

A peer-reviewed version of this preprint was published in PeerJ
on 8 June 2016.

View the peer-reviewed version (peerj.com/articles/2016), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Ye C, Ma Z. 2016. Sparc: a sparsity-based consensus algorithm for long
erroneous sequencing reads. PeerJ 4:e2016
https://doi.org/10.7717/peerj.2016

https://doi.org/10.7717/peerj.2016
https://doi.org/10.7717/peerj.2016

Sparc: a sparsity-based consensus algorithm for long

erroneous sequencing reads

Chengxi Ye, Sam Ma

Motivation: The third generation sequencing (3GS) technology generates long sequences

of thousands of bases. However, its error rates are estimated in the range of 15-40%,

much higher than the previous generation (approximately 1%). Fundamental tasks such as

genome assembly and variant calling require us to obtain high quality sequences from

these long erroneous sequences. Results: In this paper we describe a versatile and

efficient linear complexity consensus algorithm Sparc that builds a sparse k-mer graph

using a collection of sequences from the same genomic region. The heaviest path

approximates the most likely genome sequence (consensus) and is sought through a

sparsity-induced reweighted graph. Experiments show that our algorithm can efficiently

provide high-quality consensus sequences with error rate <0.5% using both PacBio and

Oxford Nanopore sequencing technologies. Compared with the existing approaches, Sparc

calculates the consensus with higher accuracy, uses 80% less memory, and is 5x faster,

approximately. Availability: The source code is available for download at

http://sourceforge.net/p/sparc-consensus/code/ and a testing dataset is available:

https://www.dropbox.com/sh/trng8vdaeqywx1e/AAASJesLVAJZcbORkU9f4LuBa?dl=0

(Please copy the link to a browser to access if directly clicking the link fails)

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1401v1 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015

 1ठ⃚

Sparc: a sparsity-based consensus algorithm for long erroneous

sequencing reads

Chengxi Ye1,*, Zhanshan (Sam) Ma2,*
1Department of Computer Science, University of Maryland, College Park, MD 20740, USA.
2Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution,

Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.

ABSTRACT

Motivation: The third generation sequencing (3GS) technology

generates long sequences of thousands of bases. However, its error

rates are estimated in the range of 15-40%, much higher than the

previous generation (approximately 1%). Fundamental tasks such as

genome assembly and variant calling require us to obtain high qual-

ity sequences from these long erroneous sequences.

Results: In this paper we describe a versatile and efficient linear

complexity consensus algorithm Sparc that builds a sparse k-mer

graph using a collection of sequences from the same genomic re-

gion. The heaviest path approximates the most likely genome se-

quence (consensus) and is sought through a sparsity-induced

reweighted graph. Experiments show that our algorithm can effi-

ciently provide high-quality consensus sequences with error rate

<0.5% using both PacBio and Oxford Nanopore sequencing tech-

nologies. Compared with the existing approaches, Sparc calculates

the consensus with higher accuracy, uses 80% less memory, and is

5x faster, approximately.

Availability: The source code is available for download at

http://sourceforge.net/p/sparc-consensus/code/

and a testing dataset is available:

https://www.dropbox.com/sh/trng8vdaeqywx1e/AAASJesLVAJZcbO

RkU9f4LuBa?dl=0 (Please copy the link to a browser to access if

directly clicking the link fails)

1 INTRODUCTION

Three generations of DNA sequencing technologies have been

developed in the last three decades, and we are at the crossroads of

the second and third generation of the sequencing technologies.

Compared with the previous generations, the third generation se-

quencing (3GS) can provide reads from 5-120 kilo-bases in one

fragment. However, at present, the reported error rates are in the

range of 15%-40%; this poses arguably the most significant chal-

lenge for assembling genome with the 3GS reads.

