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Sparc: a sparsity-based consensus algorithm for long

erroneous sequencing reads

Chengxi Ye, Sam Ma

Motivation: The third generation sequencing (3GS) technology generates long sequences

of thousands of bases. However, its error rates are estimated in the range of 15-40%,

much higher than the previous generation (approximately 1%). Fundamental tasks such as

genome assembly and variant calling require us to obtain high quality sequences from

these long erroneous sequences. Results: In this paper we describe a versatile and

efficient linear complexity consensus algorithm Sparc that builds a sparse k-mer graph

using a collection of sequences from the same genomic region. The heaviest path

approximates the most likely genome sequence (consensus) and is sought through a

sparsity-induced reweighted graph. Experiments show that our algorithm can efficiently

provide high-quality consensus sequences with error rate <0.5% using both PacBio and

Oxford Nanopore sequencing technologies. Compared with the existing approaches, Sparc

calculates the consensus with higher accuracy, uses 80% less memory, and is 5x faster,

approximately. Availability: The source code is available for download at

http://sourceforge.net/p/sparc-consensus/code/ and a testing dataset is available:

https://www.dropbox.com/sh/trng8vdaeqywx1e/AAASJesLVAJZcbORkU9f4LuBa?dl=0

(Please copy the link to a browser to access if directly clicking the link fails)
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ABSTRACT 

Motivation: The third generation sequencing (3GS) technology 

generates long sequences of thousands of bases. However, its error 

rates are estimated in the range of 15-40%, much higher than the 

previous generation (approximately 1%). Fundamental tasks such as 

genome assembly and variant calling require us to obtain high qual-

ity sequences from these long erroneous sequences. 

Results: In this paper we describe a versatile and efficient linear 

complexity consensus algorithm Sparc that builds a sparse k-mer 

graph using a collection of sequences from the same genomic re-

gion. The heaviest path approximates the most likely genome se-

quence (consensus) and is sought through a sparsity-induced 

reweighted graph. Experiments show that our algorithm can effi-

ciently provide high-quality consensus sequences with error rate 

<0.5% using both PacBio and Oxford Nanopore sequencing tech-

nologies. Compared with the existing approaches, Sparc calculates 

the consensus with higher accuracy, uses 80% less memory, and is 

5x faster, approximately.  

Availability: The source code is available for download at 

http://sourceforge.net/p/sparc-consensus/code/  

and a testing dataset is available:  

https://www.dropbox.com/sh/trng8vdaeqywx1e/AAASJesLVAJZcbO

RkU9f4LuBa?dl=0 (Please copy the link to a browser to access if 

directly clicking the link fails) 

1 INTRODUCTION  

Three generations of DNA sequencing technologies have been 

developed in the last three decades, and we are at the crossroads of 

the second and third generation of the sequencing technologies. 

Compared with the previous generations, the third generation se-

quencing (3GS) can provide reads from 5-120 kilo-bases in one 

fragment. However, at present, the reported error rates are in the 

range of 15%-40%; this poses arguably the most significant chal-

lenge for assembling genome with the 3GS reads.  

Genome assembly is the computational problem of producing 
longer and high quality fragments, known as contigs, by analyzing 
the overlap relations between the reads (Myers, et al., 2000; 
Pevzner, et al., 2001).  With the 3GS data, genome assembly needs 
to pass through three major bottlenecks: finding overlaps (Berlin, 
et al., 2014; Ye, et al., 2014), sequence alignment (Chaisson and 

Tesler, 2012; Myers, 2014) and sequence polishing/error correction. 
Efficiently correcting these long erroneous reads is a non-trivial 
problem (Au, et al., 2012; Hackl, et al., 2014; Koren, et al., 2012; 
Salmela and Rivals, 2014). Given a target genomic region, fast 
algorithms are required to collect the query sequences that can be 
aligned to the target region, and an accurate aligner is necessary to 
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exploit the layout relations of the query sequences. Finally, another 
polishing/consensus algorithm takes the layout information to infer 
the ‘ground truth’ sequence.  

