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Mangrove sediment harbors a unique microbiome and is a hospitable environment for the
growth of a diverse group of bacteria capable of oil biodegradation. Our goal was to
understand bacterial community dynamics from mangrove sediments under heavy-oil
contamination stress, and to look for common patterns that may be associated with oil
biodegradation is such environments. We tested the hypothesis of a two-phase pattern of
petroleum biodegradation, already reported in the literature, where key events in the
degradation process take place in the first three weeks after the contamination. Two
sample sites with different oil pollution history were compared through T-RFLP analyses
and using a pragmatic approach based on the Microbial Resource Management
Framework. Our data corroborated the already reported two-phase pattern of oil
biodegradation, although the original proposed explanation is questioned, opening up the
possibility to consider other plausible hypothesis of microbial interactions as the main
drivers of this pattern.
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20 Abstract

21 Mangrove sediment harbors a unique microbiome and is a hospitable environment for the 
22 growth of a diverse group of bacteria capable of oil biodegradation. Our goal was to understand 
23 bacterial community dynamics from mangrove sediments under heavy-oil contamination stress, 
24 and to look for common patterns that may be associated with oil biodegradation is such 
25 environments. We tested the hypothesis of a two-phase pattern of petroleum biodegradation, 
26 already reported in the literature, where key events in the degradation process take place in 
27 the first three weeks after the contamination. Two sample sites with different oil pollution 
28 history were compared through T-RFLP analyses and using a pragmatic approach based on the 
29 Microbial Resource Management Framework. Our data corroborated the already reported two-
30 phase pattern of oil biodegradation, although the original proposed explanation is questioned, 
31 opening up the possibility to consider other plausible hypothesis of microbial interactions as 
32 the main drivers of this pattern.
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35 Introduction

36 Microorganisms are the most abundant and diverse organisms on Earth (Whitman et al. 1998). 

37 Yet, little is known about the various patterns of microbial distribution across different 

38 environments.  Microbial communities in contaminated ecosystems tend to be dominated by the 

39 organisms that can degrade or tolerate the contaminant. Since contamination is a strong selection 

40 force, these communities are typically less diverse than those in non-stressed ecosystems. 

41 Several studies on oil contamination reported a drastic short-term reduction in the diversity of the 

42 bacterial communities, which could be accounted for by oil toxicity and strong selection for 

43 particular hidrocarbonoclastic bacteria, such as Alcanivorax spp and Cycloclasticus spp (Hazen 

44 et al. 2010; Kostka et al. 2011; Jurelevicius et al. 2013; Kimes et al. 2013; Sutton et al. 2013). 

45 Loss of biodiversity has implications for ecosystem functioning as well as the delivery of 

46 ecosystem services (Cardinale et al. 2012), and are of comparable magnitude to the effects of 

47 many other global environmental changes (Hooper et al. 2012). It is estimated that worldwide 

48 mangrove forests provide at least US $ 1.6 billion each year in ecosystem services (Polidoro et 

49 al. 2010).

50 Several studies suggest that mangrove is a hospitable environment for the growth of a diverse 

51 group of bacteria capable of oil biodegradation (Ramsay et al. 2000; Brito et al. 2006; Gomes et 

52 al. 2008; Tian et al. 2008; Liu et al. 2011; Santos et al. 2011; Jurelevicius et al. 2013). 

53 Mangroves are intertidal ecosystems along the coastlines of tropical and subtropical regions, 

54 with unique features such as high primary productivity, abundant detritus, rich organic carbon 

55 content and anoxic/reduced conditions (Ghizelini et al. 2012). In tropical mangroves, bacteria 

56 and fungi constitute 91% of the total microbial biomass, whereas algae and protozoa represent 

57 only 7% and 2%, respectively (Alongi 1988). It has been proposed that the microbial structure 

58 and function of mangroves are directly responsible for this ecosystem functioning (Holguin et al. 

59 2001). Mangrove sediments harbor a unique microbiome and metabolic reconstructions suggest 

60 that ecological processes may be modulated by the prevailing conditions found in mangrove 

61 (Andreote et al. 2012). 

62 Diversity is a function of two components: (i) species richness and (ii) species evenness or 

63 equitability. These two concepts are difficult to assess, especially when considering microbial 

64 diversity of complex ecosystems. We approached this problem by using a pragmatic approach 

65 aiming at understanding bacterial community dynamics from mangrove sediments under heavy-

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1398v1 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015



66 oil contamination stress, and at looking for common patterns that may be associated with oil 

67 biodegradation is such environments (that is, a process that may govern community dynamics 

68 under such conditions). 

