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ABSTRACT 
Several change metrics and source code metrics have been 

introduced and proved to be effective in bug prediction. 

Researchers performed comparative studies of bug prediction 

models built using the individual metrics as well as combination 

of these metrics. In this paper, we investigate the impact of feature 

selection in bug prediction models by analyzing the 

misclassification rates of these models with and without feature 

selection in place. We conduct our experiments on five open 

source projects by considering numerous change metrics and 

source code metrics. And this study aims to figure out the reliable 

subset of metrics that are common amongst all projects. 

Categories and Subject Descriptors 

D.2.7 [Software Engineering]: Distribution, Maintenance, and 

Enhancement- Version Control. D.2.8 [Software Engineering]: 

Metrics - Performance Measures, Process Metrics, Product  

General Terms 

Management, Measurement, Reliability 

Keywords 

Feature selection, Bug prediction, Software Quality 

1. INTRODUCTION 
Bug prediction models have become a popular method to enhance 

quality by identifying and fixing buggy files prior to release. 

Several source code metrics and change metrics have been 

introduced as predictors of bugs by researchers and they 

investigated the efficacy of these metrics by building prediction 

models. The bug prediction models can be built using 

classification algorithms like J4.5, Naïve Bayes Classifier etc. or 

regression techniques. There are several research papers in which 

classification algorithms have been explored by researchers to 

build bug prediction models by using features from source code 

metrics or change metrics or combination of these metrics [1] [3] 

[4].                                                                                                                                                                                                                                                                                                              

However, bug prediction models have been built by considering 

all metrics under the study as features. There has been limited 

study in the direction of figuring out whether a subset of these 

metrics might improve the performance of prediction models as 

compared to model with all features. 

In this paper, we investigate whether subset of the predictors 

improve performance of the prediction model or not by 

implementing prominent feature selection algorithms. If so, we 

ask whether the predictors in the subset are consistent across 

projects. There are comparative studies in literature that show that 

change metrics are better than source code metrics [5]. We 

consider combination of change metrics (50) and source code 

metrics(17) to check if the best feature subset has metrics only 

from change metrics or not. 

 

This paper is organized as follows. We explain the related work 

and motivation in Section 2, various source code and change 

metrics that have been considered as features in this study are 

discussed in Section 3. We describe feature selection algorithm in 

Section 4 and discuss results, findings in Section 5. 

2. RELATED WORK 
Moser et al. considered 18 change metrics and built cost-sensitive 

classification models for three releases of the Eclipse. The results 

are very promising and clearly outperform predictors based on 

static code attributes for the Eclipse project [5].  

Moser et al. in an another work analyzed the reliability of a subset 

of the above mentioned 18 change metrics for bug prediction and 

they showed that 3 out of 18 change metrics contain most 

information about software defects across three releases of Eclipse 

project [6]. They also show that prediction accuracy is not too 

much affected by using a subset of 3 metrics. It is worthwhile to 

note that their work is not towards identifying common predictors 

across projects but to find common predictors across different 

versions of the same project.  

Krishnan et al. find that change metrics are consistently good and 

incrementally better predictors across the evolving products in 

Eclipse and according to them there is also some consistency 

regarding which change metrics are the best predictors [7].  At the 

same time Menzies et al argues that static code attributes or 

source code metrics also have significant role in prediction of 

faults and identify the best predictors among source code metrics 

[3]. Hence, we consider change and source code metrics to know 

their influence in faults through feature selection methods.  

Most of the researchers in this field put efforts to predict whether 

a source file or binary is bug prone or not. But Shivaji et al. find 

that whether a change request is bug prone or not based on history 

of change requests [8]. They consider distinct lexims in the 

churned source code, which are quite huge in number, as features 

and extract them from churned source code by bag-of-words 

approach (BOW) [11]. They also consider other features from 

change metadata, source code complexity metrics. They applied 

feature selection algorithm on all these features to build bug 

prediction model for change requests and show that feature 

selection makes a huge improvement in prediction accuracy.  

Though feature selection is extensively used in gene selection 

from microarray data and text categorization problems, it is not 

thoroughly explored in bug prediction research.  

