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ABSTRACT

Plant breeders and educators working with the International Potato Center (CIP) needed freely available
statistical tools. In response, we created first a set of scripts for specific tasks using the open source
statistical software R. Based on this we eventually compiled the R package agricolae as it covered a
niche. Here we describe for the first time its main functions in the form of an article. We also review its
reception using download statistics, citation data, and feedback from a user survey. We highlight usage
in our extended network of collaborators. The package has found applications beyond agriculture in
fields like aquaculture, ecology, biodiversity, conservation biology and cancer research. In summary, the
package agricolae is a well established statistical toolbox based on R with a broad range of applications
in design and analyses of experiments also in the wider biological community.
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INTRODUCTION

Computational protocols to analyze field experiments are an important part in breeding and agronomic
experiments. The equal access to this tools enables communities of practices beyond institutional and
country boundaries; it is therefore important in trait observation networks and decentralized breeding
programs as is the case at the International Potato Center (CIP). In the early 2000s partners asked to
use certain statistical analysis protocols but would have had to buy the basic commercial software. On
the other hand, at this time the concept of open source and free software for statistics had become more
visible and so we decided to use the R software (R-Core-Team, 2015) as a platform to disseminate
in-house tools and protocols to the wider community in the spirit of free academic exchange and the
production of global public goods. Initially, these were compiled as simple scripts. It turned out
that at the time there was no R package available for design and analysis of agricultural and plant
breeding experiments. Therefore we eventually decided to convert the scripts into a package. We named
the package agricolae which is Latin for (dedicated) to the farmer - as per CIP’s vision and mission
(http://cipotato.org/about-cip/vision-mission-values/).

Over a course of a decade the package agricolae has been constantly revised and updated thanks
to extensive feedback from users both in-house, nationally and around the world. Initial versions
were presented at a R user conference (Mendiburu and Simon, 2007) and the International Society for
Tropical Root Crops (ISTRC) conference at CIP headquarters in Lima (Mendiburu and Simon, 2009).
In addition, this package was presented as a thesis subject for a Masters degree of the first author
(http://tarwi.lamolina.edu.pe/˜fmendiburu/. We wrote this article as more and more
original research is being included in the package and the usage broadens. Here we present an overview
of the current status, a brief review of reception and provide an outlook into the next versions.
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1 MATERIALS AND METHODS
1.1 Package development
The functions in the package are mainly based on previously published work. According to the best
practices enforced by R (R-Core-Team, 2015) package development guidelines all functions are docu-
mented with the corresponding citations and examples of usage. Where ever possible, methods were
tested against reference data sets and results compared against results reported in textbooks and from
alternative software - mainly using SAS software (SAS-Institute, 2015). Many functions are documented
with the textbook data sets or slightly modified real word data sets. Some functions were recently added
reflecting the first authors own statistical research. These will be reported in more detail separately but
briefly introduced here. News on latest additions are maintained on the first author’s (FM) web-site
(http://tarwi.lamolina.edu.pe/˜fmendiburu/).

1.2 Usage analysis
We combine several means to assess uptake of the package in the community. Unfortunately, the R
web-site itself does not provide any tracking mechanism for usage of packages. Therefore, we present
here a few alternative approaches to quickly assess the utility of the package. A qualitative survey on user
satisfaction was conducted as part of (Mendiburu, 2009). It is based on answers from 35 Peruvian and
13 international respondents. We also searched Google Scholar (http://scholar.google.com
(accessed on Sep., 20th, 2015) for references to agricolae using the search term agricolae Mendiburu
-[citation] - the latter exclusion word was necessary to remove references to R community servers. We
filtered the search by year and reviewed the list manually to exclude any obvious non-relevant references.
Lastly, some collaborators communicated their usage of agricolae as part of bigger projects personally (to
RS).

2 RESULTS
2.1 Package development
Development started out in 2004 (Mendiburu and Simon, 2009), about four years after the first release
of R in February, 2000. The first version of agricolae was released on CRAN in 2006 (see: https://
cran.r-project.org/src/contrib/Archive/agricolae/). From 2006 till now (2015)
21 versions were released. As of September, 2015, the latest published version of agricolae is 1.2-
2 https://cran.r-project.org/web/packages/agricolae/index.html. Here we
summarize highlights by group and add usage examples; more details on usage can be obtained from the
package documentation and the included tutorial. The package contains 35 reference datasets and 86
functions as per the up-coming package version 1.2-3 (scheduled for October, 2015). We present here
already main new additions and improvements.