Genome assembly is the computational problem of producing
longer and high quality fragments, known as contigs, by analyzing
the overlap relations between the reads (Myers, et al., 2000;
Pevzner, et al., 2001). With the 3GS data, genome assembly needs
to pass through three major bottlenecks: finding overlaps (Berlin,
et al., 2014; Ye, et al., 2014), sequence alignment (Chaisson and

Tesler, 2012; Myers, 2014) and sequence polishing/error correction.
Efficiently correcting these long erroneous reads is a non-trivial
problem (Au, et al., 2012; Hackl, et al., 2014; Koren, et al., 2012;
Salmela and Rivals, 2014). Given a target genomic region, fast
algorithms are required to collect the query sequences that can be
aligned to the target region, and an accurate aligner is necessary to

*To whom correspondence should be addressed.

exploit the layout relations of the query sequences. Finally, another
polishing/consensus algorithm takes the layout information to infer
the ‘ground truth’ sequence.

The consensus algorithm is critical for genome assembly in mul-
tiple ways. First, consensus algorithm is part of the assembler and
necessary to produce high quality outputs. Second, the consensus
algorithm can also be used to provide higher quality inputs to the
off-the-shelf assemblers for the first and next generation sequences
(Huang, et al., 2003; Mullikin and Ning, 2003; Myers, et al.,
2000), which were designed for highly accurate sequences (often
requiring the sequence accuracy >95%). Third, recent assembly
advancements resort to an error correction procedure (Au, et al.,
2012; Hackl, et al., 2014; Koren, et al., 2012; Salmela and Rivals,
2014) to raise the per-base accuracy in the input sequences. The
consensus algorithm can also be used to correct each individual
read, and those corrected reads become high quality inputs, and are
fed into existing Overlap-Layout-Consensus based assemblers. In
this third scenario, each long erroneous read is treated as the target;
sequences from either NGS or 3GS may be used as the query se-
quences. Nevertheless, due to the lack of efficient consensus algo-
rithm, this step is usually circumvented by simpler approaches
such as replacing regions in the target sequences with the NGS
reads or assemblies. Unfortunately, errors in the NGS sequences
may corrupt the originally correct 3GS sequences and create un-
wanted consensus errors in the final assembly. Fourth, it is also
noteworthy that the polishing step in genome assembly pipelines
often takes the largest portion of the computational time if the
consensus is inefficient (Berlin, et al., 2014; Chin, et al., 2013;
Lee, et al., 2014). Therefore an efficient consensus algorithm can
significantly accelerate the whole genome assembly process.

Most existing consensus algorithms were designed for sequences
with error rates lower than 5% (Huang, et al., 2003; Mullikin and
Ning, 2003; Rausch, et al., 2009). Traditional multiple sequence
alignment, known to be a computationally challenging task is used
to find the layout and construct a sequence alignment graph
(Edgar, 2004; Larkin, et al., 2007; Lee, et al., 2002; Rausch, et al.,
2009). Alignments are refined and clustered to infer the alignment
profile as the consensus in the target region. The higher error rates
lead to much higher complexities with these traditional ap-
proaches. To lower the complexity, researchers have tried to sim-
plify the multiple sequence alignment by aligning all query se-
quences to a backbone sequence and creating a multigraph repre-
senting the alignment graph (Chin, et al., 2013). Graph simplifica-
tions are applied to merge the multiple edges and the best scored
path is found as the consensus sequence. Each graph node in this
work is a nucleotide base. For NGS data, a similar strategy using
the de Bruijn graph has been developed (Ronen, et al., 2012) to
correct the assembly errors in single cell sequence assembly.

In this work, we borrow wisdom from the well-known de
Bruijn/k-mer graph (Hannenhalli, et al., 1996; Pevzner, et al.,
2001; Ronen, et al., 2012) and develop a simpler graph formulation
of the consensus problem. Improvements upon the k-mer graphs

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1401v1 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015