Some of the following works in other fields inspire us to explore 

the feature selection methods closely. In bio informatics, Huiqing 

Liu et al show that feature selection improves the classification 

accuracy significantly in their comparative study on feature 

selection and classification methods [10].  
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3. METRICS 
In our study, we have conducted experiments on metrics set 

consisting of prominent source code metrics and change metrics. 

And the following sections describe all these metrics. 

3.1 Source Code Metrics 
CK Metrics [13] and object oriented metrics have been considered 

under source code metrics category and the following table 

describes details about these metrics.  

Table 1: Source Code Metrics 

CK Metrics 

WMC Weighted Method Count 

DIT Depth of Inheritance Tree 

RFC Response For Class 

NOC Number Of Children 

CBO Coupling Between Objects 

LCOM Lack of Cohesion in Methods 

OO Metrics 

Fan-In Number of other classes that reference the class 

Fan-Out Number of other classes referenced by the class 

NOA Number of attributes 

NOPA Number of public attributes 

NOPRA Number of private attributes 

NOAI Number of attributes inherited 

LOC Number of lines of code 

NOM Number of methods 

NOPM Number of public methods 

NOPRM Number of private methods 

NOMI Number of methods inherited 

 

3.2 Change Metrics 
We have used some of the change metrics that are used by Moser 

et al. for our experiments [5] [15] [16] [17]. All these metrics are 

described in Table 2. 

3.3 Entropy of Changes 
Hassan introduces metrics that capture the complexity of code 

changes and shows that these metrics are better predictors than 

other well-known predictors like prior modifications and prior 

faults [12]. He proposes four variants of this metric and Ambrose 

et al. define three more variant of the metric [2]. Ambrose et al. 

perform experiments with these metrics on the same projects as 

what we have considered and show that the variant, Weighted 

History of Complexity Metric (WHCM), is better predictor than 

others. We have used this metric for our experimentation   

 

Table 3: Entropy Metrics 

Metric Name Definition 

WHCM Weighted History of Complexity 

Metric 

 

We are not providing the complete description of this metric here 

as it might distract reader’s focus from the current topic and refer 

reader to the original papers by Hasan et al. and Ambrose et al. for 

better understanding of these metrics [12] [2] . And this comment 

holds good for metrics that will be discussed in next sections i.e., 

3.3 and 3.4. 

Table 2: Change Metrics 

Metric Name Definition 

REVISIONS  Number of revisions of a file 

REFACTORINGS Number of times a file has been 

refactored 

BUGFIXES  

 

Number of times a file was involved in 

bug-fixing2 

AUTHORS  

 

Number of distinct authors that checked 

a file into the repository 

LOC_ADDED Sum over all revisions of the lines of 

code added to a file 

MAX_ 

LOC_ADDED 

Maximum number of lines of code added 

for all revisions 

AVE_ 

LOC_ADDED 

Average lines of code added per revision 

LOC_DELETED Sum over all revisions of the lines of 

code deleted from a file 

MAX_ 

LOC_DELETED 

Maximum number of lines of code 

deleted for all revisions 

AVE_ 

LOC_DELETED 

Average lines of code deleted per 

revision 

CODECHURN Sum of (added lines of code – deleted 

lines of code) over all revisions 

MAX_ 

CODECHURN 

Maximum CODECHURN for all 

revisions 

AVE_ 

CODECHURN 

Average CODECHURN per revision 

AGE Age of a file in weeks (counting 

backwards from a specific release) 

 

 

 

WEIGHTED_AGE  

  

 

Age(i) is the number of weeks starting 

from the release date for revision i and 

LOC_ADDED(i) is the number of 

lines of code added at revision i. 

 

3.4 Churn of Source Code Metrics 
Using churn of source code metrics to predict post release defects 

is novel. The intuition is that higher-level metrics may better 

model code churn than simple metrics like addition and deletion 

of lines of code. The churn of source code metrics is defined for 

all CK and OO metrics in Table 2.  

