
Impact of Restricted Forward Greedy Feature Selection
Technique on Bug Prediction

K Muthukumaran, N L Bhanu Murthy

BITS Pilani Hyderabad Campus
Shameerpet, RR District, AP 500078

{p2011415, bhanu }@hyderabad.bits-pilani.ac.in

ABSTRACT
Several change metrics and source code metrics have been

introduced and proved to be effective in bug prediction.

Researchers performed comparative studies of bug prediction

models built using the individual metrics as well as combination

of these metrics. In this paper, we investigate the impact of feature

selection in bug prediction models by analyzing the

misclassification rates of these models with and without feature

selection in place. We conduct our experiments on five open

source projects by considering numerous change metrics and

source code metrics. And this study aims to figure out the reliable

subset of metrics that are common amongst all projects.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement- Version Control. D.2.8 [Software Engineering]:

Metrics - Performance Measures, Process Metrics, Product

General Terms

Management, Measurement, Reliability

Keywords

Feature selection, Bug prediction, Software Quality

1. INTRODUCTION
Bug prediction models have become a popular method to enhance

quality by identifying and fixing buggy files prior to release.

Several source code metrics and change metrics have been

introduced as predictors of bugs by researchers and they

investigated the efficacy of these metrics by building prediction

models. The bug prediction models can be built using

classification algorithms like J4.5, Naïve Bayes Classifier etc. or

regression techniques. There are several research papers in which

classification algorithms have been explored by researchers to

build bug prediction models by using features from source code

metrics or change metrics or combination of these metrics [1] [3]

[4].

However, bug prediction models have been built by considering

all metrics under the study as features. There has been limited

study in the direction of figuring out whether a subset of these

metrics might improve the performance of prediction models as

compared to model with all features.

In this paper, we investigate whether subset of the predictors

improve performance of the prediction model or not by

implementing prominent feature selection algorithms. If so, we

ask whether the predictors in the subset are consistent across

projects. There are comparative studies in literature that show that

change metrics are better than source code metrics [5]. We

consider combination of change metrics (50) and source code

metrics(17) to check if the best feature subset has metrics only

from change metrics or not.

This paper is organized as follows. We explain the related work

and motivation in Section 2, various source code and change

metrics that have been considered as features in this study are

discussed in Section 3. We describe feature selection algorithm in

Section 4 and discuss results, findings in Section 5.

2. RELATED WORK
Moser et al. considered 18 change metrics and built cost-sensitive

classification models for three releases of the Eclipse. The results

are very promising and clearly outperform predictors based on

static code attributes for the Eclipse project [5].

Moser et al. in an another work analyzed the reliability of a subset

of the above mentioned 18 change metrics for bug prediction and

they showed that 3 out of 18 change metrics contain most

information about software defects across three releases of Eclipse

project [6]. They also show that prediction accuracy is not too

much affected by using a subset of 3 metrics. It is worthwhile to

note that their work is not towards identifying common predictors

across projects but to find common predictors across different

versions of the same project.

Krishnan et al. find that change metrics are consistently good and

incrementally better predictors across the evolving products in

Eclipse and according to them there is also some consistency

regarding which change metrics are the best predictors [7]. At the

same time Menzies et al argues that static code attributes or

source code metrics also have significant role in prediction of

faults and identify the best predictors among source code metrics

[3]. Hence, we consider change and source code metrics to know

their influence in faults through feature selection methods.

Most of the researchers in this field put efforts to predict whether

a source file or binary is bug prone or not. But Shivaji et al. find

that whether a change request is bug prone or not based on history

of change requests [8]. They consider distinct lexims in the

churned source code, which are quite huge in number, as features

and extract them from churned source code by bag-of-words

approach (BOW) [11]. They also consider other features from

change metadata, source code complexity metrics. They applied

feature selection algorithm on all these features to build bug

prediction model for change requests and show that feature

selection makes a huge improvement in prediction accuracy.

Though feature selection is extensively used in gene selection

from microarray data and text categorization problems, it is not

thoroughly explored in bug prediction research.