The consensus algorithm is critical for genome assembly in mul-
tiple ways. First, consensus algorithm is part of the assembler and 
necessary to produce high quality outputs. Second, the consensus 
algorithm can also be used to provide higher quality inputs to the 
off-the-shelf assemblers for the first and next generation sequences 
(Huang, et al., 2003; Mullikin and Ning, 2003; Myers, et al., 
2000), which were designed for highly accurate sequences (often 
requiring the sequence accuracy >95%). Third, recent assembly 
advancements resort to an error correction procedure (Au, et al., 
2012; Hackl, et al., 2014; Koren, et al., 2012; Salmela and Rivals, 
2014) to raise the per-base accuracy in the input sequences. The 
consensus algorithm can also be used to correct each individual 
read, and those corrected reads become high quality inputs, and are 
fed into existing Overlap-Layout-Consensus based assemblers. In 
this third scenario, each long erroneous read is treated as the target; 
sequences from either NGS or 3GS may be used as the query se-
quences. Nevertheless, due to the lack of efficient consensus algo-
rithm, this step is usually circumvented by simpler approaches 
such as replacing regions in the target sequences with the NGS 
reads or assemblies. Unfortunately, errors in the NGS sequences 
may corrupt the originally correct 3GS sequences and create un-
wanted consensus errors in the final assembly. Fourth, it is also 
noteworthy that the polishing step in genome assembly pipelines 
often takes the largest portion of the computational time if the 
consensus is inefficient (Berlin, et al., 2014; Chin, et al., 2013; 
Lee, et al., 2014). Therefore an efficient consensus algorithm can 
significantly accelerate the whole genome assembly process. 

Most existing consensus algorithms were designed for sequences 
with error rates lower than 5% (Huang, et al., 2003; Mullikin and 
Ning, 2003; Rausch, et al., 2009). Traditional multiple sequence 
alignment, known to be a computationally challenging task is used 
to find the layout and construct a sequence alignment graph 
(Edgar, 2004; Larkin, et al., 2007; Lee, et al., 2002; Rausch, et al., 
2009). Alignments are refined and clustered to infer the alignment 
profile as the consensus in the target region. The higher error rates 
lead to much higher complexities with these traditional ap-
proaches. To lower the complexity, researchers have tried to sim-
plify the multiple sequence alignment by aligning all query se-
quences to a backbone sequence and creating a multigraph repre-
senting the alignment graph (Chin, et al., 2013). Graph simplifica-
tions are applied to merge the multiple edges and the best scored 
path is found as the consensus sequence. Each graph node in this 
work is a nucleotide base. For NGS data, a similar strategy using 
the de Bruijn graph has been developed (Ronen, et al., 2012) to 
correct the assembly errors in single cell sequence assembly.  

In this work, we borrow wisdom from the well-known de 
Bruijn/k-mer graph (Hannenhalli, et al., 1996; Pevzner, et al., 
2001; Ronen, et al., 2012) and develop a simpler graph formulation 
of the consensus problem. Improvements upon the k-mer graphs 
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could potentially be used to facilitate the construction of the new 
graph. Based on this we provide a general and versatile ‘Sparc’ 
algorithm to polish long erroneous reads. We build a regular graph 
(i.e., non-multigraph) directly from the sequences and search for 
the consensus from a sparsity-induced reweighted graph. Each 
node in our regular graph is a k-mer. The graph is allowed to be 
‘sparse’ (Ye, et al., 2012) to avoid using excessive memory to store 
false k-mers. The links/edges between the k-mers are found by 
analyzing each read. Edge weight represents the confidence in the 
link. Intuitively, a path with the highest sum of edge weights is a 
good approximation of the consensus. We explain this in detail in 
the next section. We show that the proposed algorithm can provide 
superb results without utilizing any graph simplification tech-
niques. Sparc also supports hybrid data and provides high quality 
(error rate <0.5%) results with Oxford Nanopore sequencing reads. 
Due to the simplicity, the algorithm is five times faster and uses 
five times less memory space compared to existing programs such 
as PBdagcon (Chin, et al., 2013).  