 Ye & Ma

2

could potentially be used to facilitate the construction of the new
graph. Based on this we provide a general and versatile ‘Sparc’
algorithm to polish long erroneous reads. We build a regular graph
(i.e., non-multigraph) directly from the sequences and search for
the consensus from a sparsity-induced reweighted graph. Each
node in our regular graph is a k-mer. The graph is allowed to be
‘sparse’ (Ye, et al., 2012) to avoid using excessive memory to store
false k-mers. The links/edges between the k-mers are found by
analyzing each read. Edge weight represents the confidence in the
link. Intuitively, a path with the highest sum of edge weights is a
good approximation of the consensus. We explain this in detail in
the next section. We show that the proposed algorithm can provide
superb results without utilizing any graph simplification tech-
niques. Sparc also supports hybrid data and provides high quality
(error rate <0.5%) results with Oxford Nanopore sequencing reads.
Due to the simplicity, the algorithm is five times faster and uses
five times less memory space compared to existing programs such
as PBdagcon (Chin, et al., 2013).

2 METHODS

Sparc consists of the following four simple steps (Fig. 1): (i) Build
an initial position specific (sparse) k-mer graph (Ye, et al., 2012)
using the draft assembly/backbone sequence. (ii) Align sequences
to the backbone to continue the construction of the graph. (iii)
Adjust the edge weights using a sparse penalty. (iv) Search for a
heaviest path and output the consensus sequence.

2.1 Building the initial graph

We use k-mers to encode the local structure of the genomic region.
Sparc takes a preassembled draft assembly/backbone to build an
initial k-mer graph (Fig. 1a). The k-mers in different positions of
the backbone are treated as independent nodes. Note that this is the
major difference between the position specific k-mer graph and the
prevalent de Bruijn graphs in genome assembly, in which the same
k-mers in different locations are collapsed. In the consensus con-
text, k-mers located at different positions are treated independently.
It is noteworthy that allocating k-mers in each location can take a
large amount of memory, especially in the next stage. To circum-
vent this problem, we construct a sparse k-mer graph (Ye, et al.,
2012) by storing a k-mer in every g bases, which reduces the
memory consumption up to 1/g. We also record the edge links
between the k-mer nodes. The edge weight represents the confi-
dence in the corresponding path. We use coverage to represent
confidence for simplicity. A generalization using quality score is
straightforward.

2.2 Aligning sequences to the backbone and building

the whole graph

Sequences that align to the backbone sequence provide rich in-
formation about the ground truth sequence. Ideally, we should
search for a most likely genome sequence as the consensus given
all the input sequences. However, utilizing the multi-sequence
information comprehensively requires computationally expensive
operations such as pair-wise alignment of all the related sequences
(Edgar, 2004; Larkin, et al., 2007; Lee, et al., 2002; Rausch, et al.,
2009). Here we adopt a simpler strategy as in PBdagcon (Chin, et
al., 2013), by aligning all the sequences to the backbone, and mod-
ify the existing graph according to the alignments. Rather than
creating an intermediate graph that needs to be refined or simpli-
fied (Chin, et al., 2013; Rausch, et al., 2009), we construct a graph

that can be used directly. We borrow the wisdom from construct-
ing a de Bruijn/k-mer graph (Pevzner, et al., 2001; Ye, et al.,
2012): (1) if a query region suggests a novel path/variant, we cre-
ate a branch and allocate new k-mer nodes and edges that link
these nodes (Fig. 1b, upper half). (2) If a query region perfectly
aligns to an existing region in the graph, we merge all the nodes
and edges in the region and increase the edges weights (Fig. 1b,
bottom half). As previously mentioned, this construction process
shares similarity with constructing a de Bruijn graph, but the nodes
in our graph are “position specific”. In addition, if a sequence
(such as from NGS sequencing, in a hybrid assembly setting) is of
higher quality, we assign higher weights to the corresponding
edges. This position specific k-mer graph contains rich information
about the underlying genomic region. Next we describe another
simple technique to extract the most likely sequence as the consen-
sus.

Fig. 1. A toy example of constructing the position specific sparse
k-mer graph. (a) The initial k-mer graph of the backbone. (b) Add-
ing two sequences to the graph. (c) The heaviest path representing
the consensus is found by graph traversal (original weights are
used in this example).

