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ABSTRACT

Efficient methods of biodiversity assessment and monitoring are central to ecological research and crucial

in conservation management; technological advances in remote acoustic sensing inspire new approaches.

In line with the emerging field of Soundscape Ecology (Pijanowski et al., 2011), the acoustic approach is

based on the rationale that the ecological processes occurring within a landscape are tightly linked to

and reflected in the high-level structure of the patterns of sounds emanating from those landscapes – the

soundscape. Rather than attempting to recognise species-specific calls, either manually or automatically,

analysis of the high-level structure of the soundscape tackles the problem of diversity assessment at

the community (rather than species) level (Pijanowski et al., 2011; Farina, 2014). Preliminary work has

attempted to make a case for community-level acoustic indices (e.g. Pieretti et al., 2011; Farina, 2014;

Sueur et al., 2008); existing indices provide simple statistical summaries of the frequency or time domain

signal. We suggest that under this approach, the opportunity to analyse spectro-temporal structural

information is diminished, limiting power both as monitoring and investigative tools. In this paper we

consider sparse-coding and source separation algorithms (specifically, shift-invariant probabilistic latent

component analysis in 2D) as a means to access and summarise ecologically-meaningful sound objects.

In doing so we highlight a possible new approach for understanding and assessing ecologically relevant

interactions within the conceptual framework of Soundscape Ecology.

Keywords: Soundscape Ecology, Biodiversity, Sparse Coding, Probabilistic Latent Component Analy-

sis, Unsupervised Learning, Acoustic Niche Hypothesis

1 INTRODUCTION

Biodiversity assessment is a central and urgent task, not only for research in the biological sciences, but1

also in applied conservation biology, including major multi-lateral initiatives for promoting and protecting2

biodiversity. At the governmental level biodiversity needs to be incorporated into national accounting by3

2020 (Aichi Biodiversity targets A2)1 and cost effective tools necessary to achieve this remain elusive.4

Operating within the conceptual and methodological framework of the burgeoning field of Soundscape5

Ecology, (Pijanowski et al., 2011; Farina, 2014) we are interested in the potential use of acoustic indices6

for interrogating the interactions between the landscape and the communities which live within it, with7

ultimate utility in conservation as a rapid acoustic biodiversity assessment tool. In this ideation paper8

we first summarise the foundational premises for the soundscape approach and provide an overview of9

existing acoustic indices; a key constraint of current indices is identified and a potential new direction for10

research is suggested.11

1.1 Current Methods for Biodiversity Assessment.12

Biodiversity refers to the variability among living organisms and the ecological complexes of which13

they are a part (Buckland et al., 2005) and is seen as an indicator of the ‘health’ of a habitat. It should14

be noted that within traditional ecology, the question of how best to measure and describe biodiversity15

1http://www.cbd.int/sp/targets/
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is contentious. There are no absolute measures, rather indices reflecting difference or change across16

or between time or space. A key part of biodiversity assessment then, is based on the estimation and17

monitoring of changes in species composition and abundance in animal communities. There are a plethora18

of approaches to sampling and analysis (Magurran, 2004; Buckland et al., 2005; Pavoine and Bonsall,19

2011) most of which are derived from observations of the richness and abundance of species encountered20

in a given area at a specified time. In most strategies, there is a trade-off between data quality and quantity.21

All Taxa Biodiversity Indices (ATBI) or multi-species field studies are desirable theoretically, but in22

practice surveys are invariably subject to financial constraints that bind decision-makers (Lawton et al.,23

1998). In ongoing work, we are exploring cost-effective solutions, including remote sensing (camera traps24

and aerial photography of canopy) and identification of ‘ecological-disturbance indicator species’ (Caro,25

2010). Remote sensors are an attractive choice for data collection in that they are noninvasive, scalable in26

both space and time and remove the bias and cost associated with programs which require either experts27

(ATBIs, Gewin, 2002) or even non-specialists (Rapid Biodiversity Assessment, Oliver and Beattie, 1993),28

in situ.29

Various forms of remote visual sensing technologies have been explored. Global satellite imaging30

has been investigated to monitor biophysical characteristics of the earth’s surface by assessing species31

ranges and richness patterns indirectly (e.g. Wang et al., 2010). These methods are attractive, but rely32

on expensive equipment, are difficult to adapt to small spatial scales and require a time-consuming33

validation step. It is possible, for example, to infer valid species-level identification of canopy trees from34

high-resolution aerial imagery, providing a means of remote sensing to assess forest status (Peck et al.,35

2012). However, the principal weakness of this and other existing visual remote sensing methods is that36

they cannot provide direct information on the status of taxa other than plants: they cannot detect ‘silent37

forests’. The need for innovative remote sensing methods to monitor the status of wildlife remains and38

acoustic, rather than visual, sensors have many attractive characteristics.39

1.2 Acoustic Approaches to Biodiversity Assessment40

Acoustic surveys have most obvious relevance for the identification of vocal animals. Bird species41

in particular are of interest as their importance as indicator species of environmental health has been42

demonstrated in temperate (Gregory and Strien, 2010) and tropical (Peck et al., 2015) climates. One43

approach is to focus on automatic species call identification, but current methods are far from reliable (e.g.44