69

70 Materials and Methods

71 Sampling sites and sample collection

72 Four sampling sites were chosen with respect to their different hydrocarbon pollution history. 

73 Sampling sites GBA (R22º41’14.5”S; 43º05’6.83”O) and GBB (22º41’1.55”S 43º05’9.21”O) 

74 were located in the Guanabara Bay, in the city of Rio de Janeiro, Brazil, and sampling sites GR 

75 (21º36’27.85”S 41º03’05.74”O) and GV (21º35’9.11”S 41º03’39.70”O) were located in Gargaú, 

76 in the city of São Francisco do Itapaboana, in the northern part of the state of Rio de Janeiro, 

77 Brazil (Fig 1). Physicochemical parameters for the four sampling sites are shown in Table 1. 

78

79 Figure 1: Location of the sampling sites considered in this study. 
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88 Table 1: Physicochemical parameters of the four sampling sites considered in this study.
89

GBA GBB GV GR
pH 7,7 7,6 6,8 6,1

Salinity 24 24 4 3

Sand 30 76 14 12

Clay 13 6 18 20Granulometry (%)

Silt 57 18 68 68

Corg (%) 5,72 0,75 5,86 7,56

N (%) 0,24 0,04 0,39 0,43

90

91 Guanabara Bay is notorious for its chronically polluted conditions, with a history of oil spill 

92 accidents (Ghizelini et al. 2012). The mangrove in Gargaú is located in the estuary of Rio 

93 Paraíba do Sul, the biggest estuary in the northern region of the state of Rio de Janeiro. The 

94 degradation of this mangrove is related primarily to selective logging and deforestation for the 

95 implantation of pastures for cattle ranching, raw sewage, urban runoff, industrial waste release, 

96 and construction of roads and landfills (Bernini et al. 2010). There is no record of oil spill in this 

97 area. 

98 For each site, three composite samples consisting of five sediment cores each (c. 10 cm of top 

99 sediment with 8 cm diameter) were randomly collected. The samples were at least 10 m apart 

100 from each other and within each sample the cores were at least 1m distant from each other. 

101 Sampling was done during the low tide and transported to the laboratory in a insulated container 

102 with ice. Upon arrival at the laboratory, the composite samples were thoroughly homogenized to 

103 one representative sample per locality and immediately processed. 

104

105 Molecular analyses

106 Total genomic DNA was extracted from the sediments at each sampling site using the UltraClean 

107 Soil DNA Isolation Kit (MoBio), following the manufacturer’s instructions. The extractions 

108 were performed immediately after the sample collection at the following intervals: 7, 14, 21, 28, 

109 60, 90, 120, and 150 days. Primers 27F (5’ AGAGTTTGATCCTGGCTCAG) labeled at the 5’ 

110 end with 6-carboxyfluorescein (6-FAM), and 1525R (5’ AAGGAGGTGWTCCARCC) were 

111 used to amplify approximately 1500 bp of the 16S rRNA gene. The PCR reaction (20 µl) 
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112 contained 10 ng of template DNA, 5 pmol of each primers, 10µL do kit HotStarTaq® Master 

113 Mix Kit (Qiagen), 5µL de water of kit. The amplification conditions were 1 cycle of 940C for 5 

114 min, followed by 35 cycles of 940C for 30 sec, 52º C for 30sec, with a final extension of 720C for 

115 1 min and 30 sec. Amplicons (20ng) were digested using MnlI following the manufacture’s 

116 instructions. The digested DNA was ethanol- precipitated and resuspended with 14,8 μL de Hi-

117 Di formamida mixed with 0,2 μL de standard Gene Scan 600 Liz (Applied Biosystems). After 

118 this, the sample was separated by capillary electrophoresis in an ABI 3500 Genetic analyzer and 

119 analyzed with Genemapper version 4.1 (Applied Biosystems), using a baseline detection value of 

120 5 fluorescence units. All T-RFs over this baseline value and with lengths from 50 to 600 bp were 

121 rounded to the nearest integer. Peak filtration and binning were performed with R software using 

122 the IBEST script suite (Abdo et al. 2006). True peaks (operational taxonomic units, OTUs) were 

123 distinguished from background noise, based on a three-fold standard deviation (IBEST default). 