2.2 Descriptive statistics
This is a group of functions complementary to standard R functions and provides some convenience to
produce graphs typically used in reports in the agricultural and breeding communities. More specifically,
it contains the function graph.freq() to produce custom histograms. Other custom functions produce
group wise statistics including histograms.

This group also includes other helper and convenience functions such as montecarlo(), correlation(),
tapply.stat(), skewness(), kurtosis(), and waller(). The availability of function skewness() is the reason
why agricolae is listed in the R taskview on Distributions.

Below we include the code to produce a histogram on grouped data and the resulting Figure 1.

# Know your parameters
str(design.rcbd)

## function (trt, r, serie = 2, seed = 0, kinds = "Super-Duper",
## first = TRUE,
## continue = FALSE)

trt <- c("A", "B", "C","D","E")
repeticion <- 4
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outdesign <- design.rcbd(trt,r=repeticion,
seed=-513,
serie=2 # a numbering scheme for labels
)

book2<- zigzag(outdesign) # zigzag numeration
print(t(matrix(book2$plots,5,4))

## [,1] [,2] [,3] [,4] [,5]
## [1,] 101 102 103 104 105
## [2,] 205 204 203 202 201
## [3,] 301 302 303 304 305
## [4,] 405 404 403 402 401

Another code fragment and graph shows the utility of a small function for constructing a modified
histogram with an overlaid polygon as in Figure 2.

library(agricolae)
x<-seq(10,40,5)
y<-c(2,6,8,7,3,4)
# Poligon and frecuency
h<-graph.freq(x,counts=y,col=colors()[86],xlab=" ", ylab="Frequency",
axes=FALSE)
axis(1,x,las=2)
axis(2,0:10)
polygon.freq(h,col="red",xlab=" ", ylab="")
title( main="Histogram and polygon", xlab="Variable X")
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Figure 1. Histogram of grouped data produced
by agricoale.

Figure 2. Histogram with an overlaid polygon
produced by agricoale.

2.3 Experimental design
This group of 13 functions is at the core of this package. Their implementation is guided by (Cochran and
Cox, 1992), Kuehl (2000), (Le Clerg, 1992), and (Montgomery, 2002). For individual references for each
design function please refer to documentation in the package itself. These (and corresponding analysis
functions as described in the next section) are the main features also described in the R taskview on Ex-
perimental design (https://cran.r-project.org/web/views/ExperimentalDesign.
html where it also qualifies as a core package.

It contains most of the designs typically used in agricultural research like randomized complete
block design, strip-plot design, split-plot design and factorial designs. Early on, modern designs like
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cyclic designs, balanced incomplete designs, alpha designs and augmented block designs were included.
Other designs include the latin square design, the incomplete latin square design (the Youden design, a
recent addition), the graeco-latin design, the completely randomized design, and the lattice design. The
parameters of most functions have been standardized in naming and sequence, as well as their return
value. The parameters include the specification of the randomization algorithm and the randomization
seed thereby facilitating reproducibility. The return value is currently a list containing information about
the parameters used, the resulting field book, summary statistics on the design like efficiency index, and a
sketch showing the distribution of plots in the field. The companion function zigzag() allows to adjust
the numbering of plots to the way a data collector would walk in the field. Two main improvements
in the recent versions were: a) all design.* functions have gained a new parameter randomization with
value TRUE or FALSE allowing the user now to completely turn off any randomization. b) the balanced
incomplete block design has been fully optimized creating a design with a minimal number of blocks; it
also returns a more friendly feedback if parameter combinations are not valid.

In the following example we show a simple case of a randomized complete block design.

library(agricolae)
# 4 treatments and 5 blocks
trt<-c("A","B","C","D")
outdesign <-design.rcbd(trt,5,serie=2,45,"Super-Duper") # seed = 45
rcbd <- outdesign$book
head(rcbd) # field book

## plots block trt
## 1 101 1 C
## 2 102 1 B
## 3 103 1 D
## 4 104 1 A
## 5 201 2 B
## 6 202 2 D

Several design options are accompanied by complementary analysis functions; see the next section for
a current list.