Skowronski and Harris, 2006, for bats), increasingly difficult in complex environments such as tropical45

forest soundscapes, where tens of signals mix and many species still remain unknown (Riede, 1993) and46

notoriously difficult to generalize across locations due to natural geographic variation in species’ calls47

(Towsey et al., 2013).48

Rather than focusing on individual species, there is a growing interest in monitoring community49

structure within the emerging field of Soundscape Ecology (Pijanowski et al., 2011) in which systematic50

interactions between animals, humans and their environment are studied at the landscape level. From51

this emerging perspective, the landscape’s acoustic signature – the soundscape – is seen as a unique52

component in the evaluation of its function, and therefore potential indicator of its status (Krause, 1987;53

Schafer, 1977). By extension, vocalising species establish an acoustic community when they sing at the54

same time at a particular place. The potential for estimation of acoustic community dynamics as key to55

understanding what drives change in community composition and species abundance is being recognised56

(Lellouch et al., 2014).57

This relationship can be understood in evolutionary terms: the same competitive forces which drive58

organisms to partition and therefore structure dimensions of their shared biophysical environment (food59

supply, nesting locations etc.) apply in the shared sonic environment; the soundscape is seen as a finite60

resource in which organisms (including humans) compete for spectro-temporal space. These ideas were61

first explicitly captured in Krause’s Acoustic Niche Hypotheses (ANH) (Krause, 1987) which suggests that62

vocalising organisms have evolved to occupy unique spectro-temporal ‘niches’, minimising competition63

and optimising intraspecific communication mechanisms. Formulated following countless hours recording64

in pristine habitats, Krause goes so far as to posit that this spectro-temporal partitioning structures the65

global soundscape, such that the global compositional structure is indicative of the ‘health’ of a habitat.66

Crudely put, in ancient, stable ecosystems, the soundscape will comprise a complex of non-overlapping67

signals well dispersed across spectro-temporal niches; a newly devastated area would be characterised by68

gaps in the spectro-temporal structure; and an area of regrowth may comprise competing, overlapping69
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signals due to invasive species.70

Krause’s ANH can be understood in terms of several theories of the evolution of bird species, which71

are supported by field studies. Avian mating signals are thought to diverge via several processes: (1) as a72

by-product of morphological adaptation, the Morphological Adaptation Hypothesis; (2) through direct73

adaptation to physical features of the signalling environment, the Acoustic Adaptation Hypothesis; and74

(3) to facilitate species recognition, the Species Recognition Hypothesis. Field studies of the Neotropical75

suboscine antbird (Thamnophilidae) provide direct evidence that species recognition and ecological76

adaptation operate in tandem, and that the interplay between these factors drives the evolution of mating77

signals in suboscine birds (Seddon, 2005). The ANH is tenable in evolutionary terms, but to date we78

have lacked the tools for any serious experimental investigation of exactly which dimensions of acoustic79

ecospace niches may occupy.80

1.3 Existing Acoustic Indices81

This emerging framework, coupled with the technical feasibility of remote acoustic sensing and pressure to82

meet strategic biodiversity targets, fuels a growing research interest in ecological applications of acoustic83

indices; several dozen have been proposed over the last 6 years (see Sueur et al., 2014; Towsey et al., 2013;84

Lellouch et al., 2014, for good overviews). These are predominantly derived from statistical summaries of85

Fast Fourier Transforms (FFTs) or time wave representations of soundscape recordings and are motivated86

by slightly different approaches to measuring the ‘health’ of a habitat or species diversity or abundance.87

The simplest indices provide summaries of the Sound Pressure Level (e.g. peaks, or specific times of88

day). In (Rodriguez et al., 2013), for example, root mean square values of raw signals from a network of89

recorders are used to create maps of amplitude variation to reveal spatiotemporal dynamics in a neotropical90

forest. The predominant approach, however, is to consider amplitude variation in time or magnitude91

differences between frequency bands of a spectrogram; a selection of these indices are described below.92

Under the assumption that anthropogenic noise contribution is band-limited to a frequency range93

(anthrophony: 2 – 8 kHz) below that of the rest of the biological world (biophony: 0.2 – 2 kHz), the94

Normalized Difference Soundscape Index (NDSI) (Kasten et al., 2012) seeks to describe the ‘health’95

of the habitat in terms of the level of anthropogenic disturbance by calculating the ratio (biophony -96

anthrophony) / (biophony + anthrophony). In long term studies, the NDSI has been shown to reflect97

assumed seasonal and diurnal variation in a landscape and may prove useful for observing high level, long98

term interactions between animals and human populations (Kasten et al., 2012). However, it does not99

give an estimation of local diversity within the range of biophony, or provide a means to investigate short100

term interactions in detail. Further, assumptions about frequency ranges may not generalize. For example101

in non-industrialized tropical climes (arguably the most precious in ecological terms) animals vocalize102

outside the 2-8 kHz range (Sueur et al., 2014), and industrial anthrophony is minimal.103

