Impact of Restricted Forward Greedy Feature Selection

Technique on Bug Prediction

K Muthukumaran, N L Bhanu Murthy

BITS Pilani Hyderabad Campus
Shameerpet, RR District, AP 500078

{p2011415, bhanu }@hyderabad.bits-pilani.ac.in

ABSTRACT

Several change metrics and source code metrics have been
introduced and proved to be effective in bug prediction.
Researchers performed comparative studies of bug prediction
models built using the individual metrics as well as combination
of these metrics. In this paper, we investigate the impact of feature
selection in bug prediction models by analyzing the
misclassification rates of these models with and without feature
selection in place. We conduct our experiments on five open
source projects by considering numerous change metrics and
source code metrics. And this study aims to figure out the reliable
subset of metrics that are common amongst all projects.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement- Version Control. D.2.8 [Software Engineering]:
Metrics - Performance Measures, Process Metrics, Product

General Terms
Management, Measurement, Reliability

Keywords

Feature selection, Bug prediction, Software Quality

1. INTRODUCTION

Bug prediction models have become a popular method to enhance
quality by identifying and fixing buggy files prior to release.
Several source code metrics and change metrics have been
introduced as predictors of bugs by researchers and they
investigated the efficacy of these metrics by building prediction
models. The bug prediction models can be built using
classification algorithms like J4.5, Naive Bayes Classifier etc. or
regression techniques. There are several research papers in which
classification algorithms have been explored by researchers to
build bug prediction models by using features from source code
metrics or change metrics or combination of these metrics [1] [3]
[4].

However, bug prediction models have been built by considering
all metrics under the study as features. There has been limited
study in the direction of figuring out whether a subset of these
metrics might improve the performance of prediction models as
compared to model with all features.

In this paper, we investigate whether subset of the predictors
improve performance of the prediction model or not by
implementing prominent feature selection algorithms. If so, we
ask whether the predictors in the subset are consistent across
projects. There are comparative studies in literature that show that
change metrics are better than source code metrics [5]. We
consider combination of change metrics (50) and source code
metrics(17) to check if the best feature subset has metrics only
from change metrics or not.

This paper is organized as follows. We explain the related work
and motivation in Section 2, various source code and change
metrics that have been considered as features in this study are
discussed in Section 3. We describe feature selection algorithm in
Section 4 and discuss results, findings in Section 5.

2. RELATED WORK

Moser et al. considered 18 change metrics and built cost-sensitive
classification models for three releases of the Eclipse. The results
are very promising and clearly outperform predictors based on
static code attributes for the Eclipse project [5].

Moser et al. in an another work analyzed the reliability of a subset
of the above mentioned 18 change metrics for bug prediction and
they showed that 3 out of 18 change metrics contain most
information about software defects across three releases of Eclipse
project [6]. They also show that prediction accuracy is not too
much affected by using a subset of 3 metrics. It is worthwhile to
note that their work is not towards identifying common predictors
across projects but to find common predictors across different
versions of the same project.

Krishnan et al. find that change metrics are consistently good and
incrementally better predictors across the evolving products in
Eclipse and according to them there is also some consistency
regarding which change metrics are the best predictors [7]. At the
same time Menzies et al argues that static code attributes or
source code metrics also have significant role in prediction of
faults and identify the best predictors among source code metrics
[3]. Hence, we consider change and source code metrics to know
their influence in faults through feature selection methods.

Most of the researchers in this field put efforts to predict whether
a source file or binary is bug prone or not. But Shivaji et al. find
that whether a change request is bug prone or not based on history
of change requests [8]. They consider distinct lexims in the
churned source code, which are quite huge in number, as features
and extract them from churned source code by bag-of-words
approach (BOW) [11]. They also consider other features from
change metadata, source code complexity metrics. They applied
feature selection algorithm on all these features to build bug
prediction model for change requests and show that feature
selection makes a huge improvement in prediction accuracy.

Though feature selection is extensively used in gene selection
from microarray data and text categorization problems, it is not
thoroughly explored in bug prediction research.