Here is an example of how to create an alpha design.

Genotype<-paste("geno",1:30,sep="")
r<-2
k<-3
plan_alpha <- design.alpha(Genotype,k,r,seed=5)

##
## alpha design (0,1) - Serie I
##
## Parameters Alpha design
## =======================
## treatmeans : 30
## Block size : 3
## Blocks : 10
## Replication: 2
##
## Efficiency factor
## (E ) 0.6170213
##
## <<< Book >>>

2

## [1] 2
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2.4 Multiple parametric comparisons
This group of functions include the Least Significant Difference test (LSD.test()), the Honestly Significant
Difference test (HSD.test()), the Duncan test (duncan.test(), the Scheffe test (scheffe.test(), the Waller test
(waller.test(), and the Student-Newman-Keuls test (SNK.test()). Their respective reference is: (Steel and
Dickey, 1997).

A new test added in the up-coming version 1.2-3 is the Ryan, Einot and Gabriel and Welsch (REGW)
test REGW.test() (Hsu, 1996). This test is preferable over other tests like Bonferroni or Duncan since
it is more stringent. Another new feature is the calculation of p-values and confidence intervals for the
following tests: duncan.test(), SNK.test(), and REGW.test().

The list of six functions specifically designed for specialized ANOVA of experimental designs consists
of: BIB.test() for analyzing the Balanced Incomplete Design, DAU.test() for Augmented Block Design
analysis, PBIB.test() for Partially Balanced Incomplete Block Design, sp.plot() for split-plot analysis,
ssp.plot() for split-split-plot analysis, and strip.plot() for strip-plot analysis.

As an illustration we show here the application of PBIB.test() to the previous example data of an alpha
design.

yield <-c(5,2,7,6,4,9,7,6,7,9,6,2,1,1,3,
2,4,6,7,9,8,7,6,4,3,2,2,1,1,2,
1,1,2,4,5,6,7,8,6,5,4,3,1,1,2,
5,4,2,7,6,6,5,6,4,5,7,6,5,5,4)

data<-data.frame(plan_alpha$book,yield)
rm(yield,Genotype)

# The analysis:
attach(data)
modelPBIB <- PBIB.test(block, Genotype, replication,

yield, k=3, group=TRUE,
console=TRUE)

##
## ANALYSIS PBIB: yield
##
## Class level information
## block : 20
## Genotype : 30
##
## Number of observations: 60
##
## Estimation Method: Residual (restricted) maximum likelihood
##
## Parameter Estimates
## Variance
## block:replication 2.834033e+00
## replication 8.045902e-09
## Residual 2.003098e+00
##
## Fit Statistics
## AIC 213.65937
## BIC 259.89888
## -2 Res Log Likelihood -73.82968
##
## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
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## Genotype 29 72.006 2.4830 1.2396 0.3668
## Residuals 11 22.034 2.0031
##
## coefficient of variation: 31.2 %
## yield Means: 4.533333
##
## Parameters PBIB
## .
## Genotype 30
## block size 3
## block/replication 10
## replication 2
##
## Efficiency factor 0.6170213
##
## Comparison test lsd
##
## <<< to see the objects: means, comparison and groups. >>>

detach(data)

2.5 Multiple non-parametric comparisons
The available tests for multiple non-parametric comparisons (Montgomery, 2002) are: kruskal(), waer-
den.test(), friedman() and durbin.test(). An important noteto avoid possible confusion: R itself provides
the functions kruskal.test() and friedman.test() - these report only a single value; whereas the functions
provided by agricolae perform multiple comparisons.

Specific popular applications are the friedman.test() in participatory variety selection, for example in
organo-leptic trials in order to judge quality of marketable plant parts. Below is an example of the latter.

library(agricolae)
data(grass)
attach(grass)
out<-friedman(judge,trt, evaluation,alpha=0.05, group=TRUE,console=TRUE,
main="Data of the book of Conover")

##
## Study: Data of the book of Conover
##
## trt, Sum of the ranks
##
## evaluation r
## t1 38.0 12
## t2 23.5 12
## t3 24.5 12
## t4 34.0 12
##
## Friedman's Test
## ===============
## Adjusted for ties
## Value: 8.097345
## Pvalue chisq : 0.04404214
## F value : 3.192198
## Pvalue F: 0.03621547
##
## Alpha : 0.05
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## t-Student : 2.034515
## LSD : 11.48168
##
## Means with the same letter are not significantly different.
## GroupTreatment and Sum of the ranks
## a t1 38
## ab t4 34
## b t3 24.5
## b t2 23.5

detach(grass)

2.6 Graphs for multiple comparisons
The two principal functions here are: bar.group() and bar.err(). We show a short code example here and
the corresponding graphs in Figure 3 and Figure 4.