A range of entropy indices are based on the assumption that the acoustic output of a community will104

increase in complexity with the number of singing individuals and species. A summary of the complexity105

of the sound is assumed to give a proxy of animal acoustic activity. Complexity here is used as a synonym106

of heterogeneity and many indices derive from classical ecological biodiversity indices. Shannon Entropy107

(Shannon and Weaver., 1949) (Equation 1) is favoured by ecologists as a measure of species diversity,108

where pi is the proportion of individuals belonging to the ith species in the data set of interest; it quantifies109

the uncertainty in predicting the species identity of an individual that is taken at random from the dataset.110

H ′
=−

R

∑
i=1

pilnpi (1)

The Acoustic Diversity Index (Villanueva-Rivera et al., 2011) (ADI) is a spectral entropy measure111

which summarises the distribution of the proportion of signals across the spectrum. The FFT spectrogram112

is divided into a number of bins (default 10) the proportion of the signals in each bin above a threshold113

(default = 50 dBFS) is calculated. The Shannon Index (Eq.1) is then applied, where pi is the fraction114

of sound in each ith of R frequency bands. An evenness metric, the Acoustic Evenness Index (AEI) is115

similarly derived by calculating the Gini index (Gini, 1912) (commonly used by ecologists to estimate116

species evenness) on the spectrum. These relatively simple indices are shown to effectively reflect117

observed distinctions in gross acoustic activity, for example between dawn choruses and night activity, or118

between diverse habitats (mature oak forest, secondary forest, wetland and agricultural land).119

3/17

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1407v1 | CC-BY 4.0 Open Access | rec: 30 Sep 2015, publ: 30 Sep 2015



The Acoustic Entropy Index, H (Sueur et al., 2008) is also calculated as the product of spectral120

(sh) and temporal (th) entropies, calculated on the mean spectrum and Hilbert amplitude envelope of a121

time wave respectively. H ranges from 0 for pure tones to 1 for high-energy, evenly distributed sound.122

The index was first tested against simulated choruses, generated by mixing together samples of avian123

vocalisations and systematically varying the number of species in each track. H values increased with124

species richness S following a logarithmic model. Field trials were carried out in pristine and degraded125

African coastal forests and H was shown to reflect assumed variation in species richness. (Sueur et al.,126

2008). The study was in an area where animal acoustic activity was high and background noise low.127

When background noise (such as traffic) or broadband signals (such as rain, cicada or tropical cricket128

choruses) are higher, spectral entropy measures may give counter-intuitive results (values for white noise129

or motorway traffic, for example would approach 1).130

The spectral indices provide a statistical summary of the distribution of energy across the sample,131

typically 1-10 mins are analysed at a time. These prove useful in long term studies or for observing gross132

changes in time or space. Seeking to capture subtler changes in behaviour and composition of vocalising133

communities, and to counter the noise-sensitivity of the entropy indices, the Acoustic Complexity Index134

(ACI) was developed specifically to capture the dynamic changes in the soundscape: “many biotic sounds,135

such as bird songs, are characterised by an intrinsic variability of intensities, while some types of human136

generated noise (such as car passing or airplane transit) present very constant intensity values” (Pieretti137

et al., 2011). The (ACI) is derived from measures of absolute difference in adjacent bins in a spectrogram138

and was shown to correlate with the number of bird vocalisations in a small scale spatial study in an139

Apennine National Park, Italy (Pieretti et al., 2011).140

The Bioacoustic Index (Boelman et al., 2007) is presented as measure of avian abundance and is141

calculated simply as the area under the mean frequency spectrum (minus the value of the lowest bin),142

providing a measure of both the sound level and the number of frequency bands used by the avifauna. It143

was used to investigate differences between exotic and native species in Hawaii and shown to be strongly144

correlated with counts from direct ornithological survey when calculated for single samples taken across145

a 6 week period.146

These initial studies are encouraging: indices have been shown to correlate with aurally identified147

changes in bird species richness (Depraetere et al., 2012) and reveal dynamic variation across landscape148

[32], [28], however there are many open questions both methodologically and theoretically. Existing149

indices are inherently likely to be affected by several factors including transitory or permanent background150

noise, variation in distance of the animal to the microphone and relative intensity of particular species151

call patterns. Theoretically, we are still far from understanding exactly what aspects of biodiversity these152

indices might represent (Pijanowski et al., 2011; Sueur et al., 2008; Servick, 2014). This is highlighted in153

a recent temporal study of dissimilarity indices (Lellouch et al., 2014) in which indices were shown to154

correlate well with simulated communities, but did not track community composition changes in the wild,155

raising the question of what, if any, aspect of compositional diversity such indices represent.156

By virtue of being based on either time-averaged spectrograms or amplitude changes in the time157

domain, indices under this approach are fundamentally limited in their ability to detect spectro-temporal158

patterns, which may be key to evaluating the acoustic dynamics of specific communities. Frequency-based159

indices can pick up on crude differences in gross frequency range, but are inherently constrained in their160

ability to detect global spectro-temporal patterns created by cohabiting species interacting in an acoustic161

community. As the motivational premise of the community level approach assumes that spectro-temporal162

partitioning is responsible for structuring the soundscape, this constraint may be relevant.163

