.0 41.8 45.6 27.7 29.6 31.4 33.3
T30 53.2 57.7 62.2 36.3 39.3 40.9 43.1

c1908 T10 3.1 3.7 4.3 4.9 5.5 6.1 6.7
T15 8.1 9.9 10.8 11.7 12.6 13.5 14.4
T20 15.4 16.1 18.3 18.5 19.7 20.9 22.1
T25 24.7 25.1 27.1 28.9 26.9 28.3 29.8
T30 35.2 35.9 35.9 37.9 40.2 44.1 37.5

c2670 T10 23.4 25.1 26.8 28.6 30.4 32.1 34.0
T15 41.6 44.5 47.4 50.4 53.3 56.3 59.2
T20 60.5 64.6 69.0 73.0 77.0 81.0 85.0
T25 81.1 88.3 92.1 95.9 100.9 105.9 110.8
T30 100.5 117.6 113.2 132.3 131.6 138.1 136.9

c3540 T10 0.6 0.7 0.8 0.9 1.0 1.0 1.1
T15 2.0 2.8 2.7 3.1 3.5 3.9 4.3
T20 5.4 5.2 7.7 6.4 7.0 7.6 8.2
T25 7.7 17.6 9.9 13.9 15.1 11.4 12.2
T30 10.8 15.6 19.5 13.4 45.0 21.4 27.4

c5315 T10 7.9 11.7 12.8 14.0 15.1 16.3 17.5
T15 24.6 25.7 25.8 27.6 29.4 31.2 33.0
T20 39.8 42.6 41.6 41.6 44.1 46.5 49.0
T25 63.5 66.1 58.3 56.1 58.8 61.9 65.0
T30 74.3 102.9 085.1 107.3 95.2 77.3 81.0

c7552 T10 5.4 5.5 5.9 6.2 6.7 7.1 7.5
T15 9.4 10.2 11.1 11.9 12.8 13.7 14.6
T20 15.3 16.5 17.8 19.0 20.2 21.5 22.9
T25 22.6 26.0 26.9 26.4 29.2 29.6 31.2
T30 40.3 39.2 43.6 41.7 35.7 37.7 39.6

TABLE 4: Percentage area increase after addition of buffers
relative to base configuration T0L0

For this maximum threshold, there is a wide range of
area increase across the benchmark circuits. We did not
observe any strong relation between circuit size and the
area increase. This means that it is the circuit connectivity
that has a major role to play on buffer placements. For
T = 30%, the minimum area increase of around 10% is
observed for the circuit c3540.

A general observation from our study is that the area
increases with L or T . However, we did observe quite

a few configurations, where the area decreases with L

or T . This reflects how the algorithm handles different
input combinations independently, rather than building
from previous level output. We noticed several places
where area would decrease with L (shaded dark black
in Table 4). Observation related to these shaded entries is
that they beat the increasing area trend with increasing
leeway. As illustrated, there is at least one place where
this occurs in each circuit, with the exception of c499
and 2670. In the case of T , we notice that there are only
a couple of configurations where this occurs, namely in
c3540 (underlined in Table 4). This explains how target
threshold for short paths affect increase in area. In most
cases we noticed around 2% increase in area for every 5%
in L. In majority of the cases, we noted only moderate
increase in area (< 50%). We observed 12 cases where
the area increase was more than 100%, in which 10 of
them are from the same circuit, c2670. This is a 12-bit
ALU with controller (c2670) that has a lot of parallel
paths with few common edges. Similar but less intense
effect is seen in the case of the 9-bit ALU (c5315). The
configurations where the area increase exceeds 100% is
highlighted light black in the table.

7.3 Power Overhead

The addition of buffers to the circuit for increasing
contamination delay also increases the power consump-
tion. Table 5 presents the percentage power increase
for various L and T combinations. Using the spice
models, we have estimated the power consumed by the
buffers added and estimated the percentage increase in
worst case power consumption. We have used golden
configuration (L0T0) as the base for all configurations
of L and T .