An up-coming addition is the diffograph (Figure 5 following (Hsu, 1996)). It provides an alternative
way of showing differences between genotypes. Lines crossing the diagonal in this chart are equivalent to
non-significant differences between genotypes.

library(agricolae)
data(sweetpotato)
model<-aov(yield˜virus,data=sweetpotato)
out <- waller.test(model,"virus", console=TRUE,
main="Yield of sweetpotato\ndealt with different virus")

bar.err(out$means,variation="SE",horiz=TRUE,xlim=c(0,45),
bar=FALSE,col=0)

bar.err(out$means,variation="range",ylim=c(0,45),bar=FALSE,col="grey",
main="range")

Figure 3. Error line chart. Figure 4. Error bar chart.

2.7 Stability analysis
Stability analysis in breeding refers to the simultaneous selection for yield and stability across different
environments. Again, two functions are available for parametric and non-parametric cases. The parametric
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Figure 5. A diffograph for multiple comparisons following (Hsu, 1996). Lines are proportional to
differences between genotypes. Lines crossing the diagonal correspond to non-significant differences.

stability function stability.par() implements Shukla’s and Kang’s stability variance (Kang, 1993). The
non-parametric stability function stability.nonpar() implements Hayne’s method (Haynes, 2009).

The stability analysis protocol should be further extended when there is significant interaction between
genotype and environment (Crossa, 1990). Significant interaction exists when the first two component
terms of a principal component analysis sum to more than 50%. In this case, the biplot visualization can
be used; or also a triplot analysis for the first three components. We provide the function plot.AMMI() to
visualize the interaction. The parameter type specifies if a biplot (Figure 6) or triplot (Figure 7) is created.

This same parameter has recently gained another addition to create a third type of graph - the influence
of genotype graph. This is based on the realization that principal components represent an equi-distant
representation and allow the application of spatial procedures. The end result (Figure 8 shows the
relatedness of genotypes based on their multidimensional similarity. The details of this procedure will be
published separately.

Here we elaborate an example of a parametric case, followed by an AMMI analysis.

##AMMI
options(digit=2)
v1 <- c(10.2,8.8,8.8,9.3,9.6,7.2,8.4,9.6,7.9,10,9.3,8.0,10.1,9.4,10.8,
6.3,7.4)
v2 <- c(7,7.8,7.0,6.9,7,8.3,7.4,6.5,6.8,7.9,7.3,6.8,8.1,7.1,7.1,6.4,
4.1)
v3 <- c(5.3,4.4,5.3,4.4,5.5,4.6,6.2,6.0,6.5,5.3,5.7,4.4,4.2,5.6,5.8,
3.9,3.8)
## 55

## [1] 55
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v4 <- c(7.8,5.9,7.3,5.9,7.8,6.3,7.9,7.5,7.6,5.4,5.6,7.8,6.5,8.1,7.5,
5.0,5.4)
v5 <-c(9,9.2,8.8,10.6,8.3,9.3,9.6,8.8,7.9,9.1,7.7,9.5,9.4,9.4,10.3,
8.8,8.7)
study <- data.frame(v1, v2, v3, v4, v5)
rownames(study) <- LETTERS[1:17]
output <- stability.par(study, rep=4, MSerror=2)

altitude<-c(1200, 1300, 800, 1600, 2400)
stability <- stability.par(study,rep=4,MSerror=2, cova=TRUE,
name.cov= "altitude",
file.cov=altitude)

rdto <- c(study[,1], study[,2], study[,3], study[,4], study[,5])
environment <- gl(5,17)
genotype <- rep(rownames(study),5)
model<-AMMI(ENV=environment, GEN=genotype, REP=4, Y=rdto, MSE=2,
console=TRUE)