2.3 Adjusting the weights of the graph

Intuitively, a path in the k-mer graph is likely to be genuine if it
is supported by multiple sequences. Based on this intuition, we
should search for a path in the graph with the highest confidence,
i.e. the largest sum of edge weights. However, direct implementa-
tion of this strategy may result in erroneous outputs. A simple ex-
ample is a long insertion error: the sum of weights of this errone-
ous path is high even though there is only one supporting se-
quence. To circumvent this type of error, we reduce the edge
weight by a small amount. This amount is adaptively determined

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1401v1 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015

Sparc: a sparsity-based consensus algorithm for long erroneous sequencing reads

3

with consideration of the sequencing coverage in each region. This
technique, also known as soft thresholding (Mallat, 2008), is
equivalent to put a l

1
-penalty on the edge weights. With this sparse

penalty, the low coverage long insertion errors will be less likely to
be favored compared to the genuine sequences.

2.4 Output the heaviest path as the consensus

With the adjusted weights, we use the breadth-first search to
search for a heaviest path that links the start node and the end node
of the backbone. We then backtrack from the highest scored node
in this path to the first node that has positive weight sum. This sub-
path is output as the consensus path (Fig. 1c).

2.5 The complexity of sparc

The complexities of the above procedures described in subsec-
tions 2.1-2.4 are linear with the data size. Sparc allows for taking
different k-mer sizes (k) and skip sizes (g). Setting k to a smaller
value makes the consensus more sensitive and can recover weaker
alignments, while setting k to larger values helps to avoid spurious
alignments. In our experiments we found that using k = 1-3, g = 1-
5 is sufficient for practical purposes. It is noteworthy due to high
error rate in 3GS data, we use very small k-mers to have sufficient
matching anchors in the k-mer graph, unlike in common de Bruijn
graphs. Assembly using hybrid data can reduce the requirement of
coverage of the 3GS data, which significantly reduces the sequenc-
ing cost. Since the NGS data has much higher accuracy, including
the data into the consensus also improves the quality. Sparc is de-
signed to take advantage of the hybrid sequencing data, and lever-
age more weight to the high quality paths. Currently we rely on
Blasr to provide long read alignment information (Chaisson and
Tesler, 2012). Sparc takes as input a backbone file in fasta format
and the Blasr alignment results. To avoid multiple placement of a
query read, each read is mapped to one best matching region in the
backbone. Finally, reusing the consensus result as the input and
iteratively running the consensus algorithm helps to improve the
accuracy even more (shown in he Results section).

3 RESULTS

Sparc has been tested on a variety of datasets. Here we demon-

strate the test results from two PacBio datasets

(http://schatzlab.cshl.edu/data/ectools/) and one Oxford Nanopore

dataset (http://gigadb.org/dataset/100102). Sparc is designed to be

a base-level consensus algorithm, while there are platform-specific

ones that take into account signal-level information such as Quiver

(for PacBio), and Nanopolish (for Oxford Nanopore). These pro-

grams usually take the outputs of the base-level ones as inputs to

further improve the accuracy. As a fair comparison, we demon-

strate results side by side with the most similar program to ours,

which is PBdagcon (Chin, et al., 2013). PBdagcon is the major

module that is intensively used in HGAP (Chin, et al., 2013) and

MHAP (Berlin, et al., 2014) pipelines to correct reads and generate

consensus using base-level information. We therefore show the

comparative results of both programs on these datasets. Both pro-

grams were fed with the same input data. We generated assembly

backbones and collect the related reads for each backbone using

DBG2OLC (Ye, et al., 2014). Blasr (Chaisson and Tesler, 2012)

was called (with option –m 5) to obtain the alignments. The final

consensus error rates were calculated using the dnadiff function in

MUMmer 3 (Kurtz, et al., 2004). We conducted all our experi-

ments on a workstation with AMD Opteron 2425 HE CPUs (@

800MHz frequency). In our hybrid consensus experiments, we

used the Illumina assembly contigs by SparseAssembler (Ye, et al.,

2012) and increase the edge weights by 5.