2 METHODS 

Sparc consists of the following four simple steps (Fig. 1): (i) Build 
an initial position specific (sparse) k-mer graph (Ye, et al., 2012) 
using the draft assembly/backbone sequence. (ii) Align sequences 
to the backbone to continue the construction of the graph. (iii) 
Adjust the edge weights using a sparse penalty. (iv) Search for a 
heaviest path and output the consensus sequence. 

2.1 Building the initial graph 

We use k-mers to encode the local structure of the genomic region. 
Sparc takes a preassembled draft assembly/backbone to build an 
initial k-mer graph (Fig. 1a). The k-mers in different positions of 
the backbone are treated as independent nodes. Note that this is the 
major difference between the position specific k-mer graph and the 
prevalent de Bruijn graphs in genome assembly, in which the same 
k-mers in different locations are collapsed. In the consensus con-
text, k-mers located at different positions are treated independently. 
It is noteworthy that allocating k-mers in each location can take a 
large amount of memory, especially in the next stage. To circum-
vent this problem, we construct a sparse k-mer graph (Ye, et al., 
2012) by storing a k-mer in every g bases, which reduces the 
memory consumption up to 1/g. We also record the edge links 
between the k-mer nodes. The edge weight represents the confi-
dence in the corresponding path. We use coverage to represent 
confidence for simplicity. A generalization using quality score is 
straightforward. 

2.2 Aligning sequences to the backbone and building 

the whole graph 

Sequences that align to the backbone sequence provide rich in-
formation about the ground truth sequence. Ideally, we should 
search for a most likely genome sequence as the consensus given 
all the input sequences. However, utilizing the multi-sequence 
information comprehensively requires computationally expensive 
operations such as pair-wise alignment of all the related sequences 
(Edgar, 2004; Larkin, et al., 2007; Lee, et al., 2002; Rausch, et al., 
2009). Here we adopt a simpler strategy as in PBdagcon (Chin, et 
al., 2013), by aligning all the sequences to the backbone, and mod-
ify the existing graph according to the alignments. Rather than 
creating an intermediate graph that needs to be refined or simpli-
fied (Chin, et al., 2013; Rausch, et al., 2009), we construct a graph 

that can be used directly. We borrow the wisdom from construct-
ing a de Bruijn/k-mer graph (Pevzner, et al., 2001; Ye, et al., 
2012): (1) if a query region suggests a novel path/variant, we cre-
ate a branch and allocate new k-mer nodes and edges that link 
these nodes (Fig. 1b, upper half). (2) If a query region perfectly 
aligns to an existing region in the graph, we merge all the nodes 
and edges in the region and increase the edges weights (Fig. 1b, 
bottom half). As previously mentioned, this construction process 
shares similarity with constructing a de Bruijn graph, but the nodes 
in our graph are “position specific”. In addition, if a sequence 
(such as from NGS sequencing, in a hybrid assembly setting) is of 
higher quality, we assign higher weights to the corresponding 
edges. This position specific k-mer graph contains rich information 
about the underlying genomic region. Next we describe another 
simple technique to extract the most likely sequence as the consen-
sus. 

 

 
Fig. 1. A toy example of constructing the position specific sparse 
k-mer graph. (a) The initial k-mer graph of the backbone. (b) Add-
ing two sequences to the graph. (c) The heaviest path representing 
the consensus is found by graph traversal (original weights are 
used in this example). 

2.3 Adjusting the weights of the graph 

Intuitively, a path in the k-mer graph is likely to be genuine if it 
is supported by multiple sequences. Based on this intuition, we 
should search for a path in the graph with the highest confidence, 
i.e. the largest sum of edge weights. However, direct implementa-
tion of this strategy may result in erroneous outputs. A simple ex-
ample is a long insertion error: the sum of weights of this errone-
ous path is high even though there is only one supporting se-
quence. To circumvent this type of error, we reduce the edge 
weight by a small amount. This amount is adaptively determined 
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with consideration of the sequencing coverage in each region. This 
technique, also known as soft thresholding (Mallat, 2008), is 
equivalent to put a l

1
-penalty on the edge weights. With this sparse 

penalty, the low coverage long insertion errors will be less likely to 
be favored compared to the genuine sequences.  