We notice from the table that increase in power con-
sumption is also dependent on the circuit topology
rather than the size of the circuit. Without any leeway
(corresponding to L0), with every 5% increase in T there
is only around 4% increase in power. This holds for
most circuits, except for smaller circuit c432. We also
notice that for a given T , increasing L has very minimal
effect (2%-3%) on the power increase. Therefore, while
applying our algorithm, an optimal value of T can be
chosen as any value of L can be chosen without altering

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

Ckt L0 L5 L10 L15 L20 L25 L30

c432 T10 0.0 0.0 0.0 0.0 0.0 0.2 0.5
T15 2.2 1.9 2.2 2.7 3.1 3.4 3.9
T20 10.4 13.5 5.5 6.0 6.7 7.7 8.4
T25 26.3 32.5 10.4 11.6 11.6 12.5 13.7
T30 52.3 58.3 66.3 18.8 18.8 18.3 19.8

c499 T10 0.4 0.8 1.1 1.5 1.8 2.1 2.5
T15 3.8 4.3 4.7 5.3 5.7 6.2 6.7
T20 7.1 7.7 8.3 9.0 9.6 10.3 11.0
T25 10.3 11.1 12.0 12.8 13.5 14.4 15.2
T30 13.5 14.6 15.6 16.6 17.5 18.5 19.5

c880 T10 0.3 0.4 0.5 0.7 0.8 0.9 1.0
T15 1.6 2.0 2.2 2.5 2.8 3.2 3.5
T20 4.7 5.3 4.8 5.5 6.0 6.7 7.3
T25 8.8 12.4 8.2 8.9 9.7 10.5 11.2
T30 11.6 13.3 17.3 12.4 13.4 14.3 15.3

c1355 T10 0.0 0.1 0.3 0.5 0.9 1.1 1.3
T15 2.6 3.2 3.1 3.4 3.8 4.2 4.5
T20 7.6 8.5 9.5 6.2 6.7 7.2 7.7
T25 12.5 13.7 14.9 9.1 9.6 10.3 10.9
T30 17.4 18.8 20.4 11.9 12.9 13.4 14.1

c1908 T10 0.6 0.7 0.8 0.9 1.0 1.1 1.2
T15 1.4 1.8 2.0 2.1 2.3 2.4 2.6
T20 2.8 2.9 3.4 3.4 3.6 3.8 4.0
T25 4.5 4.6 4.9 5.2 4.9 5.1 5.4
T30 6.3 6.5 6.5 6.9 7.2 7.9 6.8

c2670 T10 3.8 4.1 4.4 4.7 4.9 5.2 5.5
T15 6.8 7.3 7.7 8.2 8.7 9.2 9.6
T20 9.9 10.5 11.2 11.9 12.5 13.2 13.8
T25 13.2 14.4 15.0 15.6 16.4 17.2 18.0
T30 16.4 19.1 18.4 21.5 21.4 22.5 22.3

c3540 T10 0.5 0.6 0.6 0.7 0.7 0.8 0.9
T15 1.5 2.1 2.0 2.3 2.6 2.9 3.2
T20 4.0 3.9 5.7 4.8 5.2 5.7 6.1
T25 5.7 13.1 7.4 10.4 11.2 8.5 9.1
T30 8.0 11.6 14.5 10.0 33.5 15.9 20.4

c5315 T10 3.4 5.0 5.5 6.0 6.5 7.0 7.5
T15 10.5 11.0 11.0 11.8 12.5 13.3 14.1
T20 16.9 18.1 17.7 17.7 18.8 19.9 20.9
T25 27.1 28.2 24.9 23.9 25.1 26.4 27.7
T30 31.7 43.9 36.3 45.7 40.6 33.0 34.5

c7552 T10 2.3 2.3 2.5 2.6 2.8 3.0 3.2
T15 4.0 4.3 4.7 5.0 5.4 5.8 6.1
T20 6.5 6.9 7.5 8.0 8.5 9.1 9.6
T25 9.5 10.9 11.3 11.1 12.3 12.5 13.1
T30 17.0 16.5 18.4 17.6 15.0 15.9 16.7

TABLE 5: Percentage power increase after addition of buffers
relative to base configuration T0L0

the power budget.

When timing speculation is used for overclocking,
voltage is kept constant. Therefore, increase in power
is independent of voltage and is dependent only on
frequency change and the additional power overhead
caused by the buffers. In this paper, as we primarily
analyze our algorithm at circuit-level, we only present
power results at circuit-level. Changes in system-level
power estimates can be easily derived with the power
analysis present in this section. When compared to area
overheads of our algorithm, power results presented in
Table 5 are quite interesting. For example, for circuit
c2670 where we have seen 100% area increase, power
increase is only about 16%. The power increase is rel-
atively small when compared to the area increase. It is
due to the fact the delay buffers draw much less current
than the other standard cells. Even though we are limited
with the type of delay buffer configurations available
in our cell library, much more complex buffers can be
constructed at gate-level which can consume less power
without degrading delay characteristics.

8 RELATED LITERATURE

Early works on timing verification involved identifica-
tion and categorization of long paths as either false
paths or sensitizing paths [19]. Long paths that are false
paths (paths with no activity) unnecessarily increase the
circuit critical delay. Therefore, detecting false paths and
mitigating them is a critical issue in digital circuits even
to this day [20]–[22].