124 Each peak corresponded to one OTU. 

125

126 Data Analysis

127 The T-RFLP data consisted of four data sets: GBA, GBB, GR and GV. These datasets were 

128 analyzed considering two periods: the first month, when the bacterial communities were 

129 monitored weekly (time points 0, 7, 14 21 and 28 days); and the four consecutive months, when 

130 the bacterial communities were monitored monthly (time points 60, 90, 120, 150). This strategy 

131 was based in the two-phase pattern of petroleum degradation, where key events in the 

132 degradation process take place in the first three weeks after the contamination (Kaplan & Kitts, 

133 2004). The relative abundances of the binned MnlI fragments were used to monitor changes in 

134 the bacterial community along the oil biodegradation process. A pragmatic procedure, proposed 

135 by Marzorati et al. (2008) and reviewed by Read et al. (2011), was used to describe the bacterial 

136 community structure and dynamics of each dataset. Briefly, the range-weighted richness index 

137 (Rr) was estimated as the total number of peaks in the electropherogram. The dynamics of the 

138 community (Dy) was estimated by calculating the rate of change parameter (Δt) through moving-

139 window analyses (MWA). First, a matrix of similarity was calculated based on the Pearson 

140 correlation coefficient. The percent change (percent change = 100 – percent similarity) was then 

141 calculated. The percent change value matrix was used to perform MWA by plotting the values 

142 between day x and day x – 7 days for the first month, and day x and day x – 30 days for the 
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143 following months. The rate of change (Δt) was calculated as the average and standard deviation 

144 of the respective percent change values. In addition, moving-endpoint analyses (MEA) was 

145 performed, comparing the community profiles from different time points with the profile from 

146 the first sampling point as a reference fingerprint. The community organization (Co) was 

147 calculated as the percentage of the Gini coefficient (Wittebolle et al. 2009). To evaluate the most 

148 similar communities across time, a similarity matrix based on the Jaccard coefficient was 

149 computed considering the four datasets together and hierarchically clustered with the Ward’s 

150 linkage method. All calculations were computed with the MASS and Vegan packages  in the R 

151 statistical environment (version 3.0.1) (R Core Team 2013; Oksanen et al. 2013). Co was 

152 computed as described in Buckley & Damgaard (2012). 

153

154 Results

155 Bacterial community structure and dynamics

156 Range-weighted richness (Rr)

157 This parameter translates the approximate carrying capacity for microbial diversity and ranged 

158 from 64 to 5 OTUs in the first time-interval and 46 to 5 OTUs in the second time-interval (Fig 

159 2). GR and GV had more OTUs than GBA and GBB at the beginning of the experiment. Upon 

160 petroleum exposure, all sites showed a dramatic decrease in OTUs, except GR which first 

161 showed an increase until day 7, followed by an sharp decrease by day 14. In general, all sites lost 

162 OTUs by day 14; thereafter, there was a tendency of sudden increase in OTUs for the Guanabara 

163 sites, whereas the Gargaú sites stayed more stable. At GBA, this turning point appeared to be 

164 later at day 21.  In the second time-interval, there is a fluctuation in the number of OTUs along 

165 the biodegradation process, and no common pattern is found among the four datasets. By the end 

166 of the experiment, GBA was the richest community and the only community richer than when 

167 compared to the beginning of the experiment, and GR was the least richest community. 

168

169

170

171

172
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173 Figure 2:  Range-weighted richness (Rr) at the four sampling sites during the first and second 

174 time- intervals (x axis= number of days; y axis= number of OTUs). 
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176

177 Community Dynamics (Dy)

178 Marked changes on bacterial community composition occur within the first week of heavy-oil 

179 exposure, reaching almost 100% in GR and GBB (Fig 3).  This trend was alleviated in the 

180 following weeks, and GR, GBA and GBB reached a minimum at day 21. For these communities, 

181 day 21 was a turning-point in community composition; for GV this turning-point occurred one 

182 week later, at day 28. During the second time-interval, the percent change values did not appear 

183 to have a common pattern among the communities (Fig 3). These values fluctuates around 50% 

184 and 90% , but there was a drastic decrease from day 90 to day 120 for GV and GBA. By the end 

185 of the experiment, the least and most susceptible communities were GBA and GR, respectively. 