Ambrose et al. define five variants of this metrics and performed 

experiments with these metrics on the same projects as what we 

have considered and showed that WCHU is better predictor than 

others. We have used this metric for our experimentation. It is to 

be noted that there will be 17 metrics under this category. 
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Table 4: Churn Metrics 

Metric Name Definition 

WCHU_m  

for each metric, m, 

in Table 1 

Weighted Churn of Source Code 

Metric of metrics m (say CBO).  

 

3.5 Entropy of Source Code Metrics 
Ambrose et al. extended the concept of code change entropy [10] 

to the source code metrics listed in Table 1 with the aim of 

measuring the complexity of the variants of a metric over 

subsequent sample versions.  

They define five variants of this metrics and performed 

experiments with these metrics on the same projects as what we 

have considered and showed that LDHH is better predictor than 

others. We have used this metric for our experimentation.  It is to 

be noted that there will be 17 metrics under this category. 

 

                         Table 5: Source Code Entropy Metrics 

Metric Name Definition 

LDHH_m  

for each metric, m, 

in Table 1 

Linearly Decayed Entropy of Source 

Code Metrics, m.  

 

4. FEATURE SELECTION 
We have considered 67 metrics, as discussed in previous section,   

to know whether prediction accuracy of bug prediction models 

can be improvised by reducing or eliminating some of these 

metrics. 

There are several techniques to find the subset of features that can 

optimize performance of prediction model. They include filter 

method for example correlation based selection or wrapper 

method i.e., forward selection or backward elimination using any 

kind of classification algorithm. We adopt the second approach 

and implement Restricted Forward Selection Greedy Algorithm 

[9] and the algorithm is discussed below. 

Restricted Forward Selection Algorithm 

Split the data randomly into three partitions and considers two 

partitions as outer train set and remaining partition as outer test 

set. And 70% of outer train set is taken as inner train set and 

remaining 30% as inner test set or cross validation set.  

Let    be the set of all metrics that 

are under consideration for bug prediction problem and  ={Ø}be 

the set containing features selected after every step. 

1. Initially consider each metric one at a time and build prediction 

models with the metric over inner train set and calculate its 

prediction accuracy on inner test set. Thus we have  values, 

prediction accuracies of m models, corresponding to each 

attribute. Select attribute and model with the best prediction 

accuracy out of these  attributes and models, subtract it from  

and add it to  by storing the corresponding prediction accuracy. 

2.  Couple the set  with each attribute in  and calculate 

prediction accuracies of respective models and do this by 

selecting one attribute at a time for all attributes in .  

3. Find the attribute and model that gives out the best prediction 

accuracy and add it to  by subtracting it from . 

4. Repeat Steps 2 and 3 till  and   

5. Select the model with best prediction accuracy out of all models 

and the corresponding subset. 

6. Find out the prediction accuracy of the model using optimal 

subset over the outer test set.  

Now we will discuss the measure that is to be used as prediction 

accuracy in the above algorithm. The prominent information 

retrieval measures – Recall and Precision - are described in Table 

6 and any one of them can be used as a measure for prediction 

accuracy of the model. We have used recall as prediction 

accuracy as it is considered to be more valuable than precision for 

bug prediction problem by researchers in this area. We describe 

some of these reasons below. 

There are two types of misclassifications for any binary 

classification learning problem like bug prediction. 

Positive Misclassification - Actual buggy file predicted as non-

buggy file  

Negative Misclassification - Non buggy file predicted as buggy 

file 

The cost associated to fix a post-release bug that is not caught 

during bug prediction is much more than the cost of performing 

quality assurance activities like code review or unit testing on a 

file which is predicted to be buggy but not really buggy. Hence 

positive misclassification is considered to be much more severe 

than negative misclassification and lesser the number of positive 

misclassifications larger the recall value. Finally we have to find 

the best subset of features that can minimize misclassification 

costs or equivalently maximize recall.  

      Table 6: Confusion Matrix 

 

 

 

 

 

 

 

 

 

 

 

        

  

5. EXPERIMENT AND RESULTS 
We have conducted all our experiments on five open source 

projects namely Eclipse JDT, Eclipse PDE, Lucene, Mylyn, 

Equinox and data pertaining to metrics and post release bugs of 

these projects is publicly made available by Ambrose et al. [2]. 