As already mentioned in Section 1, not many works
are done keeping short paths in mind. Sylon-Dream
accomplishes faster multi-level networks by its level
reduction technique (SDLR) [14]. The non-critical paths
are processed by an area reduction procedure to reduce
network area without increasing the maximum depth.
SDLR uses the concept of permissible functions in both
level and area reduction procedures. Gate resizing and
buffer insertion are two major techniques for critical path
optimization. Critical path selection instead of sensiti-
zation is suggested for performance optimization [23].
Here the objective is to select a small set of paths to
ease the optimization process by guaranteeing the delay
of the circuit to be no longer than a given threshold.
Several optimization techniques, involving clustering,
logic analysis and gate resizing are proposed in [24]–
[28]. A statistical timing analysis approach is investi-
gated in [29]. A re-timing and re-synthesis approach is
presented in [30]. This work suggests re-synthesizing the
circuit to expose signal dependencies. The optimization
scheme tightly constrains logic re-synthesis, so that the
re-synthesized circuit is guaranteed to meet the per-
formance target. Recent work in [31] focus on buffer
insertion to solve variation in clock skew. Authors in [32]
explore adjustable delay buffer insertion for minimizing
clock skew in multi voltage designs. Buffer insertion in
presence of process variation is explored in [33] with the
focus on improving yield.

Authors in Dynatune propose an algorithm based on
min cut approach to shorten the long path delay [34].
It is based on simulation profiling and uses multiple
threshold voltage cells to reduce the delay of long paths.
Even though our min cut algorithm is similar to Dy-
natune algorithm, it is applied to a drastically different
aspect of timing speculation framework ie. increasing
contamination delay. Unlike Dynatune, our approach
doesn’t use simulation profiling to drive the circuit
optimization as hold time delay should be satisfied all
the time. Therefore, our algorithm consider more tighter
constraints than Dynatune algorithm.

Although there are several delay optimization ap-
proaches proposed in literature, all of them try to hold
the critical path delay within a threshold. It is funda-
mental that all the timing optimization algorithms must
consider short path timing constraints. Data latches in
a pipelined architecture inherently possess set up and
hold time constraints. It is necessary to make sure that
the resulting circuit has no set-up or hold time violations,
to guarantee correct data transfers. There are algorithms

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

to make sure the circuit is free of any such violations
considering both long and short paths [35]. However,
there is no consideration for short path constraints from
the perspective of aggressive clocking we are dealing
with.

Authors in [36] propose a steepest descent method
(SDM) to determine the potential benefits of timing
speculation. From the experiments conducted, it is found
that circuit topology play a big role in realizing the
benefits of timing speculation. Our algorithm can be
used for circuits that shows promising results using SDM
approach analyzed with design parameters like process
technology, desired frequency and voltage corners, er-
ror penalty of the implementation etc. In this paper,
we try to alleviate the contamination delay limitation
imposed on aggressive timing speculation architectures.
Due to this, we differ from all of the existing works
fundamentally. This is the first work aimed at increasing
the contamination delay of digital circuits up to a given
threshold. It is also important to point out that our
algorithm works complementary to existing synthesis
schemes and can also be integrated with physically
aware timing optimizations that are used for achieving
timing closure.

9 CONCLUSIONS

Contamination delay is one of the major bottlenecks
for achieving higher performance in timing specula-
tion architectures. In this paper, we investigated the
theoretical margins for improving performance for the
dual latch framework. We brought forward the limits to
performance enhancements in timing speculation. Using
our analysis, we demonstrated how much performance
improvement is achievable by increasing the contami-
nation delay of the circuit without affecting the critical
path delays. Performance gains were attained even for
the cases affecting propagation delay by up to 10%. We
studied further how these gains vary with target timing
error rate.

The main goal of this paper is to increase the short
path delays to a specified threshold, without (or min-
imally) affecting the critical path delays. We proposed
the Min-Arc algorithm to achieve this goal. We stud-
ied ISCAS-85 circuits, where we have shown that the
Min-Arc is able to increase the contamination delay of
all the circuits without affecting propagation delay. We
analyzed further as to how much these short paths
increase while allowing a small leeway to critical path
delay. We observed moderate area and power increase
in the circuits implementing the Min-arc algorithm. Fi-
nally, we discuss how the algorithm preserves the path
delay distributions of the circuits and therefore, closely
maintaining the rate of timing error occurrences from
the original circuit. As a future improvement, gate/cell
sizing approach can be used instead of adding delay
buffers for improved area, power results. To conclude,
Min-arc algorithm successfully increases the contami-
nation delay of logic circuits with moderate area and

power overheads. The results we have obtained are very
promising, opening up different directions for the near
future.