1.4 Sparse Coding and Latent Component Analysis164

Time-frequency tradeoffs are an important issue in all signal processing tasks. Sparse coding is gaining165

popularity in brain imaging, image analysis and audio classification tasks as an alternative to vector-based166

feature representations. Depending on the dictionary used, sparse representations using overcomplete167

dictionaries may have more time-frequency flexibility than standard Fourier transform representations.168

The basic idea is fairly simple. For a given set of input signals, a number of atomic functions are169

sought, such that each input signal can be approximated sparsely by a linear combination of a relatively170

small number of atomic functions. This set of atoms is called a dictionary. In sparse coding, the number171

of atomic functions is higher than the dimensionality of the signal such that a subset of them can span the172

whole signal space – an overcomplete dictionary (Scholler and Purwins, 2011). Sparse approximations173
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of the signal area are then constructed by finding the “best matching” projections of multidimensional174

data onto an over-complete dictionary, Matching Pursuit (Mallat and Zhang, 1993) (MP) being a popular175

choice.176

Sparse decomposition using dictionaries of atoms based on biologically informed time-frequency177

atoms such as Gabor and Gammatone functions – which are seen to resemble characteristics of cochlea178

filters – are intuitively attractive as they can provide an oriented feature set with which to approximate the179

original signal. This has been shown to be more efficient than Fourier or wavelet representations (Smith180

and Lewicki, 2005) and to provide effective and efficient input features in a range of audio discrimination181

tasks in everyday sounds (Adiloglu et al., 2012), drum samples (Scholler and Purwins, 2011) and similarity182

matching of bioacoustic data (Glotin et al., 2013).183

Probabilistic Latent Component Analysis (PLCA) is one of a family of techniques used for source184

separation, which similarly provides a tool for extracting sound objects according to common frequency-185

amplitude statistics. PLCA is a probabilistic variant of non-negative matrix factorization (NMF) (Lee and186

Seung, 2001). It decomposes a non-negative matrix V into the product of two multinomial probability187

distributions, W and H, and a mixing weight, Z. In the auditory domain, V would be a matrix representing188

the time-frequency content of an audio signal:189

V ≈WZH =

K−1

∑
k=0

wkzkhT
k (2)

where each column of W can be thought of as a recurrent frequency template and each row of H as190

the excitations in time of the corresponding basis. Z = diag(z) is a diagonal matrix of mixing weights191

z and K is the number of bases in W (Weiss and Bello, 2010). Each of V, wk,zk, and hk correspond to192

probability distributions and are normalized to sum to 1.193

Sparse and shift-invariant PLCA (SI-PLCA) extends PLCA to enable the extraction of multiple194

shift-invariant features from analysis of non-negative data of arbitrary dimensionality and was first195

demonstrated as an effective unsupervised tool for extracting shift-invariant features in images, audio196

and video (Smaragdis et al., 2008). The algorithm provides a very precise and perceptually meaningful197

description of content. A series of piano notes, for example, is automatically decomposed into a kernel198

distribution representing the harmonic series common to all notes, the peaks of the impulse distribution199

representing the fundamental frequency of each note and its location in time (Smaragdis et al., 2008). Weiss200

and Bello (2010) demonstrated application in segmentation task, showing SI-PLCA to be competitive with201

Hidden Markov Models and self-similarity matrices. More recently, Sarroff and Casey (2013) developed202

a shift and time-scale invariant PLCA which performed well against results of a human ‘groove-similarity’203

judgement task.204

A common strategy used throughout the NMF literature is to favour sparse settings in order to205

learn parsimonious, parts-based decompositions of the data. Sparse solutions can be encouraged when206

estimating the parameters of the convolution matrix by imposing constraints using an appropriate prior207

distribution (Smaragdis et al., 2008). Under the Dirichlet distribution for example, hyper-parameters208

can be set to favour a sparse distribution. In these cases, the algorithm will attempt to use as few bases209

as possible, providing an ‘automatic relevance determination strategy’ (Weiss and Bello, 2010): The210

algorithm can be initialised to use many bases; the sparse prior then prunes out those that do not contribute211

significantly to the reconstruction of the original signal. In the context of pop song segmentation, this212

enables the algorithm to automatically learn the number and length of repeated patterns in a song. In213

soundscape analysis, might this provide an ecologically-relevant indicator of the compositional complexity214

of an acoustic community?215

In Music Information Retrieval and composition tasks, SI-PLCA provides a tool for accessing216

perceptually relevant musical objects from time-frequency shifted patterns in a dynamic signal. From the217

perspective of Soundscape Ecology, we are not necessarily concerned with the identification of specific218

species, so much as achieving a numerical description of the qualitative patterns of interaction between219

them. By way of musical analogy, we don’t care what the specific instruments of the orchestra are, rather220

we wish to assess characteristics of the arrangement and how the voices interact as an ensemble toward a221

coherent global composition through time, timbre and pitch space. Frequency-based indices may succeed222

in tracking species richness in simulated communities by measuring gross changes in frequency band223

occupancy. Perhaps their failure to track variation in species richness in the wild is because the defining224
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feature of acoustic communities are global patterns of interaction across a more complex spectro-temporal225

space, rather than frequency band occupancy or amplitude variation alone. Current indices based on226

frequency or amplitude statistics inherently throw away information crucial to the analysis of spectro-227

temporal patterns: SI-PLCA provides a tool for extracting dynamic sound objects grouped by common228

frequency-amplitude statistics, even when pitch or time shifted. That it has been demonstrated to be229

effective in extracting the perceptually-meaningful but nebulous concept of ‘groove’ (Sarroff and Casey,230