##
## ANALYSIS AMMI: rdto
## Class level information
##
## ENV: 1 2 3 4 5
## GEN: A B C D E F G H I J K L M N O P Q
## REP: 4
##
## Number of means: 85
##
## Dependent Variable: rdto
##
## Analysis of variance
## Df Sum Sq Mean Sq F value Pr(>F)
## ENV 4 734.2475 183.561882
## REP(ENV) 15
## GEN 16 120.0875 7.505471 3.752735 3.406054e-06
## ENV:GEN 64 181.2725 2.832382 1.416191 3.279630e-02
## Residuals 240 480.0000 2.000000
##
## Coeff var Mean rdto
## 19.16584 7.378824
##
## Analysis
## percent acum Df Sum.Sq Mean.Sq F.value Pr.F
## PC1 38.0 38.0 19 68.96258 3.629609 1.81 0.0225
## PC2 29.8 67.8 17 54.02864 3.178155 1.59 0.0675
## PC3 22.5 90.4 15 40.84756 2.723170 1.36 0.1680
## PC4 9.6 100.0 13 17.43370 1.341054 0.67 0.7915

pc <- model$analysis[, 1]
pc12<-sum(pc[1:2])
pc123<-sum(pc[1:3])
rm(rdto,environment,genotype)

plot(model,type=1,las=1)
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plot(model,type=2,las=1)
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Figure 6. An illustrative biplot graph produced by
agricolae.
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Figure 7. An illustrative triplot graph produced by
agricolae.

Another related visualization is the addition of a contour line which adds a contour line proportional
to the longest distance of a genotype and has a values between 0 and 1 (Figure 9).

library(agricolae)
# see AMMI.
data(sinRepAmmi)
Environment <- sinRepAmmi$ENV
Genotype <- sinRepAmmi$GEN
Yield <- sinRepAmmi$YLD
REP <- 3
MSerror <- 93.24224
model<-AMMI(Environment, Genotype, REP, Yield, MSerror)

# First call the plot function, then AMMI.contour()
plot(model)
AMMI.contour(model,distance=0.7,shape=8,col="red",lwd=2,lty=5)

Based on the AMMI analysis we can calculate the AMMI stability value (ASV) and the Yield stability
value (YSV) using the function index.AMMI() following (Purchase, 1997) and (Sabaghnia and Dehghani,
2008).

index<-index.AMMI(model)
# Crops with improved stability according AMMI.
print(index[order(index[,3]),])

## ASV YSI rASV rYSI means
## Q 0.1559316 18 1 17 5.88
## C 0.3138851 11 2 9 7.44
## N 0.4347076 5 3 2 7.92
## K 0.5205310 19 4 15 7.12
## O 0.5494696 6 5 1 8.30
## (shortened)
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Figure 8. An illustrative ’influence of genotype’
graph Figure 9. An illustrative AMMI contour graph

# Crops with better response and improved stability according AMMI.
print(index[order(index[,4]),])

## ASV YSI rASV rYSI means
## O 0.5494696 6 5 1 8.30
## N 0.4347076 5 3 2 7.92
## G 0.6905095 13 10 3 7.90
## A 0.5909737 11 7 4 7.86
## H 0.6959572 16 11 5 7.68
## (shortened)

2.8 Quality of field experiments
An important assumption in field experiments is the homogeneity of soil across plots. To test this
hypothesis the Smith index (Gomez and Gomez, 1976) has been developed and has been implemented in
the function index.smith() (Figure 10).

An indicator of field experiment quality is the coefficient of variation. It is easily calculated using the
function cv.model().

If there are doubts about the adequateness of a simple model this can be tested for non-additive effects.
Based on Tukey’s test, the function nonadditivity() can here be of use.

When there is an indication that errors have a non-normal distribution in a variance analysis, the
probability and significance of different sources can be calculated using resampling.model().

The function simulation.model() helps to assess the proportion of valid results of an ANOVA by
generating pseudo-experimental errors under the assumption of normality.

2.9 Genetic designs and their analysis
Genetic designs here are mating designs used in breeding. These designs originated at the North Carolina
State University (NCSU) and comprise three designs. All of them can be created via the single function
carolina(). The function lineXtester() can be applied to analyze the data obtained for these designs. The
main reference is (Singh, 1979).