Some of the following works in other fields inspire us to explore

the feature selection methods closely. In bio informatics, Huiqing

Liu et al show that feature selection improves the classification

accuracy significantly in their comparative study on feature

selection and classification methods [10].

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1411v1 | CC-BY 4.0 Open Access | rec: 1 Oct 2015, publ: 1 Oct 2015

3. METRICS
In our study, we have conducted experiments on metrics set

consisting of prominent source code metrics and change metrics.

And the following sections describe all these metrics.

3.1 Source Code Metrics
CK Metrics [13] and object oriented metrics have been considered

under source code metrics category and the following table

describes details about these metrics.

Table 1: Source Code Metrics

CK Metrics

WMC Weighted Method Count

DIT Depth of Inheritance Tree

RFC Response For Class

NOC Number Of Children

CBO Coupling Between Objects

LCOM Lack of Cohesion in Methods

OO Metrics

Fan-In Number of other classes that reference the class

Fan-Out Number of other classes referenced by the class

NOA Number of attributes

NOPA Number of public attributes

NOPRA Number of private attributes

NOAI Number of attributes inherited

LOC Number of lines of code

NOM Number of methods

NOPM Number of public methods

NOPRM Number of private methods

NOMI Number of methods inherited

3.2 Change Metrics
We have used some of the change metrics that are used by Moser

et al. for our experiments [5] [15] [16] [17]. All these metrics are

described in Table 2.

3.3 Entropy of Changes
Hassan introduces metrics that capture the complexity of code

changes and shows that these metrics are better predictors than

other well-known predictors like prior modifications and prior

faults [12]. He proposes four variants of this metric and Ambrose

et al. define three more variant of the metric [2]. Ambrose et al.

perform experiments with these metrics on the same projects as

what we have considered and show that the variant, Weighted

History of Complexity Metric (WHCM), is better predictor than

others. We have used this metric for our experimentation

Table 3: Entropy Metrics

Metric Name Definition

WHCM Weighted History of Complexity

Metric

We are not providing the complete description of this metric here

as it might distract reader’s focus from the current topic and refer

reader to the original papers by Hasan et al. and Ambrose et al. for

better understanding of these metrics [12] [2] . And this comment

holds good for metrics that will be discussed in next sections i.e.,

3.3 and 3.4.

Table 2: Change Metrics

Metric Name Definition

REVISIONS Number of revisions of a file

REFACTORINGS Number of times a file has been

refactored

BUGFIXES

Number of times a file was involved in

bug-fixing2

AUTHORS

Number of distinct authors that checked

a file into the repository

LOC_ADDED Sum over all revisions of the lines of

code added to a file

MAX_

LOC_ADDED

Maximum number of lines of code added

for all revisions

AVE_

LOC_ADDED

Average lines of code added per revision

LOC_DELETED Sum over all revisions of the lines of

code deleted from a file

MAX_

LOC_DELETED

Maximum number of lines of code

deleted for all revisions

AVE_

LOC_DELETED

Average lines of code deleted per

revision

CODECHURN Sum of (added lines of code – deleted

lines of code) over all revisions

MAX_

CODECHURN

Maximum CODECHURN for all

revisions

AVE_

CODECHURN

Average CODECHURN per revision

AGE Age of a file in weeks (counting

backwards from a specific release)

WEIGHTED_AGE

Age(i) is the number of weeks starting

from the release date for revision i and

LOC_ADDED(i) is the number of

lines of code added at revision i.

3.4 Churn of Source Code Metrics
Using churn of source code metrics to predict post release defects

is novel. The intuition is that higher-level metrics may better

model code churn than simple metrics like addition and deletion

of lines of code. The churn of source code metrics is defined for

all CK and OO metrics in Table 2.