On PacBio datasets, we set k = 1, g = 1, and ran the consensus

algorithms for two rounds. The per-base error rates for the first

round and the second round were reported as Err1 and Err2 in Ta-

bles 1&2, respectively. In the first experiment, we used an E. coli

PacBio dataset and tested the accuracy using different sequencing

coverages. The longest backbones generated by DBG2OLC using

10x/30x data were 1.3Mb and 4.6Mbp respectively. The E. coli

genome reference (4.6 Mbp) can be found with accession number

NC_000913. Sparc reached an error rate of 0.09% using only 10x

data in a hybrid setting in contrast of 0.64% with PBdagcon. As

expected, the quality is even better with 30x data (0.02%). The

error rates of using PacBio (PB) data only (i.e. non-hybrid) were

slightly higher as expected.

Table 1. Results on an E. coli dataset using PacBio sequencing

Program Coverage Time Memory Err1 Err2

Sparc 10x PB 0.5 308MB 1.95% 1.51%

PBdagcon 10x PB 3.0 1.10GB 1.95% 1.52%

Sparc 10x Hybrid 0.5 237MB 0.19% 0.09%

PBdagcon 10x Hybrid 3.0 1.23GB 1.02% 0.64%

Sparc 30x PB 1.3 2.30GB 0.41% 0.16%

PBdagcon 30x PB 9.3 7.70GB 0.49% 0.23%

Sparc 30x Hybrid 1.3 2.14GB 0.17% 0.02%

PBdagcon 30x Hybrid 9.7 9.58GB 0.49% 0.18%

Sparc scales well to larger datasets; we show here the performance

of Sparc and PBdagcon on a larger 20x PacBio A. thaliana dataset

(genome size 120 Mbp). The longest backbone generated by

DBG2OLC was 7.1 Mbp. Sparc finished with 1/5
th

 time and mem-

ory compared with PBdagcon while producing more accurate re-

sults. Here we used a pure PacBio full genome assembly generated

by MHAP (Berlin, et al., 2014) as the reference to calculate the

error rates.

Table 2. Results on an A. thaliana dataset using PacBio sequencing

Program Coverage Time Memory Err1 Err2

Sparc 20x Hybrid 21m 1.7GB 0.36% 0.19%

PBdagcon 20x Hybrid 123m 8.9GB 0.81% 0.53%

On an Oxford Nanopore dataset, we set k = 2, g = 2 and ran the

consensus algorithms for four rounds in consideration of the higher

error rate. The per base error rates for the first round and the fourth

round are reported as Err1 and Err2 in Table 3. The results using

Oxford Nanopore (ON) data only and using hybrid data are re-

ported in rows 1,2 and rows 3,4 respectively. We noticed that with

Oxford Nanopore data, Sparc obtained significantly lower error

rate using hybrid data. Below 0.5% error rate was reached even

though the raw error rate could be as high as 40%. In contrast, non-

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1401v1 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015

 Ye & Ma

4

hybrid consensus generated less usable results due to this excessive

error rate. The longest backbone in this test was 4.6Mbp.

Table 3. Results on an E. coli dataset using Oxford Nanopore sequencing.

Program Coverage Time Memory Err1 Err2

Sparc 30x ON 2.3m 1.89GB 11.96% 7.47%

PBdagcon 30x ON 10.0m 8.38GB 13.70% 12.86%

Sparc 30x Hybrid 3.3m 1.86GB 0.72% 0.46%

PBdagcon 30x Hybrid 13.2m 9.56GB 11.20% 9.96%

We also tested the memory, time and quality of using different

parameters. We varied the parameters in the second round of the

30x PacBio E. coli dataset using PacBio data only. We found that

the results are comparable with some slight differences: using a

slightly larger k-mer size increases the per-base accuracy, as more

strict matches are enforced. However, this also increases the mem-

ory consumption because more branching nodes are created. Set-

ting a larger g helps to reduce the memory consumption (Table 4).

Table 4. Memory and quality comparisons using different parameters

K g Time Memory Error rate

1 1 43s 2.3GB 0.16%

2 1 55s 3.5GB 0.14%

1 2 59s 1.6GB 0.18%

2 2 68s 2.3GB 0.13%

CONCLUSION

Consensus module is a critical component in the Overlap-Layout-

Consensus assembly framework. With the introduction of the third

generation sequencing technology, its importance is further raised.