2013) suggests potential as a tool for beginning to interrogate the concept of the acoustic niche.231

In this paper we take a first look at how these methods might provide a complementary approach232

to current acoustic indices for investigation of soundscape dynamics and ultimately for biodiversity233

assessment. Taking a small sample of field recordings across different habitats in an Ecuadorian cloud234

forest reserve we compare existing spectral and temporal indices with sample analyses of a number of235

approaches to sparse approximation, including dictionaries built using mini-batch gradient descent, Gabor236

functions and SI-PLCA2D. The potential value of this approach is illustrated with example reconstructions237

from a new variant of SI-PLCA using dual dictionaries.238

2 METHODS AND MATERIALS239

2.1 Data Collection240

2.1.1 Study Area and Acoustic Survey Methods241

The data reported here was collected during an 8 week field survey (June - August 2014) in the Ecuadorian242

Andean cloud forest at the Santa Lucia Cloud Forest Reserve (SLR). The SLR (0◦07’30” N, 78◦40’3” W)243

is situated on the Western (Pacific) slopes of the Andes in northwestern Ecuador and spans an elevational244

range of 1400 - 2560 m. The forest is lower montane rain forest (cloud forest). The area has a humid245

subtropical climate and is composed of fragmented forest reserves surrounded by a matrix of cultivation246

and pasture lands. It lies within the Tropical Andes biodiversity hotspot and exhibits high plant species247

endemism and diversity. Topography is defined by steep-sloping valley systems of varying aspect.248

The SLR was awarded reserve status 20 years ago, prior to which areas of Primary Forest had cleared249

for fruit farming. The SLR therefore consists of a complex mosaic of habitat types: Ancient Primary250

Forest (FP) punctuated by small areas of secondary regrowth of around 20 years (FS) and silvopasture (S),251

typically elephant grass pastures used as grazing paddocks for the mules, which provide local transport.252

These areas are less than 5 ha. In contrast to other studies where dramatically different sites have been253

used to validate indices, this complex patchy habitat provides subtle habitat gradients.254

Acoustic data was collected using nine digital audio field recorders Song Meter SM2+ (Wildlife255

Acoustics), giving three replicates of each of the three habitat types. Minimum distance between recorders256

was 300m to avoid pseudo sampling. Altitudinal range was minimised. Recording schedules captured the257

full dawn (150 min), dusk choruses (90 min) plus midday (60 min) activity; throughout the rest of the258

period 3min recordings were taken every 15 min.259

The SM2+ is a schedulable, off-line, weatherproof recorder, with two channels of omni-directional260

microphone (flat frequency response between 20 Hz and 20 kHz). Gains were set experimentally at 36 dB261

and recordings made at 16 bit with a sampling rate of 44.1 kHz. All recordings were pre-processed with a262

high pass filter at 500 Hz (12 dB) to attenuate the impact of the occasional aircraft and local generator263

noise.264

2.1.2 Species Identification265

Point counts were carried out by a local expert ornithologist and were made in situ in order to record266

species seen as well as heard. A record was made for each individual, rather than individual vocalisations,267

providing species presence-absence and abundance.268

2.2 Acoustic Indices269

For the purposes of this illustrative exercise, analyses were carried out on dawn chorus recordings from270

just one day for three habitat types sampled. A range of indices described in Section 1.3 were calculated:271

NDSI, H (including sh and th components), ADI, AEI, ACI and BI. Indices were calculated for the same272

10min periods during which point counts were made at each site. Calculations were made using the273

seewave2 and acousticecology3 packages in R.274

2http://cran.r-project.org/web/packages/seewave/index.html
3http://cran.r-project.org/web/packages/soundecology/index.html
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2.3 Audio Spectrum Approximation Methods275

Three approaches to audio decomposition are illustrated using the Bregman Media Labs Audio Patch276

Approximation Python package:4 Dictionary learning using mini-batch gradient learning, a Gabor277

field dictionary and, shift invariant 2D Principle Latent Component Analysis (SI-PLCA2D). Each uses278

Orthogonal Matching Pursuit (OMP) to build the component reconstructions. Samples were extracted279

from analyses of 1 minute sections of the field recordings. These examples are aimed at illustrating the280

potential of an atomic rather than vector approach in general, rather than experimental validation of any281

particular algorithm. Default parameters were used in all cases.282

A potential future direction is illustrated using a SI-PLCA variant (SI-PLCA2) using 2D dual dictio-283

naries (Smaragdis and Raj., 2007; Weiss and Bello, 2010; Sarroff and Casey, 2013) based on frequency *284

local time functions and frequency-shift * global time-activations. The expectation-maximisation (EM)285

algorithm (Smaragdis and Raj., 2007) is used to build component reconstructions.286