An example is listed here:

11/17

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1404v1 | CC-BY 4.0 Open Access | rec: 29 Sep 2015, publ: 29 Sep 2015



Figure 10. An illustrative figure based on
index.smith(). Figure 11. An illustrative figure based on audps().

library(agricolae)
# example 1
data(heterosis)
names(heterosis)[2:3] = c("Rep", "Treat")
head(heterosis)

## Place Rep Treat Factor Female Male v1 v2 v3 v4 v5
## 1 1 1 1 progenie LT-8 TS-15 0.948 1.65 17.22 9.93 102.58
## 2 1 1 2 progenie LT-8 TPS-13 1.052 2.20 17.84 12.45 107.37
## 3 1 1 3 progenie LT-8 TPS-67 1.050 1.88 15.61 9.30 120.49
## 4 1 1 4 progenie TPS-2 TS-15 1.058 2.00 16.04 12.77 83.78
## 5 1 1 5 progenie TPS-2 TPS-13 1.123 2.45 16.48 14.13 90.40
## 6 1 1 6 progenie TPS-2 TPS-67 1.115 2.63 18.72 14.60 81.79

site1<-subset(heterosis,heterosis[,1]==1)
attach(site1)
output1<-lineXtester(Rep, Female, Male, v2)

##
## ANALYSIS LINE x TESTER: v2
##
## ANOVA with parents and crosses
## ==============================
## Df Sum Sq Mean Sq F value Pr(>F)
## Replications 2 0.002674074 0.001337037 0.088 0.9159
## Treatments 35 29.135740741 0.832449735 54.763 0.0000
## Parents 11 21.221688889 1.929244444 126.917 0.0000
## Parents vs. Crosses 1 1.692474074 1.692474074 111.341 0.0000
## Crosses 23 6.221577778 0.270503382 17.795 0.0000
## Error 70 1.064059259 0.015200847
## Total 107 30.202474074
##
## ANOVA for line X tester analysis
## ================================
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## Df Sum Sq Mean Sq F value Pr(>F)
## Lines 7 4.3497111 0.62138730 9.078 0.0003
## Testers 2 0.9135444 0.45677222 6.673 0.0092
## Lines X Testers 14 0.9583222 0.06845159 4.503 0.0000
## Error 70 1.0640593 0.01520085
##
## ANOVA for line X tester analysis including parents
## ==================================================
## Df Sum Sq Mean Sq F value Pr(>F)
## Replications 2 0.002674074 0.001337037 0.088 0.9159
## Treatments 35 29.135740741 0.832449735 54.763 0.0000
## Parents 11 21.221688889 1.929244444 126.917 0.0000
## Parents vs. Crosses 1 1.692474074 1.692474074 111.341 0.0000
## Crosses 23 6.221577778 0.270503382 17.795 0.0000
## Lines 7 4.349711111 0.621387302 9.078 0.0003
## Testers 2 0.913544444 0.456772222 6.673 0.0092
## Lines X Testers 14 0.958322222 0.068451587 4.503 0.0000
## Error 70 1.064059259 0.015200847
## Total 107 30.202474074
##
## GCA Effects:
## ===========
## Lines Effects:
## Achirana LT-8 MF-I MF-II Serrana TPS-2 TPS-25 TPS-7
## 0.143 -0.346 -0.134 -0.169 0.394 -0.016 0.321 -0.194
##
## Testers Effects:
## TPS-13 TPS-67 TS-15
## 0.104 0.052 -0.156
##
## SCA Effects:
## ===========
## Testers
## Lines TPS-13 TPS-67 TS-15
## Achirana -0.010 0.002 0.008
## LT-8 0.186 -0.042 -0.144
## MF-I -0.059 0.070 -0.011
## MF-II -0.021 0.055 -0.034
## Serrana -0.241 0.008 0.233
## TPS-2 -0.044 0.101 -0.057
## TPS-25 0.136 -0.259 0.123
## TPS-7 0.054 0.064 -0.118
##
## Standard Errors for Combining Ability Effects:
## =============================================
## S.E. (gca for line) : 0.04109724
## S.E. (gca for tester) : 0.02516682
## S.E. (sca effect) : 0.0711825
## S.E. (gi - gj)line : 0.05812027
## S.E. (gi - gj)tester : 0.03559125
## S.E. (sij - skl)tester: 0.1006673
##
## Genetic Components:
## ==================
## Cov H.S. (line) : 0.0614373
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Figure 12. An illustrative figure based on
consensus().