In this work we demonstrated a simple but efficient consensus

algorithm that uses k-mers as building blocks and produces high

quality consensus from a position-specific k-mer graph. The pro-

posed method is expected to significantly expand its applications

in error correction and variant discovery. The consensus quality

can also be increased further by incorporating platform specific

signal-level information.

ACKNOWLEDGEMENTS

We thank Chris Hill and Jue Ruan for help and fruitful discussions.

Funding: The research received funding from the following

sources: NSFC (Grant No:ठ⃚ 61175071 & 71473243) and “Excep-

tional Scientists Program of Yunnan Province, China.”

REFERENCES

Au, K.F., et al. (2012) Improving PacBio long read accuracy by short read

alignment, PLoS One, 7, e46679.

Berlin, K., et al. (2014) Assembling Large Genomes with Single-Molecule

Sequencing and Locality Sensitive Hashing.

Chaisson, M. and Tesler, G. (2012) Mapping single molecule sequencing

reads using basic local alignment with successive refinement (BLASR):

application and theory, BMC bioinformatics, 13, 238.

Chin, C.S., et al. (2013) Nonhybrid, finished microbial genome assemblies

from long-read SMRT sequencing data, Nat Methods, 10, 563-569.

Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high

accuracy and high throughput, Nucleic acids research, 32, 1792-1797.

Hackl, T., et al. (2014) proovread: large-scale high-accuracy PacBio

correction through iterative short read consensus, Bioinformatics.

Hannenhalli, S., et al. (1996) Positional sequencing by hybridization,

Comput Appl Biosci, 12, 19-24.

Huang, X.Q., et al. (2003) PCAP: A whole-genome assembly program,

Genome Res, 13, 2164-2170.

Koren, S., et al. (2012) Hybrid error correction and de novo assembly of

single-molecule sequencing reads, Nature biotechnology, 30, 693-700.

Kurtz, S., et al. (2004) Versatile and open software for comparing large

genomes, Genome Biology, 5, R12.

Larkin, M.A., et al. (2007) Clustal W and Clustal X version 2.0,

Bioinformatics, 23, 2947-2948.

Lee, C., Grasso, C. and Sharlow, M.F. (2002) Multiple sequence alignment

using partial order graphs, Bioinformatics, 18, 452-464.

Lee, H., et al. (2014) Error correction and assembly complexity of single

molecule sequencing reads.

Mallat, S. (2008) A wavelet tour of signal processing: the sparse way.

Academic press.

Mullikin, J.C. and Ning, Z.M. (2003) The phusion assembler, Genome Res,

13, 81-90.

Myers, E.W., et al. (2000) A whole-genome assembly of Drosophila,

Science, 287, 2196-2204.

Myers, G. (2014) Efficient Local Alignment Discovery amongst Noisy

Long Reads. In, Algorithms in Bioinformatics. Springer, pp. 52-67.

Pevzner, P.A., Tang, H. and Waterman, M.S. (2001) An Eulerian path

approach to DNA fragment assembly, Proceedings of the National

Academy of Sciences, 98, 9748-9753.

Rausch, T., et al. (2009) A consistency-based consensus algorithm for de

novo and reference-guided sequence assembly of short reads,

Bioinformatics, 25, 1118-1124.

Ronen, R., et al. (2012) SEQuel: improving the accuracy of genome

assemblies, Bioinformatics, 28, i188-i196.

Salmela, L. and Rivals, E. (2014) LoRDEC: accurate and efficient long

read error correction, Bioinformatics, btu538.

Ye, C., et al. (2014) DBG2OLC: Efficient Assembly of Large Genomes

Using the Compressed Overlap Graph, arXiv preprint arXiv:1410.2801.

Ye, C., et al. (2012) Exploiting sparseness in de novo genome assembly,

BMC bioinformatics, 13 Suppl 6, S1.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1401v1 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015