186 In general, the communities experienced more changes during the first time-interval than during 

187 the second time-interval (Table 2). This is to say, for example, that GBB changed on average 

188 75% during the first time-interval, whereas GV changed on average only 33% during the same 

189 period. On the other hand, when the first time-point is taken as the reference for estimating the 

190 community change percent, it can be observed that the communities in each time-point of both 

191 time-intervals are completely different from the first time-point in GBA and GBB (Fig 4). On 

192 average, GBA and GBB changed 92% and 99% and 97 and 96% in the first and second-time 

193 intervals respectively (Table 2).  Interestingly, GBA differed from GBB only during the first 

194 week, when it had a lower percent change value then GBB (Fig 4).  On the other hand, GR and 

195 GV changed on average less than GBA and GBB. GR and GV appeared to have a common 

196 pattern of community change with a striking difference from day 60 to day 90 (Fig 4). By the 

197 end of the experiment, GR and GV was approximately 70% different from their respective first 

198 time-point. 

199
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200 Figure 3: The dynamics of the community (Dy) at the four sampling sites, estimated by 

201 calculating the rate of change parameter (Δt) through moving-window analyses (MWA) (x axis= 

202 number of days; y axis= % change).
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205

206 Figure 4: The dynamics of the community (Dy) at the four sampling sites, estimated by 

207 calculating the rate of change parameter (Δt) through moving-endpoint analyses (MEA) (x axis= 

208 number of days; y axis= % change).
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211

212 Table 2: Average change in the community dynamics at the four sampling sites, according to 

213 moving-window analysis at the first-time interval (MWA1) and the second-time interval 

214 (MWA2), as well as according to moving-endpoint analysis at the first-time interval (MEA1) and 

215 the second-time interval (MEA2).

 MWA 1 MWA 2 MEA 1 MEA 2
GR 73 ± 24.31 55 ± 7.80 88 ± 10.47 67 ± 7.29
GV 33 ± 25.29 45 ± 33.52 70 ± 6.61 76 ± 8.80
GBA 68 ± 16.12 48 ± 40.53 92 ± 11.29 97 ± 1.45
GBB 75 ± 30.48 65 ± 20.68 99 ± 1.14 96 ± 2.12

216

217
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218 Community organization (Co)

219 This parameter reflects the evenness of the community. Low Co values (0 - 40) are typical for a 

220 highly even community, while uneven communities have high Co values (70 -100). The initial 

221 communities of GR and GV had a low organization, whereas GBA and GBB had a medium 

222 organization (Fig 5). During the first week, the organization values of GR, GV and GBA 

223 increased, indicating a very uneven community, especially for GR. After the third week, the 

224 organization of GV, GBA and GBB fluctuates around medium organization values, whereas GR 

225 stayed more stable, with a lower organization. By the end of the experiment, GV, GBA and GBB 

226 had a much uneven community than GR (Fig 5). 

227
228 Figure 5: The community organization (Co) calculated as the percentage of the Gini coefficient 
229 (y axis) (x axis= number of days). 
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231
232 Hierarchical clustering 

233 In order to compare the most similar communities, the four datasets were evaluated based on the 

234 Jaccard coefficient.  Because of the complex dynamics, this coefficient was chosen, as it only 

235 takes into account the richness of the communities, whereas the Pearson coefficient is also 

236 influenced by their abundance. Six main clusters were observed (Fig 6), which were divided into 

237 initial, intermediate and final communities. The initial communities (GR0, GV0, GBA0, GBB0) 

238 were grouped together with the second phase communities from GR (GR28-GR150) in cluster 6. 

239 The final communities from GV, GBA and GBB had each a distinct cluster (clusters 5, 2 and 3, 

240 respectively), and the final communities from GV were more similar to the initial communities. 

241 The intermediate clusters 1 and 4 grouped samples mainly by time points.  In these two clusters, 

242 there are samples from days 7, 14, 21, 28 and 60. The most distinct cluster (cluster 1) had 

243 samples from GBA and GBB and these samples also clustered together by temporal shifts.

244
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245 Figure 6: Dendrogram of the four datasets (GBA, GBB, GR and GV for each time-interval 

246 considered - 0, 7, 14, 21, 28, 60, 90, 120, and 150 days), based on the Jaccard coefficient and 

247 using the Ward’s linkage method.
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250 Discussion

251 The focus of this work was to assess the ecological aspects of mangrove bacterial communities 

252 under heavy-oil exposure, using the three levels of analysis (Rr, Dy and Co). We visually 

253 followed the disappearance of the oil associated with observed changes in the bacterial 

254 community along the experiment. Our results were obtained from T-RFLP fingerprinting. This 

255 technique is a high-throughput, culture-independent method for community profiling originally 

256 developed for characterizing highly diverse bacterial communities (Liu et al., 1997). It is a 

257 reproducible and robust method that results in high-quality community fingerprints (Osborn et al. 