2.4 Output the heaviest path as the consensus 

With the adjusted weights, we use the breadth-first search to 
search for a heaviest path that links the start node and the end node 
of the backbone. We then backtrack from the highest scored node 
in this path to the first node that has positive weight sum. This sub-
path is output as the consensus path (Fig. 1c).  

2.5 The complexity of sparc 

The complexities of the above procedures described in subsec-
tions 2.1-2.4 are linear with the data size. Sparc allows for taking 
different k-mer sizes (k) and skip sizes (g). Setting k to a smaller 
value makes the consensus more sensitive and can recover weaker 
alignments, while setting k to larger values helps to avoid spurious 
alignments. In our experiments we found that using k = 1-3, g = 1-
5 is sufficient for practical purposes. It is noteworthy due to high 
error rate in 3GS data, we use very small k-mers to have sufficient 
matching anchors in the k-mer graph, unlike in common de Bruijn 
graphs. Assembly using hybrid data can reduce the requirement of 
coverage of the 3GS data, which significantly reduces the sequenc-
ing cost. Since the NGS data has much higher accuracy, including 
the data into the consensus also improves the quality. Sparc is de-
signed to take advantage of the hybrid sequencing data, and lever-
age more weight to the high quality paths. Currently we rely on 
Blasr to provide long read alignment information (Chaisson and 
Tesler, 2012). Sparc takes as input a backbone file in fasta format 
and the Blasr alignment results. To avoid multiple placement of a 
query read, each read is mapped to one best matching region in the 
backbone. Finally, reusing the consensus result as the input and 
iteratively running the consensus algorithm helps to improve the 
accuracy even more (shown in he Results section).  

3 RESULTS 

Sparc has been tested on a variety of datasets. Here we demon-

strate the test results from two PacBio datasets 

(http://schatzlab.cshl.edu/data/ectools/) and one Oxford Nanopore 

dataset (http://gigadb.org/dataset/100102). Sparc is designed to be 

a base-level consensus algorithm, while there are platform-specific 

ones that take into account signal-level information such as Quiver 

(for PacBio), and Nanopolish (for Oxford Nanopore). These pro-

grams usually take the outputs of the base-level ones as inputs to 

further improve the accuracy. As a fair comparison, we demon-

strate results side by side with the most similar program to ours, 

which is PBdagcon (Chin, et al., 2013). PBdagcon is the major 

module that is intensively used in HGAP (Chin, et al., 2013) and 

MHAP (Berlin, et al., 2014) pipelines to correct reads and generate 

consensus using base-level information. We therefore show the 

comparative results of both programs on these datasets. Both pro-

grams were fed with the same input data. We generated assembly 

backbones and collect the related reads for each backbone using 

DBG2OLC (Ye, et al., 2014). Blasr (Chaisson and Tesler, 2012) 

was called (with option –m 5) to obtain the alignments. The final 

consensus error rates were calculated using the dnadiff function in 

MUMmer 3 (Kurtz, et al., 2004). We conducted all our experi-

ments on a workstation with AMD Opteron 2425 HE CPUs (@ 

800MHz frequency). In our hybrid consensus experiments, we 

used the Illumina assembly contigs by SparseAssembler (Ye, et al., 

2012) and increase the edge weights by 5.  

 

On PacBio datasets, we set k = 1, g = 1, and ran the consensus 

algorithms for two rounds. The per-base error rates for the first 

round and the second round were reported as Err1 and Err2 in Ta-

bles 1&2, respectively. In the first experiment, we used an E. coli 

PacBio dataset and tested the accuracy using different sequencing 

coverages. The longest backbones generated by DBG2OLC using 

10x/30x data were 1.3Mb and 4.6Mbp respectively. The E. coli 

genome reference (4.6 Mbp) can be found with accession number 

NC_000913. Sparc reached an error rate of 0.09% using only 10x 

data in a hybrid setting in contrast of 0.64% with PBdagcon. As 

expected, the quality is even better with 30x data (0.02%). The 

error rates of using PacBio (PB) data only (i.e. non-hybrid) were 

slightly higher as expected.  