As described in Section 1.4, the algorithm returns a set of k from a K maximum components287

(Kmax = 16): independent component reconstructions, time-frequency kernels and shift-time activation288

functions. Entropies of each are also returned. The technical details of this approach are not addressed289

here, but example analyses are used to illustrate SI-PLCA as a potentially rich tool for future research in290

investigating the complex quasi-periodic signals of wild soundscapes.291

3 RESULTS AND DISCUSSION292

3.1 Species Composition of Acoustic Communities293

The species observations for each site, shown in Table 1, reveal little variation in overall abundance or294

species number between the sites when seen and heard records are considered together. Several species295

are observed in all sites; others are observed only in one habitat type. Discounting the seen-only counts,296

the highest number of species, and individuals, was recorded at S, with least heard FP. The spectrograms297

and mean spectrum profiles (Figure 1) for these recordings suggest that this information is present in the298

soundscape. The number of shared species between sites results in acoustic communities with an overall299

similar overlap, differentiated by calls of ‘keynote’ species. Each acoustic community occupies a broadly300

similar frequency range, with variation in the peaks of spectral profiles according to the prevalence of301

calls of habitat-specific species. FP appears to have lowest over-all activity, in line with the relatively302

fewer number of species observed.303

Despite occupying an overall similar frequency range and not differing dramatically in abundance,304

each site is distinctly characterised by differing quasi-periodic patterns of calls. The same patterns305

observed at the 1 minute shown continued for the full 10 minute sample5. The soundscape is structured,306

not just by repetitions of specific species calls, but by turn taking, i.e. interactions between species. This307

is most evident in listening, and can be observed visually as an interplay of periodic gestures in the308

spectrogram. It is precisely this complex of interacting periodic structures which we wish to evaluate309

under the soundscape approach, but which are impervious to analyses by current indices.310

3.2 Acoustic Indices311

Values for each of the acoustic indices calculated for the three habitats are given in Table 2 and shown as312

bar plots in Figure 2. As we might expect given the minimal anthropogenic noise and broadly similar313

spectral profile, the NDSI reports near maximum values for each site. The global complexity of each314

scene is high; it is no surprise then that entropy indices approach 1 and differences between sites are315

minimal. The ADI reports a small variation, following the rank-order pattern of species heard at each316

site. Differences between Sueur’s spectral, temporal and therefore overall, H entropy are minimal. ACI317

similarly shows small variation between sites. This index in particular is very sensitive to the size of the318

analysis window and requires further exploration to establish which aspects of community composition319

may be being assessed. BI values report the differences in overall acoustic energy, observable in mean320

spectrum plot (Figure 1, bottom), with the highest value at FS, FP being slightly higher than site S. These321

basic features of the acoustic recordings are at odds with the field observations of abundance and species322

numbers. An increase in overall energy could be due to certain individuals having intrinsically louder calls,323

calling more frequently, or simply being closer to the microphone. In validation studies the latter could324

4https://github.com/bregmanstudio/audiospectrumpatchapproximation
51 min excerpts available via PeerJ linked data service
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be countered by factoring in field-based point count distance measures (recorded, but not included here)325

and call frequencies, as well as tallies of individuals, the latter being expedited by the use of automatic326

segmentation software (as in Pieretti et al., 2011).327

The key issue raised here, however is that in providing summaries of frequency or temporal amplitude328

profile and magnitude differences, these current indices are not only sensitive to these largely irrelevant329

variations in overall amplitude changes, but are all insensitive to the periodic structures which uniquely330

characterise the three soundscapes.331

3.3 Sparse-approximation Outputs332

Dictionaries and sparse-approximations of recordings of each site using mini-batch gradient descent,333

Gabor atoms and SI-PLCA2D are shown in Figure 3. The input for each is a log-frequency spectrogram334

(constant-Q transform) of samples from the field recordings, as shown in Figure 1. Example dictionaries335

(left) and sparse approximations of the input spectrogram (right) for site FP are shown for each method336

(component reconstructions not shown). Comparing the sparse-approximation of the original spectrogram337

for FP (see Figure 1 top image), the superior performance of SI-PLCA2D over the other two methods is338

evident.339

A detailed technical discussion of the methods is beyond the scope of the current paper, however of340

key interest in this context are the qualitative differences in the dictionaries. The Gabor field dictionary341

has an intuitive advantage over vector descriptors in representing features oriented in time-frequency342

space. The dictionary learned under mini-batch gradient descent similarly exhibits time-frequency atoms343

differing subtly in orientation. The SI-PLCA2D dictionary however, comprises a collection of spectrum344

patches with a variety of micro-structures across a range of orientation and spread. In terms of the filter345

model which motivates the use of Gabor atoms, the Gabor and mini-batch dictionaries could be described346

as having relatively homogenous widths across the dictionary; the SI-PLCA2D dictionary by contrast347

contains points not only differing in time-frequency orientation, but in spectral width, atoms 0, 2, 3 and 4348

being considerably more focused than 1 and 5 (Figure 3(c), left). This is an appealing property for the349

analysis of broad-spectrum versus pitched soundscape elements.350

Full outputs for all three sites using the SI-PLCA2 algorithm with dual 2D dictionaries are shown in351