258 2000). Although there are also important  limitations, (Schütte et al. 2008), T-RFLP results are 

259 generally consistent with the results from clone libraries (Dunbar et al. 2000; Hackl et al. 2004) 
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260 and next-generation sequencing (NGS) technologies (Bokulich et al. 2012; Camarinha-Silva et 

261 al. 2012; Pilloni et al. 2012). 

262 We studied the responses of two very different mangroves, especially with respect to both 

263 salinity and oil pollution. Guanabara Bay has a much higher salinity value than Gargaú and has 

264 been exposed to multiple oil spill accidents, whereas in Gargaú there has never been an oil spill. 

265 Taking these two factors together, our results indicate that oil exposure has a long-term  effect in 

266 bacterial community structure, and that the bacterial assemblages are different as overall samples 

267 from Guanabara did not cluster together with samples from Gargaú.  Oil contamination and the 

268 associated environmental changes have been shown as the predominant factor shaping the 

269 function composition and structure of microbial communities (Lu et al. 2012).

270 Based on the hierarchical clustering, three major temporal changes can be observed in the 

271 communities along the biodegradation process: (1) initial communities at day 0; (2) intermediate 

272 communities from day 7 to day 60; and (3) final communities from day 90 to day 150. The initial 

273 communities clustered together with GR, from day 28 to 150. These are the communities with 

274 low organization, indicating that they have many rare OTUs in common. These communities 

275 clustered together with the final community of GV. During this period, GV increased its 

276 richness, slightly increased its evenness and had an abrupt low dynamics from day 90 to day 120. 

277 When taking the first day as a reference point (MEA), GV showed a tendency of decreasing in 

278 percent change from day 90 on. Altogether, these data might be an indication that GV is 

279 reestablishing its initial community. On the other hand, the final communities in Guanabara Bay 

280 have their unique cluster, with two subclusters from each sampling site, indicating final 

281 communities different from the initial communities, and different from each other. Strikingly, in 

282 the GBB sub-cluster, day 60 appeared where day 90 is expected to be. The intermediate 

283 communities were separated by three clusters and in one of these clusters is the only instance 

284 where samples from different sampling sites clustered together.  These three clusters are 

285 apparently grouped by temporal shifts related to different phases of the oil degradation process.

286 The composition of the developing bacterial community varies along the biodegradation steps, as 

287 well as among the four datasets. As showed in the hierarchical cluster, most samples did not 

288 cluster by geography, but by temporal shifts in the community. A visual inspection of the data 

289 clearly indicated different assemblages of samples from the four datasets in each time point. 

290 These different assemblages may be the result of microbial endemism, which has been shown 
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291 over a range of environments (Nemergut et al. 2011). However, when considering abundance of 

292 OTUs, these different bacterial assemblages have some common most abundant OTUs, 

293 particularly OTU 249 and OTU 274. Abundant organisms were more likely to be widely 

294 distributed in soil assemblages (Nemergut et al. 2011). 

295 Oil contamination had a significant effect on the composition of the communities, especially at 

296 the beginning of the experiment. Within seven days of exposure, GR and GBB communities 

297 changed almost 100% compared to their initial communities (Fig 3a). GV and GBA also showed 

298 a change in their respective communities during this time, although to a lesser extent. These high 

299 percent values indicate highly dynamic communities (i.e. open communities). Nevertheless, 

300 during this same period, there was a decline in richness for all sites, except GR, indicating a loss 

301 of OTUs. Also, there was a shift in community organization during this time, especially for GR 

302 and GV which went from low to high organization, indicating the dominance of few OTUs. 

303 Altogether, these data suggest a strong selection for hydrocarbon-degrading bacteria.

304 The dynamics of the communities along the experiment support the two-phase pattern of oil 

305 biodegradation (Kaplan and Kitts, 2004), with the breakpoint at 21 days for GR, GBA and GBB 

306 and at 28 days for GV. This two-phase pattern is characterized in the literature by a first phase of 

307 fast petroleum degradation with high abundance of few species, followed by a second phase of 

308 slower petroleum degradation with high richness of low abundant species. Our data suggest an 

309 overall tendency in richness decrease by day 21, although more marked by day 14. From day 21 

310 on, these communities fluctuates between low (< 10) and high (>30) richness values. Moreover, 

311 the organization of the communities from day 21 on seems to reflect a marked different response 

312 between GR and the other communities.