REFERENCES

[1] Todd M Austin. Diva: A reliable substrate for deep submicron
microarchitecture design. In Microarchitecture, 1999. MICRO-32.
Proceedings. 32nd Annual International Symposium on, pages 196–
207. IEEE, 1999.

[2] M. Bezdek. Utilizing timing error detection and recovery to dy-
namically improve superscalar processor performance. Master’s
thesis, Iowa State University, 2006.

[3] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev
Rao, Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin,
Krisztian Flautner, et al. Razor: A low-power pipeline based
on circuit-level timing speculation. In MICRO-36, 36th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 7–
18, 2003.

[4] B. Greskamp, L. Wan, U.R. Karpuzcu, J.J. Cook, J. Torrellas,
D. Chen, and C. Zilles. Blueshift: Designing processors for
timing speculation from the ground up. In IEEE 15th International
Symposium on High Performance Computer Architecture, 2009. HPCA
2009, pages 213–224, 2009.

[5] Brian Greskamp and Josep Torrellas. Paceline: Improving single-
thread performance in nanoscale cmps through core overclocking.
In Parallel Architecture and Compilation Techniques, 2007. PACT 2007.
16th International Conference on, pages 213–224. IEEE, 2007.

[6] Naga Durga Prasad Avirneni and Arun K Somani. Low over-
head soft error mitigation techniques for high-performance and
aggressive designs. Computers, IEEE Transactions on, 61(4):488–501,
2012.

[7] Viswanathan Subramanian, Mikel Bezdek, Naga D Avirneni, and
Arun Somani. Superscalar processor performance enhancement
through reliable dynamic clock frequency tuning. In Dependable
Systems and Networks, 2007. DSN’07. 37th Annual IEEE/IFIP Inter-
national Conference on, pages 196–205. IEEE, 2007.

[8] Meeta S Gupta, Jude A Rivers, Pradip Bose, Gu-Yeon Wei, and
David Brooks. Tribeca: design for pvt variations with local
recovery and fine-grained adaptation. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture,
pages 435–446. ACM, 2009.

[9] Shidhartha Das, David Roberts, Seokwoo Lee, Sanjay Pant, David
Blaauw, Todd Austin, Krisztián Flautner, and Trevor Mudge. A
self-tuning dvs processor using delay-error detection and correc-
tion. Solid-State Circuits, IEEE Journal of, 41(4):792–804, 2006.

[10] Prem Kumar Ramesh, Viswanathan Subramanian, and Arun K
Somani. System level analysis for achieving thermal balance and
lifetime reliability in reliably overclocked systems. International
Journal on Advances in Systems and Measurements, 2(4):258–268,
2010.

[11] Naga Durga Prasad Avirneni and Arun K Somani. Countering
power analysis attacks using reliable and aggressive designs.
IEEE Transactions on Computers, 99:1, 2013.

[12] Naga Avirneni, Prem Ramesh, and Arun Somani. Utilization
aware power management in reliable and aggressive chip multi
processors.

[13] Narendra V Shenoy, Robert K Brayton, and Alberto L
Sangiovanni-Vincentelli. Minimum padding to satisfy short path
constraints. In Computer-Aided Design, 1993. ICCAD-93. Digest of
Technical Papers., 1993 IEEE/ACM International Conference on, pages
156–161. IEEE, 1993.

[14] Kuang-Chien Chen and Saburo Muroga. Timing optimization for
multi-level combinational networks. In Proceedings of the 27th
ACM/IEEE Design Automation Conference, pages 339–344. ACM,
1991.

[15] D. Burger and T.M. Austin. The SimpleScalar tool set, version 2.0.
ACM SIGARCH Computer Architecture News, 25(3):13–25, 1997.

[16] J.E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W.R. Davis,
P.D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, et al. FreePDK:
An Open-Source Variation-Aware Design Kit. In Proceedings of
the 2007 IEEE International Conference on Microelectronic Systems
Education, pages 173–174. IEEE Computer Society Washington,
DC, USA, 2007.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

[17] Jack Edmonds and Richard M Karp. Theoretical improvements
in algorithmic efficiency for network flow problems. Journal of the
ACM (JACM), 19(2):248–264, 1972.

[18] Mark C Hansen, Hakan Yalcin, and John P Hayes. Unveiling the
iscas-85 benchmarks: A case study in reverse engineering. IEEE
Design & Test of Computers, 16(3):72–80, 1999.