Table 1. Results on an E. coli dataset using PacBio sequencing 

Program Coverage Time Memory Err1 Err2 

Sparc 10x PB 0.5 308MB 1.95% 1.51% 

PBdagcon 10x PB 3.0 1.10GB 1.95% 1.52% 

Sparc 10x Hybrid 0.5 237MB 0.19% 0.09% 

PBdagcon 10x Hybrid 3.0 1.23GB 1.02% 0.64% 

Sparc 30x PB 1.3 2.30GB 0.41% 0.16% 

PBdagcon 30x PB 9.3 7.70GB 0.49% 0.23% 

Sparc 30x Hybrid 1.3 2.14GB 0.17% 0.02% 

PBdagcon 30x Hybrid 9.7 9.58GB 0.49% 0.18% 

 

Sparc scales well to larger datasets; we show here the performance 

of Sparc and PBdagcon on a larger 20x PacBio A. thaliana dataset 

(genome size 120 Mbp). The longest backbone generated by 

DBG2OLC was 7.1 Mbp. Sparc finished with 1/5
th

 time and mem-

ory compared with PBdagcon while producing more accurate re-

sults. Here we used a pure PacBio full genome assembly generated 

by MHAP (Berlin, et al., 2014) as the reference to calculate the 

error rates.  

Table 2. Results on an A. thaliana dataset using PacBio sequencing 

Program Coverage Time Memory Err1 Err2 

Sparc 20x Hybrid 21m 1.7GB 0.36% 0.19% 

PBdagcon 20x Hybrid 123m 8.9GB 0.81% 0.53% 

 

 

On an Oxford Nanopore dataset, we set k = 2, g = 2 and ran the 

consensus algorithms for four rounds in consideration of the higher 

error rate. The per base error rates for the first round and the fourth 

round are reported as Err1 and Err2 in Table 3. The results using 

Oxford Nanopore (ON) data only and using hybrid data are re-

ported in rows 1,2 and rows 3,4 respectively. We noticed that with 

Oxford Nanopore data, Sparc obtained significantly lower error 

rate using hybrid data. Below 0.5% error rate was reached even 

though the raw error rate could be as high as 40%. In contrast, non-
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hybrid consensus generated less usable results due to this excessive 

error rate. The longest backbone in this test was 4.6Mbp. 

Table 3. Results on an E. coli dataset using Oxford Nanopore sequencing. 

Program Coverage Time Memory Err1 Err2 

Sparc 30x ON 2.3m 1.89GB 11.96% 7.47% 

PBdagcon 30x ON 10.0m 8.38GB 13.70% 12.86% 

Sparc 30x Hybrid 3.3m 1.86GB 0.72% 0.46% 

PBdagcon 30x Hybrid 13.2m 9.56GB 11.20% 9.96% 

 

We also tested the memory, time and quality of using different 

parameters. We varied the parameters in the second round of the 

30x PacBio E. coli dataset using PacBio data only. We found that 

the results are comparable with some slight differences: using a 

slightly larger k-mer size increases the per-base accuracy, as more 

strict matches are enforced. However, this also increases the mem-

ory consumption because more branching nodes are created. Set-

ting a larger g helps to reduce the memory consumption (Table 4).  

Table 4. Memory and quality comparisons using different parameters  

K g Time Memory Error rate 

1 1 43s 2.3GB 0.16% 

2 1 55s 3.5GB 0.14% 

1 2 59s 1.6GB 0.18% 

2 2 68s 2.3GB 0.13% 

 

 

CONCLUSION 

Consensus module is a critical component in the Overlap-Layout-

Consensus assembly framework. With the introduction of the third 

generation sequencing technology, its importance is further raised. 

In this work we demonstrated a simple but efficient consensus 

algorithm that uses k-mers as building blocks and produces high 

quality consensus from a position-specific k-mer graph. The pro-

posed method is expected to significantly expand its applications 

in error correction and variant discovery. The consensus quality 

can also be increased further by incorporating platform specific 

signal-level information.  
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