313 This two-phase pattern of oil degradation has been related to the bioavailability of free total 

314 petroleum hydrocarbons (TPH) in the first phase and with a slower desorption rate of soil-

315 sequestered TPH in the second phase (Kaplan & Kitts, 2004). Nevertheless, it has been shown 

316 that the contamination levels did not affect this two-phase pattern (Admon et al. 2001). More 

317 recently, Sutton and colleagues (2013) showed that the presence of diesel contamination, rather 

318 than its concentration, dictated changes in community diversity, regardless of the different soil 

319 matrix type considered.  GBB also showed this pattern, even though this sampling site was sandy 

320 and because of this leaching is expected to happen. It has been shown that soil structure is not 

321 static in space or time and that microbes alter this structure (Crawford et al. 2012). The 
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322 biophysical properties of soil are the product of both microbial genotypic and micro-

323 environmental diversities (O’Donnell et al. 2007; Ruamps et al. 2011). This soil-microbe system 

324 is self-organizing as a consequence of the feedback between microbial activity and particle 

325 aggregation. Therefore, another possible interpretation of the two-phase oil biodegradation 

326 pattern could be interspecies interactions that ought to happen in order to degrade complex 

327 petroleum derivatives.  

328 Heavy oil consists of a variety of chemically distinct hydrocarbons (Head et al. 2006), which 

329 requires a diverse range of microorganisms for its degradation (McGenity et al. 2012).  

330 Complementary effects through positive species interactions have been reported as a mechanism 

331 driving community dynamics in an experimental polyculture of crude oil degrading bacteria 

332 (Venail & Vives, 2013).  In that experiment, the assemblages of mixed species with 

333 complementary enzymatic metabolism was suggested as having the complete machinery to better 

334 exploit the complex mixtures in crude oil. Interestingly, indigenous communities performed 

335 better than foreign ones, suggesting that in addition to adaptation to abiotic conditions, 

336 adaptation to the biotic environment of co-occurring species is also important for bacterial 

337 community dynamics. 

338 Bacterial species interactions have also been experimentally demonstrated to drive the evolution 

339 of alternative resource use not observed in single-species communities (Lawrence et al. 2012). In 

340 this experiment, competition among the species resulted in character displacement and the 

341 evolution of some species to use the waste generated by other species. From a systems-biology 

342 perspective, it has also been suggested that a metabolic network is responsible for the 

343 biodegradation potential of a microbial community (Pazos et al. 2003; Lorenzo 2008; Pah et al. 

344 2013). 

345 Gargaú was taken as the mangrove with no history of oil accidents and both sampling sites from 

346 this location had more OTUs and a lower community organization than the two sampling sites 

347 from Guanabara Bay. At the end of this experiment, oil exposure reduced the diversity in all 

348 sampling sites, except GBA. Perhaps, more importantly, community organization from day 21 on 

349 differentiated GR from the other communities as the only community with low organization (i.e., 

350 high eveness). Initial community evenness has been related to mantaining functional stability and 

351 resilience of an ecosystem (Wittebolle et al. 2009). Surprisingly, GV did not follow this pattern, 

352 even though it also had a low community evenness. Probably, the daily presence of oil 
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353 contaminants from the fishing boats in the area might have an impact on the composition of this 

354 community. 

355 Interspecies interactions can affect evolution and influence the ecosystem. Oil exposure had a 

356 drastic impact on the dynamic of the communities, when taking the initial community as the 

357 reference point (MEA values). During the oil incubation period, both sampling sites from 

358 Guanabara Bay showed change values close to 100% from the initial community, with the 

359 exception of GBA at day 7, suggesting that the initial community of GBA was already impacted 

360 by the presence of oil components. GR and GV also showed large changes in community 

361 composition related to the initial community, but to a lesser extent. At the end of the incubation 

362 period, GR and GV were approximately 30% similar to the initial community. We propose to 

363 designate such persisting community as the core bacterial community (CBC) in mangrove 

364 sediments under oil contamination, supporting the idea of community stability and resilience in 

365 samples from Gargaú, in contrast to Guanabara Bay, which is chronically polluted. Time to oil 

366 exposure is surely another important parameter to consider when evaluating community dynamic 

367 responses, as this may cause recurrent selection of hydrocarbonoclastic bacteria and, therefore, 

368 reduction in richness and increase in community organization, probably affecting the core 

369 microbiota and community stability and resilience thereof. Interestingly, GV had the smallest 

370 MEA values, except from day 60 on. This community increased in richness from day 90 on and, 

371 at the same time, decreased in MEA values, suggesting an approximation to the initial 

372 community. This is also showed in the hierarchical cluster, where the final communities of GV 

373 clustered together with the initial communities and the communities from GR (GR 28 -150), 

374 indicating again the tendency of reestablishing the initial community.