Figures 4, 5 and 6. Each 10 min site recording is sampled, taking 16 time windows from across the file of352

around 4 seconds each, arranged in order. The input is the log-frequency spectrogram of these samples, as353

before. Extensive analysis of larger data sets across more diverse soundscapes is needed before we can354

begin to evaluate the ecological significance or application of this approach, but a number of promising355

observations can be made.356

As can be seen in Figures 4(a), 5(a), 6(a), the component reconstructions appear faithful to the original357

spectrogram. The individual component reconstructions (Figures 4(b), 5(b), 6(b)) pull out clearly distinct358

components. This is clearest in S3 (Figure 6(b)) where the first component is broadband ambient noise,359

and each of components 1 - 5 appear as distinct ‘voices’ grouped according to both spectral range and360

spectro-temporal periodic gesture.361

The time-frequency kernels provide a lower dimension representation of components with apparently362

similar characteristics: compare each component in Figures 4(b) and (c), for example. The automatic363

relevance determination feature deserves further investigation as a quick and dirty proxy for community364

composition assessment. In this example in FP k = 4, FS k = 7 and S k= 6. Does K increase with the365

number of vocalising species? Might it reflect the complexity or ‘decomposability’ of a scene in some366

way?367

The entropies of each distribution are given in the subfigure captions of Figures 4, 5 and 6. Whether368

these can provide useful information as a difference measure either between components within a particular369

reconstruction, or between kernels extracted from different soundscapes deserves further investigation.370

No conclusions can be drawn from this illustrative analysis, but it raises a number of questions for future371

research: (1) Are the component reconstructions meaningful soundscape objects in ecological terms?372

Are the structurally distinct characteristics of geophony and biophony separated? Are vocalising species373

separated in any meaningful ecological way (species, functionality etc.)? (2) Might the statistics generated374

be meaningful? Does the number of components (k) returned reflect ‘complexity’ or ‘decomposability’ in375

a way which may reflect the status of the acoustic community? Could the entropy summaries of each376

component be used as a measure of diversity within or between communities?377

The ability of PLCA to separate streams of distinct sound objects or voices from background noise378
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is well recognised. Within the conceptual framework of Soundscape Ecology, such techniques promise379

utility at two levels. Within the acoustic community, as a possible means to investigate the composition of380

the local soundscape in terms of dynamic interactions between spectro-temporal patterns of vocalising381

component species, providing a new tool to begin to experimentally interrogate the concept of acoustic382

niche. Within the conceptual framework of Soundscape Ecology, geophony (the noises created by wind,383

rain etc. in interaction with the local landscape) is not noise to be removed from the signal, but a crucial384

active component: the potential to separate geophony from biophony and anthrophony therefore provides385

a means to further investigate the patterns of interaction between them.386

4 SUMMARY AND FUTURE WORK387

Monitoring subtle changes in complex ecosystems is crucial for ecological research and conservation but388

far from straight forward. Acoustic indices hold promise as a rapid assessment tool, but are subject to389

the same trade-offs as traditional ecological research of quality versus quantity: any metric necessarily390

throws away some information. In this paper we have provided an overview of the motivational premises391

of Soundscape Ecology, including the concept that acoustic communities may be structured according392

to competition across acoustic niches through spectro-temporal partitioning. We suggest that existing393

indices operating in time or frequency domain may be insensitive to the dynamic patterns of interaction in394

the soundscape which characterise specific acoustic communities and propose SI-PLCA2D as a promising395

new tool for research. This was illustrated with example analyses of tropical dawn chorus recordings396

along a gradient of habitat degradation.397

It seems likely that if acoustic niches exist that they do not lie neatly along 1D vectors in the frequency398

or time domain but dance dynamically across pitch-timbre-time space. SI-PLCA2D is computationally399

expensive, but provides a tool for extracting shift-invariant patterns in a dynamic soundscape. In future400

work we plan to investigate the potential for these tools to help us begin to experimentally investigate401

the acoustic niche concept, seeking to understand what dimensions of acoustic ecospace it may occupy402

toward the development of effective tools for rapid acoustic biodiversity assessment.403
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Figure 1. Top: Constant-Q spectrograms for 1 min excerpts for each site FP (top) FS (middle) S

(bottom). 1 minute resolutions are presented to illustrate the periodic call patterns. These were consistent

across the 10 min sampling time in each habitat. Bottom: Mean Constant-Q Spectrum (log amplitude) for

FP (green), FS (blue) and S (red)
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Common Name
Heard Seen