[19] DH Du, Steve H Yen, and Subbarao Ghanta. On the general
false path problem in timing analysis. In Proceedings of the 26th
ACM/IEEE Design Automation Conference, pages 555–560. ACM,
1989.

[20] Lei Cheng, Deming Chen, Martin DF Wong, Mike Hutton, and
Jason Govig. Timing constraint-driven technology mapping for
fpgas considering false paths and multi-clock domains. In Pro-
ceedings of the 2007 IEEE/ACM international conference on Computer-
aided design, pages 370–375. IEEE Press, 2007.

[21] Shihheng Tsai and Chung-Yang Huang. A false-path aware formal
static timing analyzer considering simultaneous input transitions.
In Design Automation Conference, 2009. DAC’09. 46th ACM/IEEE,
pages 25–30. IEEE, 2009.

[22] Olivier Coudert. An efficient algorithm to verify generalized
false paths. In Design Automation Conference (DAC), 2010 47th
ACM/IEEE, pages 188–193. IEEE, 2010.

[23] Hsi-Chuan Chen, DH-C Du, and L-R Liu. Critical path selection
for performance optimization. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 12(2):185–195, 1993.

[24] Hervé J Touati, Hamid Savoj, and Robert K Brayton. Delay
optimization of combinational logic circuits by clustering and
partial collapsing. In Computer-Aided Design, 1991. ICCAD-91.
Digest of Technical Papers., 1991 IEEE International Conference on,
pages 188–191. IEEE, 1991.

[25] Bernhard Rohfleisch, Bernd Wurth, and Kurt Antreich. Logic
clause analysis for delay optimization. In Design Automation, 1995.
DAC’95. 32nd Conference on, pages 668–672. IEEE, 1995.

[26] L Entrena, E Olı́as, J Uceda, and J Espejo. Timing optimization
by an improved redundancy addition and removal technique. In
Proceedings of the conference on European design automation, pages
342–347. IEEE Computer Society Press, 1996.

[27] Chen-Liang Fang and Wen-Ben Jone. Timing optimization by gate
resizing and critical path identification. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 14(2):201–217,
1995.

[28] Aiguo Lu, Hans Eisenmann, Guenter Stenz, and Frank M Jo-
hannes. Combining technology mapping with post-placement
resynthesis for performance optimization. In Computer Design:
VLSI in Computers and Processors, 1998. ICCD’98. Proceedings.
International Conference on, pages 616–621. IEEE, 1998.

[29] H-F Jyu and Sharad Malik. Statistical timing optimization of com-
binational logic circuits. In Computer Design: VLSI in Computers
and Processors, 1993. ICCD’93. Proceedings., 1993 IEEE International
Conference on, pages 77–80. IEEE, 1993.

[30] Peichen Pan. Performance-driven integration of retiming and
resynthesis. In Proceedings of the 36th annual ACM/IEEE Design
Automation Conference, pages 243–246. ACM, 1999.

[31] Juyeon Kim, Deokjin Joo, and Taewhan Kim. An optimal al-
gorithm of adjustable delay buffer insertion for solving clock
skew variation problem. In Proceedings of the 50th Annual Design
Automation Conference, page 90. ACM, 2013.

[32] Kuan-Yu Lin, Hong-Ting Lin, and Tsung-Yi Ho. An efficient
algorithm of adjustable delay buffer insertion for clock skew
minimization in multiple dynamic supply voltage designs. In
Proceedings of the 16th Asia and South Pacific Design Automation
Conference, pages 825–830. IEEE Press, 2011.

[33] Jinjun Xiong and Lei He. Fast buffer insertion considering process
variations. In Proceedings of the 2006 international symposium on
Physical design, pages 128–135. ACM, 2006.

[34] L. Wan and D. Chen. Dynatune: Circuit-level optimization
for timing speculation considering dynamic path behavior. In
Computer-Aided Design - Digest of Technical Papers, 2009. ICCAD
2009. IEEE/ACM International Conference on, pages 172–179, Nov
2009.

[35] Ryan Fung, Vaughn Betz, and William Chow. Simultaneous short-
path and long-path timing optimization for fpgas. In Proceedings
of the 2004 IEEE/ACM International conference on Computer-aided
design, pages 838–845. IEEE Computer Society, 2004.

[36] Rong Ye, Feng Yuan, Jie Zhang, and Qiang Xu. On the premises
and prospects of timing speculation. In Proceedings of the 2015

Design, Automation & Test in Europe Conference & Exhibition, DATE
’15, pages 605–608, San Jose, CA, USA, 2015. EDA Consortium.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1412v2 | CC-BY 4.0 Open Access | rec: 1 Jun 2016, publ: 1 Jun 2016