The details about number of classes, number of defects etc. of five 

projects are shown in Table 7. 
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Table 7: Projects 

Projects Pred 

Rel 
#classes #post  release 

defects 
Eclipse JDT Core 3.4 997 463 

Eclipse PDE UI 3.4.1 1562 401 

Apache Lucene 2.4.0 691 103 

Mylyn 3.1 2196 677 

Equinox framework 3.4 439 279 

 

The source code metrics and change metrics that are considered 

for this study are discussed in Section 3 and the data of these 

metrics are obtained from the above mentioned repositories for 

our experiments. 

 

We will find optimal feature subset by implementing the 

Restricted Forward Selection Greedy Algorithm that is described 

in section 3.  

 

The prediction models with optimal features as well as all features 

are built with training data for each project and their performance 

is evaluated by implementing these models on testing data. The 

Recall and Precision of these models are shown in Table 8.  With 

feature selection in place, there is surge in recall value for all 

projects with an average increase of 12.26% and maximum 

increase of 21.21%. 

 

The higher recall is being achieved with a little hit on precision 

but this is accepted for bug prediction problem as Menzies et al. 

say that, for software engineering data sets with large neg/pos 

ratios, it is often required to lower precision to achieve higher 

recall [14].  

 

Table 8 : Recall and Precision 

 

 

Projects 

 

Before Feature 

selection 

 

After Feature 

selection 

R P R P 

Equinox 0.7575 0.5952 0.9696 0.4444 

Lucene 0.0833 0.6666 0.2083 0.5000 

Mylyn 0.0348 0.4285 0.0930 0.5333 

PDE 0.1538 0.7058 0.2051 0.4102 

JDT 0.3055 0.6111 0.4722 0.5964 

 

The metrics that are selected in optimal feature subset for each 

project is shown in the Table 9. There is no metric that is present 

in optimal feature subsets of all projects. And hence, this work 

makes a step forward to the generic hypothesis that there may not 

be common predictors across projects.  

 

There have been research studies that establish change metrics are 

better predictors than source code metrics [5] [16]. But it is 

interesting to note that the optimal feature subset of Equinox 

project contains only source code metrics and for the remaining 

four projects the optimal feature set contain change metrics as 

well as source code metrics. And this observation indicates that 

source code metrics should not be considered as inferior 

predictors as compared to change code metrics. 

 

 

Table 9: Metrics in optimal feature subset 

Projects Features  

Equinox 1. numberOfAttributes 

Lucene 1. linesRemovedUntil 

2. numberOfAttributes 

 

 

 

Mylyn 

1. avgLinesRemovedUntil 

2. codeChurnUntil 

3. WCHU_numberOfLinesOfCode  

4. LDHH_numberOfPublicMethods  

5. LDHH_numberOfPublicAttributes  

6. LDHH_numberOfPrivateAttributes 

7. CvsWEntropy  

8. avgCodeChurnUntil 

9. rfc 

10. numberOfMethodsInherited 

 

 

 

PDE 

1. WCHU_rfc 

2. LDHH_numberOfLinesOfCode  

3. LDHH _fanIn,  

4. numberOfFixesUntil 

5. LDHH_wmc  

6. weightedAgeWithRespectTo  

7. maxLinesRemovedUntil 

8. avgLinesAddedUntil 

 

JDT 

1. WCHU_noc 

2. LDHH_numberOfAttributesInherited 

3. LDHH_numberOfPrivateAttributes 

4. avgCodeChurnUntil 

6. CONCLUSION 
This paper has emphasized the significance of feature selection in 

bug prediction by showing considerable improvement in 

prediction accuracies. The experiments conducted on five open 

source projects reveal that there is an average increase of 12.26% 

with maximum increase of 21.21% in prediction accuracies after 

applying Restricted Forward Selection Greedy Algorithm for 

feature selection. We also confirm that these is no common 

predictor across five projects  and this point takes a step closer to 

general hypothesis that there may not be any common predictors 

across projects. The optimal feature subset for one project contain 

only source code metrics and for all other projects it is mix of 

source code and change metrics which indicate that source code 

metrics are equally capable as change metrics in predicting bugs. 
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