Some of the following works in other fields inspire us to explore
the feature selection methods closely. In bio informatics, Huiging
Liu et al show that feature selection improves the classification
accuracy significantly in their comparative study on feature
selection and classification methods [10].

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1411v1 | CC-BY 4.0 Open Access | rec: 1 Oct 2015, publ: 1 Oct 2015

3. METRICS

In our study, we have conducted experiments on metrics set
consisting of prominent source code metrics and change metrics.
And the following sections describe all these metrics.

3.1 Source Code Metrics

CK Metrics [13] and object oriented metrics have been considered
under source code metrics category and the following table
describes details about these metrics.

Table 1: Source Code Metrics

CK Metrics

WMC Weighted Method Count

DIT Depth of Inheritance Tree

RFC Response For Class

NOC Number Of Children

CBO Coupling Between Objects

LCOM Lack of Cohesion in Methods

OO Metrics

Fan-In Number of other classes that reference the class
Fan-Out | Number of other classes referenced by the class
NOA Number of attributes

NOPA Number of public attributes

NOPRA | Number of private attributes

NOAI Number of attributes inherited

LOC Number of lines of code

NOM Number of methods

NOPM Number of public methods

NOPRM
NOMI Number of methods inherited

Number of private methods

3.2 Change Metrics

We have used some of the change metrics that are used by Moser
et al. for our experiments [5] [15] [16] [17]. All these metrics are
described in Table 2.

3.3 Entropy of Changes

Hassan introduces metrics that capture the complexity of code
changes and shows that these metrics are better predictors than
other well-known predictors like prior modifications and prior
faults [12]. He proposes four variants of this metric and Ambrose
et al. define three more variant of the metric [2]. Ambrose et al.
perform experiments with these metrics on the same projects as
what we have considered and show that the variant, Weighted
History of Complexity Metric (WHCM), is better predictor than
others. We have used this metric for our experimentation

Table 3: Entropy Metrics

Metric Name Definition

WHCM Weighted History of Complexity

Metric

We are not providing the complete description of this metric here
as it might distract reader’s focus from the current topic and refer
reader to the original papers by Hasan et al. and Ambrose et al. for
better understanding of these metrics [12] [2] . And this comment
holds good for metrics that will be discussed in next sections i.e.,
3.3and 3.4.

Table 2: Change Metrics

Metric Name Definition

REVISIONS Number of revisions of a file

REFACTORINGS Number of times a file has been
refactored

BUGFIXES Number of times a file was involved in
bug-fixing2

AUTHORS Number of distinct authors that checked
a file into the repository

LOC_ADDED Sum over all revisions of the lines of
code added to a file

MAX_ Maximum number of lines of code added

LOC_ADDED for all revisions

AVE_ Average lines of code added per revision

LOC_ADDED

LOC_DELETED Sum over all revisions of the lines of

code deleted from a file

MAX_ Maximum number of lines of code

LOC_DELETED deleted for all revisions

AVE_ Average lines of code deleted per

LOC_DELETED revision

CODECHURN Sum of (added lines of code — deleted
lines of code) over all revisions

MAX_ Maximum CODECHURN for all

CODECHURN revisions

AVE_ Average CODECHURN per revision

CODECHURN

AGE Age of a file in weeks (counting

backwards from a specific release)

Age(i) is the number of weeks starting
from the release date for revision i and
LOC_ADDED(i) is the number of

lines of code added at revision i.

WEIGHTED_AGE

3.4 Churn of Source Code Metrics

Using churn of source code metrics to predict post release defects
is novel. The intuition is that higher-level metrics may better
model code churn than simple metrics like addition and deletion
of lines of code. The churn of source code metrics is defined for
all CK and OO metrics in Table 2.

Ambrose et al. define five variants of this metrics and performed
experiments with these metrics on the same projects as what we
have considered and showed that WCHU is better predictor than
others. We have used this metric for our experimentation. It is to
be noted that there will be 17 metrics under this category.