Ambrose et al. define five variants of this metrics and performed

experiments with these metrics on the same projects as what we

have considered and showed that WCHU is better predictor than

others. We have used this metric for our experimentation. It is to

be noted that there will be 17 metrics under this category.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1411v1 | CC-BY 4.0 Open Access | rec: 1 Oct 2015, publ: 1 Oct 2015

Table 4: Churn Metrics

Metric Name Definition

WCHU_m

for each metric, m,

in Table 1

Weighted Churn of Source Code

Metric of metrics m (say CBO).

3.5 Entropy of Source Code Metrics
Ambrose et al. extended the concept of code change entropy [10]

to the source code metrics listed in Table 1 with the aim of

measuring the complexity of the variants of a metric over

subsequent sample versions.

They define five variants of this metrics and performed

experiments with these metrics on the same projects as what we

have considered and showed that LDHH is better predictor than

others. We have used this metric for our experimentation. It is to

be noted that there will be 17 metrics under this category.

 Table 5: Source Code Entropy Metrics

Metric Name Definition

LDHH_m

for each metric, m,

in Table 1

Linearly Decayed Entropy of Source

Code Metrics, m.

4. FEATURE SELECTION
We have considered 67 metrics, as discussed in previous section,

to know whether prediction accuracy of bug prediction models

can be improvised by reducing or eliminating some of these

metrics.

There are several techniques to find the subset of features that can

optimize performance of prediction model. They include filter

method for example correlation based selection or wrapper

method i.e., forward selection or backward elimination using any

kind of classification algorithm. We adopt the second approach

and implement Restricted Forward Selection Greedy Algorithm

[9] and the algorithm is discussed below.

Restricted Forward Selection Algorithm

Split the data randomly into three partitions and considers two

partitions as outer train set and remaining partition as outer test

set. And 70% of outer train set is taken as inner train set and

remaining 30% as inner test set or cross validation set.

Let be the set of all metrics that

are under consideration for bug prediction problem and ={Ø}be

the set containing features selected after every step.

1. Initially consider each metric one at a time and build prediction

models with the metric over inner train set and calculate its

prediction accuracy on inner test set. Thus we have values,

prediction accuracies of m models, corresponding to each

attribute. Select attribute and model with the best prediction

accuracy out of these attributes and models, subtract it from

and add it to by storing the corresponding prediction accuracy.

2. Couple the set with each attribute in and calculate

prediction accuracies of respective models and do this by

selecting one attribute at a time for all attributes in .

3. Find the attribute and model that gives out the best prediction

accuracy and add it to by subtracting it from .

4. Repeat Steps 2 and 3 till and

5. Select the model with best prediction accuracy out of all models

and the corresponding subset.

6. Find out the prediction accuracy of the model using optimal

subset over the outer test set.

Now we will discuss the measure that is to be used as prediction

accuracy in the above algorithm. The prominent information

retrieval measures – Recall and Precision - are described in Table

6 and any one of them can be used as a measure for prediction

accuracy of the model. We have used recall as prediction

accuracy as it is considered to be more valuable than precision for

bug prediction problem by researchers in this area. We describe

some of these reasons below.

There are two types of misclassifications for any binary

classification learning problem like bug prediction.

Positive Misclassification - Actual buggy file predicted as non-

buggy file

Negative Misclassification - Non buggy file predicted as buggy

file

The cost associated to fix a post-release bug that is not caught

during bug prediction is much more than the cost of performing

quality assurance activities like code review or unit testing on a

file which is predicted to be buggy but not really buggy. Hence

positive misclassification is considered to be much more severe

than negative misclassification and lesser the number of positive

misclassifications larger the recall value. Finally we have to find

the best subset of features that can minimize misclassification

costs or equivalently maximize recall.

 Table 6: Confusion Matrix

5. EXPERIMENT AND RESULTS
We have conducted all our experiments on five open source

projects namely Eclipse JDT, Eclipse PDE, Lucene, Mylyn,

Equinox and data pertaining to metrics and post release bugs of

these projects is publicly made available by Ambrose et al. [2].

The details about number of classes, number of defects etc. of five

projects are shown in Table 7.