Figure 13. An illustrative figure based on
lateblight().

## Cov H.S. (tester) : 0.01618003
## Cov H.S. (average): 0.004651843
## Cov F.S. (average): 0.1223343
## F = 0, Adittive genetic variance: 0.01860737
## F = 1, Adittive genetic variance: 0.009303686
## F = 0, Variance due to Dominance: 0.03550049
## F = 1, Variance due to Dominance: 0.01775025
##
## Proportional contribution of lines, testers
## and their interactions to total variance
## ===========================================
## Contributions of lines : 69.91331
## Contributions of testers: 14.68349
## Contributions of lxt : 15.4032

detach(site1)

2.10 Other biological analyses
Here we just briefly mention tools useful in biodiversity analysis and genetic dendrogram verification.
They include: index.bio() and consensus(). The function index.bio() calculates several indices (Magurran,
1988) and also their confidence intervals using bootstrap (Tibshirani, 1993). The function consensus()
uses bootstrap to calculate relative frequencies (Figure 12). As a side effect, the function also filters out
exact duplicates. It provides access to a variety of distances and methods; please refer to the package
documentation for more details.

Similarly, the function path.analysis() is included for convenience and can help to elucidate complex
relationships between biological co-variates and response variables.

A couple of functions (audpc() and audps() is useful for analyzing disease progress. A recent addition
is audps() (Simko and Piepho, 2011). It improves upon the AUDPC approach by giving a weight closer to
optimal to the first and last observations; see Figure 11.

A last very specific function models the disease curve of late blight Phytophthora infestans. latebligh()
simulates the effect of weather, host growth and resistance, and fungicide use on asexual development
and growth of this oomycete on potato foliage (Figure 13). For detailed references see the package
documentation.
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2.11 Usage and reception
A first result of being part of the R package developer’s community was it’s external feedback. Early on,
agricolae was prominently mentioned on the R task view section on ’Experimental Design’ https://
cran.r-project.org/web/views/ExperimentalDesign.html and listed there as a ’core’
package since about 2008.

The main result from the user survey was that users were satisfied as indicated by an Ikert index of
0.81.

The Google Scholar data indicate that the package is increasingly accepted and cited as indicated
by the exponential growth curve in Fig. 14. Currently, a total of 179 citations are reported by Google
Scholar. Examples of usage from an incomplete list include in horticulture (Merk et al., 2012), (George
et al., 2014); in biological conservation (Giroldo and Scariot, 2015); in cancer research: (Martınez et al.,
2013); in aquaculture: (Bergström et al., 2015); in ecosystems and environment (Schwab et al., 2015).

As can be seen in Fig. 15 the package has also had an increasing trend of installations over the
past three years. The absolute numbers are only indicative since the counts are only registered via one
download server. Also, the records for 2012 reflect only the last quarter of that year, whereas for 2015
the downloads for the last quarter are still missing as per time of writing (September, 2015). The total
reported here are 77447 downloads.

Figure 14. Agricolae citations as registered
through Google Scholar.

Figure 15. Agricolae downloads as registered
through RStudio.

Lastly, an increasing list of developers working on breeding databases include agricolae in the backend
- often as part of a toolchain to create fieldbooks. This list of breeding database includes to the best of
our knowledge the: Integrated Breeding Platform (IBP, https://www.integratedbreeding.
net/), the Cassavabase (http://www.cassavabase.org/, and the KDdart (http://www.
diversityarrays.com/kddart).

3 DISCUSSION
As anticipated, the development of agricolae has filled a niche and has become a useful tool to encapsulate
personal knowledge in an explicit and transparent way. It serves to share best practices in it’s application
domain with national collaborators and beyond. It is increasingly used beyond breeding or agricultural use
cases. It seems the R platform (an example of an open source model) has facilitated knowledge transfer
and sharing. The constant external review of packages by the central R maintainers as well as review by
use also stimulates the regular updates including improvements to the tool and improvements of personal
professional skills as statistician and programmer. Lastly, the package is increasingly used in the wider
biological community testifying to it’s general utility. In summary, the development of agricolae has been
rewarding at a professional, institutional and community level.
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agricolae along with data sets is available from the R community repository https://cran.
r-project.org/web/packages/agricolae/index.html.
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