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1411v1 | CC-BY 4.0 Open Access | rec: 1 Oct 2015, publ: 1 Oct 2015

Table 4: Churn Metrics

Metric Name Definition
WCHU_m Weighted Churn of Source Code
for each metric, m. Metric of metrics m (say CBO).
in Table 1

3.5 Entropy of Source Code Metrics

Ambrose et al. extended the concept of code change entropy [10]
to the source code metrics listed in Table 1 with the aim of
measuring the complexity of the variants of a metric over
subsequent sample versions.

They define five variants of this metrics and performed
experiments with these metrics on the same projects as what we
have considered and showed that LDHH is better predictor than
others. We have used this metric for our experimentation. It is to
be noted that there will be 17 metrics under this category.

Table 5: Source Code Entropy Metrics

Metric Name Definition
LDHH_m Linearly Decayed Entropy of Source
for each metric, m, | C0de Metrics, m.
in Table 1

4. FEATURE SELECTION

We have considered 67 metrics, as discussed in previous section,
to know whether prediction accuracy of bug prediction models
can be improvised by reducing or eliminating some of these
metrics.

There are several techniques to find the subset of features that can
optimize performance of prediction model. They include filter
method for example correlation based selection or wrapper
method i.e., forward selection or backward elimination using any
kind of classification algorithm. We adopt the second approach
and implement Restricted Forward Selection Greedy Algorithm
[9] and the algorithm is discussed below.

Restricted Forward Selection Algorithm

Split the data randomly into three partitions and considers two
partitions as outer train set and remaining partition as outer test
set. And 70% of outer train set is taken as inner train set and
remaining 30% as inner test set or cross validation set.

Let X =12 .%: . ..%. ...5, } be the set of all metrics that
are under consideration for bug prediction problem and F ={@}be
the set containing features selected after every step.

1. Initially consider each metric one at a time and build prediction
models with the metric over inner train set and calculate its
prediction accuracy on inner test set. Thus we have #z values,
prediction accuracies of m models, corresponding to each
attribute. Select attribute and model with the best prediction
accuracy out of these #+ attributes and models, subtract it from X
and add it to F by storing the corresponding prediction accuracy.

2. Couple the set F with each attribute in X and calculate
prediction accuracies of respective models and do this by
selecting one attribute at a time for all attributes in .

3. Find the attribute and model that gives out the best prediction
accuracy and add it to F by subtracting it from .

4. Repeat Steps 2 and 3 till X = {&} and |F| = #z

5. Select the model with best prediction accuracy out of all models
and the corresponding subset.

6. Find out the prediction accuracy of the model using optimal
subset over the outer test set.

Now we will discuss the measure that is to be used as prediction
accuracy in the above algorithm. The prominent information
retrieval measures — Recall and Precision - are described in Table
6 and any one of them can be used as a measure for prediction
accuracy of the model. We have used recall as prediction
accuracy as it is considered to be more valuable than precision for
bug prediction problem by researchers in this area. We describe
some of these reasons below.

There are two types of misclassifications for any binary
classification learning problem like bug prediction.

Positive Misclassification - Actual buggy file predicted as non-
buggy file

Negative Misclassification - Non buggy file predicted as buggy
file

The cost associated to fix a post-release bug that is not caught
during bug prediction is much more than the cost of performing
quality assurance activities like code review or unit testing on a
file which is predicted to be buggy but not really buggy. Hence
positive misclassification is considered to be much more severe
than negative misclassification and lesser the number of positive
misclassifications larger the recall value. Finally we have to find
the best subset of features that can minimize misclassification
costs or equivalently maximize recall.

Table 6: Confusion Matrix

Observed Output
Confusion Positive Negative
Matrix
o | True False
= 2 | Positive Positive
5 g | (TP) (FP)
@) o
e)
2 o False True
§ = Negative Negative
S 2 | (FN) (TN)
2
- TF
Recall = TP+ Fl
TF

5. EXPERIMENT AND RESULTS

We have conducted all our experiments on five open source
projects namely Eclipse JDT, Eclipse PDE, Lucene, Mylyn,
Equinox and data pertaining to metrics and post release bugs of
these projects is publicly made available by Ambrose et al. [2].
The details about number of classes, number of defects etc. of five
projects are shown in Table 7.