Observed Output

Confusion

Matrix
Positive Negative

P
re

d
ic

te
d

 O
u

tp
u

t

P
o

si
ti

v
e True

Positive

(TP)

False

Positive

(FP)

N
eg

a
ti

v
e False

Negative

(FN)

True

Negative

(TN)

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1411v1 | CC-BY 4.0 Open Access | rec: 1 Oct 2015, publ: 1 Oct 2015

Table 7: Projects

Projects Pred

Rel
#classes #post release

defects
Eclipse JDT Core 3.4 997 463

Eclipse PDE UI 3.4.1 1562 401

Apache Lucene 2.4.0 691 103

Mylyn 3.1 2196 677

Equinox framework 3.4 439 279

The source code metrics and change metrics that are considered

for this study are discussed in Section 3 and the data of these

metrics are obtained from the above mentioned repositories for

our experiments.

We will find optimal feature subset by implementing the

Restricted Forward Selection Greedy Algorithm that is described

in section 3.

The prediction models with optimal features as well as all features

are built with training data for each project and their performance

is evaluated by implementing these models on testing data. The

Recall and Precision of these models are shown in Table 8. With

feature selection in place, there is surge in recall value for all

projects with an average increase of 12.26% and maximum

increase of 21.21%.

The higher recall is being achieved with a little hit on precision

but this is accepted for bug prediction problem as Menzies et al.

say that, for software engineering data sets with large neg/pos

ratios, it is often required to lower precision to achieve higher

recall [14].

Table 8 : Recall and Precision

Projects

Before Feature

selection

After Feature

selection

R P R P

Equinox 0.7575 0.5952 0.9696 0.4444

Lucene 0.0833 0.6666 0.2083 0.5000

Mylyn 0.0348 0.4285 0.0930 0.5333

PDE 0.1538 0.7058 0.2051 0.4102

JDT 0.3055 0.6111 0.4722 0.5964

The metrics that are selected in optimal feature subset for each

project is shown in the Table 9. There is no metric that is present

in optimal feature subsets of all projects. And hence, this work

makes a step forward to the generic hypothesis that there may not

be common predictors across projects.

There have been research studies that establish change metrics are

better predictors than source code metrics [5] [16]. But it is

interesting to note that the optimal feature subset of Equinox

project contains only source code metrics and for the remaining

four projects the optimal feature set contain change metrics as

well as source code metrics. And this observation indicates that

source code metrics should not be considered as inferior

predictors as compared to change code metrics.

Table 9: Metrics in optimal feature subset

Projects Features

Equinox 1. numberOfAttributes

Lucene 1. linesRemovedUntil

2. numberOfAttributes

Mylyn

1. avgLinesRemovedUntil

2. codeChurnUntil

3. WCHU_numberOfLinesOfCode

4. LDHH_numberOfPublicMethods

5. LDHH_numberOfPublicAttributes

6. LDHH_numberOfPrivateAttributes

7. CvsWEntropy

8. avgCodeChurnUntil

9. rfc

10. numberOfMethodsInherited

PDE

1. WCHU_rfc

2. LDHH_numberOfLinesOfCode

3. LDHH _fanIn,

4. numberOfFixesUntil

5. LDHH_wmc

6. weightedAgeWithRespectTo

7. maxLinesRemovedUntil

8. avgLinesAddedUntil

JDT

1. WCHU_noc

2. LDHH_numberOfAttributesInherited

3. LDHH_numberOfPrivateAttributes

4. avgCodeChurnUntil

6. CONCLUSION
This paper has emphasized the significance of feature selection in

bug prediction by showing considerable improvement in

prediction accuracies. The experiments conducted on five open

source projects reveal that there is an average increase of 12.26%

with maximum increase of 21.21% in prediction accuracies after

applying Restricted Forward Selection Greedy Algorithm for

feature selection. We also confirm that these is no common

predictor across five projects and this point takes a step closer to

general hypothesis that there may not be any common predictors

across projects. The optimal feature subset for one project contain

only source code metrics and for all other projects it is mix of

source code and change metrics which indicate that source code

metrics are equally capable as change metrics in predicting bugs.