FP FS S FP FS S

Andean Solitaire 1 1 1 1 - -

Azara’s Spinetail - - 1 - - -

Beryl-spangled Tanager - - - 1 1 -

Blue-winged Mountain-Tanager - 1 - - - 1

Booted Racket-tail - 1 - 1 - -

Brown Inca 1 - - - - -

Brown-capped Vireo 1 - - - - -

Collared Forest-Falcon 1 - - - - -

Dusky Bush-Tanager - - 1 1 - -

Empress Brilliant - - 1 - - 1

Flame-faced Tanager - - - 1 1 -

Golden-Crowned Flycatcher - - 1 - - -

Golden-Headed Quetzal - 1 1 - - -

Gray-breasted Wood-wren 1 1 1 - - -

Immaculate Antbird - 1 - - - -

Lineated Foliage-Gleaner - 1 1 1 - -

Long-tailed Antbird 1 - 1 - - -

Masked Trogon 1 1 1 - - -

Metallic-Green Tanager - - 1 - - -

Nariño Tapaculo - 1 - - - -

Orange-bellied Euphonia 1 1 - 1 - -

Plumbeous Pigeon 1 1 1 - - 1

Red-faced Spinetail - 1 1 - - -

Roadside Hawk - - 1 - - -

Rufous-breasted Antthrush - 1 - - - -

Russet-crowned Warbler 1 1 - - - -

Scale-crested Pygmy-Tyrant - 1 1 - - -

Slate-throated Whitestart 1 - 1 - - -

Smoke-colored Pewee - - 1 - - -

Three-striped Warbler - 1 - - - -

Toucan Barbet - - 1 - - -

Tricolored Brush-Finch - 1 1 - - -

Tyrannine Woodcreeper - - - 1 - -

Uniform Antshrike - - 1 - - -

Wattled Guan 1 1 1 - - -

White-capped Parrot 1 - - - - -

Total 13 18 21 8 2 3

Table 1. Field observations for species heard and seen at FP (0600-0610), FS (0619-0629) and

S(0639-0649) on June 15th 2014. As only 1 individual of each species was recorded, this data provides a

record of species absence-presence as well as abundance for each site.

NDSI ADI AEI sh th H ACI BI

FP 0.9716 2.1919 0.2591 0.9567 0.9730 0.9309 18497.14 7.5393

FS 0.9727 2.2684 0.1418 0.9355 0.9729 0.9102 18315.61 11.1780

S 0.9809 2.2909 0.0749 0.9539 0.9825 0.9372 18686.78 6.5867

Table 2. Acoustic indices values for the three study sites: FP, FS and S shown to 4 decimal places.
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Figure 2. Bar plots of indices results for same recording showing indices values 10 minutes of dawn

chorus at FP (black), FS (grey) and S (light grey) for NDSI, ADI, AEI, sh, th, H, ACI and BI. Values for

AD, ACI and BI are scaled in the ranges 0:3, 1800:1900 and 0:12 respectively. Point count ‘heard’ data

values for each site are given in the end column for comparison.

(a) Mini-batch Gradient Descent

(b) Gabor Field

(c) SI-PLCA2D

Figure 3. Over-complete Dictionaries (left) and sparse-approximations of original spectrogram shown

in Figure 1 for (a) Mini-batch gradient learning, (b) Gabor Field Dictionary and (c) SI-PLCA2D

Component Dictionary.
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(a) FP: Original Spectrum (left) and Component Reconstructions (right) Original S = 4.9439;

Reconstruction. S = 4.9303

(b) Individual Component Reconstructions (FP). S = (5.3347, 5.5418,

0.0000, 5.4501)

(c) Time-Frequency Kernels (FP). S = (1.4749, 3.7474 , 5.7675, 3.7552)

(d) Activation (shift-time) Functions (FP). S = (5.0762 5.7370 6.2901

4.6718)

Figure 4. SIPLCA2 outputs for Primary Forest site dawn chorus. Entropy (S) values are shown in

brackets
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(a) FS: Original Spectrum (left) and Component Reconstructions (right) Original S = 5.0291;

Reconstruction. S = 4.9576

(b) Individual Component Reconstructions (FS). S = (5.4921, 5.4735

4.3225, 5.5836 5.1488 4.7036 5.6571)

(c) Time-Frequency Kernels (FS). S = (4.5131, 2.9622, 4.9541, 4.6132,

3.4991, 5.2196, 3.9248)

(d) Activation (shift-time) Functions (FS). S = (5.7739, 5.1516, 5.9054,

3.6572, 4.2803, 6.0051, 4.9906)

Figure 5. SI-PLCA2 outputs for Secondary Forest site dawn chorus. Entropy (S) values are shown in

brackets.
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(a) S: Original Spectrum (left) and Component Reconstructions (right) Original. S = 5.1797;

Reconstruction S = 5.1715

(b) Individual Component Reconstructions (S). S = (0.6920, 5.8020,

5.5895, 5.6326, 5.9547, 5.4067)

(c) Time-Frequency Kernels (S). S = (5.4939, 3.8297, 3.9353, 3.7362,

4.0415, 3.1377)

(d) Activation (shift-time) Functions (S). S = (6.2345, 5.7911, 5.1608,

5.4627, 5.3665, 5.3127)

Figure 6. SI-PLCA2 outputs for Silvopasture site dawn chorus. Entropy (S) values are shown in

brackets.
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