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1411v1 | CC-BY 4.0 Open Access | rec: 1 Oct 2015, publ: 1 Oct 2015

Table 7: Projects

Projects Pred | #classes | #post release
Rel defects

Eclipse JDT Core 34 997 463

Eclipse PDE Ul 3.4.1 | 1562 401

Apache Lucene 2.4.0 | 691 103

Mylyn 3.1 2196 677

Equinox framework | 3.4 439 279

The source code metrics and change metrics that are considered
for this study are discussed in Section 3 and the data of these
metrics are obtained from the above mentioned repositories for
our experiments.

We will find optimal feature subset by implementing the
Restricted Forward Selection Greedy Algorithm that is described
in section 3.

The prediction models with optimal features as well as all features
are built with training data for each project and their performance
is evaluated by implementing these models on testing data. The
Recall and Precision of these models are shown in Table 8. With
feature selection in place, there is surge in recall value for all
projects with an average increase of 12.26% and maximum
increase of 21.21%.

The higher recall is being achieved with a little hit on precision
but this is accepted for bug prediction problem as Menzies et al.
say that, for software engineering data sets with large neg/pos
ratios, it is often required to lower precision to achieve higher
recall [14].

Table 8 : Recall and Precision

Before Feature After Feature
Projects selection selection

R P R P
Equinox | 0.7575 0.5952 0.9696 0.4444
Lucene 0.0833 0.6666 0.2083 0.5000
Mylyn | 0.0348 | 0.4285 0.0930 0.5333
PDE 0.1538 0.7058 0.2051 0.4102
JDT 0.3055 0.6111 0.4722 0.5964

The metrics that are selected in optimal feature subset for each
project is shown in the Table 9. There is no metric that is present
in optimal feature subsets of all projects. And hence, this work
makes a step forward to the generic hypothesis that there may not
be common predictors across projects.

There have been research studies that establish change metrics are
better predictors than source code metrics [5] [16]. But it is
interesting to note that the optimal feature subset of Equinox
project contains only source code metrics and for the remaining
four projects the optimal feature set contain change metrics as
well as source code metrics. And this observation indicates that

source code metrics should not be considered as inferior
predictors as compared to change code metrics.

Table 9: Metrics in optimal feature subset
Features

. numberOfAttributes

Projects

Equinox

. linesRemovedUntil

. numberOfAttributes

. avgLinesRemovedUntil

. codeChurnUntil
WCHU_numberOfLinesOfCode

. LDHH_numberOfPublicMethods

. LDHH_numberOfPublicAttributes
LDHH_numberOfPrivateAttributes
. CvsWEntropy

. avgCodeChurnUntil

. rfc

10. numberOfMethodsInherited

. WCHU _rfc

. LDHH_numberOfLinesOfCode

. LDHH _fanin,

. numberOfFixesUntil

. LDHH_wmc

. weightedAgeWithRespectTo

. maxLinesRemovedUntil

. avgLinesAddedUntil

. WCHU_noc

. LDHH_numberOfAttributesInherited
. LDHH_numberOfPrivateAttributes
. avgCodeChurnUntil

Lucene

Mylyn

© W ~ND A WNRNR R

PDE

JDT

A OLODNMNPRPRPIONOODSWDNPRE

6. CONCLUSION

This paper has emphasized the significance of feature selection in
bug prediction by showing considerable improvement in
prediction accuracies. The experiments conducted on five open
source projects reveal that there is an average increase of 12.26%
with maximum increase of 21.21% in prediction accuracies after
applying Restricted Forward Selection Greedy Algorithm for
feature selection. We also confirm that these is no common
predictor across five projects and this point takes a step closer to
general hypothesis that there may not be any common predictors
across projects. The optimal feature subset for one project contain
only source code metrics and for all other projects it is mix of
source code and change metrics which indicate that source code
metrics are equally capable as change metrics in predicting bugs.