7. REFERENCES
[1] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting

Defects for Eclipse,” Third International Workshop on

Predictor Models in Software Engineering (PROMISE’07:

ICSE Workshops 2007), pp. 9–9, May 2007.

[2] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive

comparison of bug prediction approaches,” Mining software

Repositories (MSR), 2010.

[3] T. Menzies, J. Greenwald, and A. Frank, “Data mining static

code attributes to learn defect predictors,” Software

Engineering, IEEE …, vol. 33, no. 1, pp. 2–13, Jan. 2007.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1411v1 | CC-BY 4.0 Open Access | rec: 1 Oct 2015, publ: 1 Oct 2015

[4] E. Giger, M. D. Ambros, M. Pinzger, and H. C. Gall,

“Method-Level Bug Prediction,” Proceedings of the

ACMIEEE international symposium on Empirical software

engineering and measurement (2012), pp. 171–180, 2012.

[5] R. Moser, W. Pedrycz, and G. Succi, “A comparative

analysis of the efficiency of change metrics and static code

attributes for defect prediction,” Proceedings of the 13th

international conference on Software engineering ICSE 08,

no. April, pp. 181–190, 2008.

[6] R. Moser, W. Pedrycz, and G. Succi, “Analysis of the

Reliability of a Subset of Change Metrics for Defect

Prediction,” Proceedings of the Second ACMIEEE

international symposium on Empirical software engineering

and measurement ESEM 08, pp. 309–311, 2004.

[7] S. Krishnan, C. Strasburg, R. R. Lutz, and K. Goševa-

Popstojanova, “Are change metrics good predictors for an

evolving software product line?,” in Proceedings of the 7th

International Conference on Predictive Models in Software

Engineering, 2011, pp. 7:1–7:10.

[8] S. Shivaji, E. J. Whitehead, and R. Akella, “Reducing

Features to Improve Code Change-Based Bug Prediction,”

IEEE Transactions on Software Engineering, vol. 39, no. 4,

pp. 552–569, Apr. 2013.

[9] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant Features

and the Subset Selection Problem,” in Pattern Recognition,

1994, vol. 129, no. 8, pp. 121–129.

[10] H. Liu, J. Li, and L. Wong, “A comparative study on feature

selection and classification methods using gene expression

profiles and proteomic patterns.” Genome informatics.

International Conference on Genome Informatics, vol. 13,

no. 0919–9454 LA - eng PT - Journal Article RN - 0

(Proteome) SB - IM, pp. 51–60, Jan. 2002.

[11] S. Scott and S. Matwin, “Feature Engineering for Text

Classification,” Representations, vol. 6, no. April, pp. 379–

388, 1999.

[12] A. E. Hassan, “Predicting faults using the complexity of code

changes,” 2009 IEEE 31st International Conference on

Software Engineering, no. 2009, pp. 78–88, 2009.

[13] S. R. Chidamber and C. F. Kemerer, “A metrics suite for

object oriented design,” IEEE Transactions on Software

Engineering, vol. 20, no. 6, pp. 476–493, Jun. 1994.

[14] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald,

“Problems with Precision: A Response to ‘Comments on

“Data Mining Static Code Attributes to Learn Defect

Predictors,”’” IEEE Transactions on Software Engineering,

vol. 33, pp. 637–640, 2007.

[15] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,

“Predicting Fault Incidence Using Software Change

History,” IEEE Transactions on Software Engineering, vol.

26, no. 7, pp. 653–661, 2000.

[16] N. Nagappan and T. Ball, “Use of relative code churn

measures to predict system defect density,” Software

Engineering, 2005. ICSE 2005. …, pp. 284–292, 2005.

[17] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the

location and number of faults in large software systems,”

IEEE Transactions on Software Engineering, vol. 31, no. 4,

pp.340–355,2005.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1411v1 | CC-BY 4.0 Open Access | rec: 1 Oct 2015, publ: 1 Oct 2015