7. REFERENCES

[1] T. Zimmermann, R. Premraj, and A. Zeller, ‘“Predicting
Defects for Eclipse,” Third International Workshop on
Predictor Models in Software Engineering (PROMISE 07:
ICSE Workshops 2007), pp. 9-9, May 2007.

[2] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive
comparison of bug prediction approaches,” Mining software
Repositories (MSR), 2010.

[3] T. Menzies, J. Greenwald, and A. Frank, “Data mining static
code attributes to learn defect predictors,” Software
Engineering, /EEE ..., vol. 33, no. 1, pp. 2-13, Jan. 2007.

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1411v1 | CC-BY 4.0 Open Access | rec: 1 Oct 2015, publ: 1 Oct 2015

[4] E. Giger, M. D. Ambros, M. Pinzger, and H. C. Gall,
“Method-Level Bug Prediction,” Proceedings of the
ACMIEEE international symposium on Empirical software
engineering and measurement (2012), pp. 171-180, 2012.

[5] R. Moser, W. Pedrycz, and G. Succi, “A comparative
analysis of the efficiency of change metrics and static code
attributes for defect prediction,” Proceedings of the 13th
international conference on Software engineering ICSE 08,
no. April, pp. 181-190, 2008.

[6] R. Moser, W. Pedrycz, and G. Succi, “Analysis of the
Reliability of a Subset of Change Metrics for Defect
Prediction,” Proceedings of the Second ACMIEEE
international symposium on Empirical software engineering
and measurement ESEM 08, pp. 309-311, 2004.

[7] S. Krishnan, C. Strasburg, R. R. Lutz, and K. GoSeva-
Popstojanova, “Are change metrics good predictors for an
evolving software product line?,” in Proceedings of the 7th
International Conference on Predictive Models in Software
Engineering, 2011, pp. 7:1-7:10.

[8] S. Shivaji, E. J. Whitehead, and R. Akella, “Reducing
Features to Improve Code Change-Based Bug Prediction,”
IEEE Transactions on Software Engineering, vol. 39, no. 4,
pp. 552-569, Apr. 2013.

[9] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant Features
and the Subset Selection Problem,” in Pattern Recognition,
1994, vol. 129, no. 8, pp. 121-129.

[10] H. Liu, J. Li, and L. Wong, “A comparative study on feature
selection and classification methods using gene expression
profiles and proteomic patterns.” Genome informatics.

International Conference on Genome Informatics, vol. 13,
no. 0919-9454 LA - eng PT - Journal Article RN - 0
(Proteome) SB - IM, pp. 51-60, Jan. 2002.

[11] S. Scott and S. Matwin, “Feature Engineering for Text
Classification,” Representations, vol. 6, no. April, pp. 379—
388, 1999.

[12] A. E. Hassan, “Predicting faults using the complexity of code
changes,” 2009 IEEE 31st International Conference on
Software Engineering, no. 2009, pp. 78-88, 2009.

[13] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476493, Jun. 1994,

[14] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald,
“Problems with Precision: A Response to ‘Comments on
“Data Mining Static Code Attributes to Learn Defect
Predictors,””” IEEE Transactions on Software Engineering,
vol. 33, pp. 637-640, 2007.

[15] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,
“Predicting Fault Incidence Using Software Change
History,” IEEE Transactions on Software Engineering, vol.
26, no. 7, pp. 653-661, 2000.

[16] N. Nagappan and T. Ball, “Use of relative code churn
measures to predict system defect density,” Software
Engineering, 2005. ICSE 2005. ..., pp. 284-292, 2005.

[17] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the
location and number of faults in large software systems,”
IEEE Transactions on Software Engineering, vol. 31, no. 4,
pp.340-355,2005.

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1411v1 | CC-BY 4.0 Open Access | rec: 1 Oct 2015, publ: 1 Oct 2015