375 In conclusion, the effect of oil exposure on the composition of the developing bacterial 

376 community is variable, time- and environmental-dependent. Our data corroborated the already 

377 reported two-phase pattern of oil biodegradation, although the original proposed explanation is 

378 questioned, opening up the possibility to consider other plausible hypothesis of microbial 

379 interactions as the main drivers of this pattern.  The decreased richness associated with the high 

380 community organization at the beginning of the experiment indicates a strong selection for 

381 hidrocarbonoclastic bacteria soon after oil exposure. Different hidrocarbonoclastic bacteria may 

382 be selected at each sampling site at the beginning because of bacterial endemism, and this may 

383 reflect the different bacterial assemblages throughout the experiment. Species interactions along 
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384 the experiment may explain the common two-phase pattern of community dynamics. Chronically 

385 polluted sites may be losing other functional groups as a result of recurrent selection for 

386 hidrocarbonoclastic bacteria, which affects ecosystem functioning. The cooperative behavior of 

387 microbes to self-construct a functioning community is central to their success (McGenity at al. 

388 2012), and community evenness is critical for the maintenance of functional stability and 

389 resilience of an ecosystem (Wittebolle et al. 2009). Although our data do not come from 

390 functional genes and caution need to be taken when interpreting community organization in 

391 relation to function organization (Read et al. 2011), there is clearly a different response when 

392 comparing a community without any oil contamination history and other communities with 

393 different levels of oil exposures. 

394

395 Acknowledgments

396 We thank Aryane Barcelos Maciel Carvalho, Aline Silva and Caroline Medeiros for their field 

397 and laboratory assistance.  F. Thompson would like to thank CNPq and FAPERJ for supporting 

398 his laboratory.

399

400 References

401 Abdo, Z., Schuette, U.M.E., Bent, S.J., Williams, C.J., Forney, L.J., and Joyce, P. (2006) Statistical 
402 methods for characterizing diversity of microbial communities by analysis of terminal restriction 
403 fragment length polymorphisms of 16S rRNA genes. Environmental Microbiology 8: 929-938.
404 Admon, S., Green, M., and Avnimelech, Y. (2001). Biodegradation kinetics of hydrocarbons in 
405 soil during land treatment of oily sludge. Bioremediat. J. 5:193–209
406 Alongi, D.M. 1988. Bacterial productivity and microbial biomass in tropical mangrove sediments. 
407 Microb. Ecol. 15:59-79.
408 Andreote, F., Jimenez, D., Chaves, D., Dias, A., Luvizotto, D., Dini-Andreote, F. et al. (2012) The 
409 microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE 7.
410 Bernini, E., Ferreira, R., Silva, F. L. C., Mazurec, A. P., Nascimento, M.
411 T., and Rezende, C. E. (2010) Alterações na cobertura vegetal do manguezal do estuário do rio
412 Paraíba do Sul no período de 1976 a 2001. Revista da Gestão Costeira Integrada.
413 2: 1-9.
414 Bokulich, N., Joseph, C., Allen, G., Benson, A., and Mills, D. (2012) Next-generation sequencing 
415 reveals significant bacterial diversity of botrytized wine. PLoS ONE 7.
416 Brito, E., Guyoneaud, R.m., Goñi-Urriza, M., Ranchou-Peyruse, A., Verbaere, A., Crapez, M. et al. 
417 (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in 
418 Guanabara Bay, Brazil. Research in microbiology 157: 752-762.
419 Buckley H.L., and Damgaard C. (2012) Lorenz R: R code for drawing sample Lorenz curves and 
420 to calculate Gini Coefficients and Lorenz Asymmetry Coefficients. http://pure. 
421 au.dk/portal/en/publications/lorenzr (21dbe72d-0f9c-4a3b-9a2c-f364828089d3).html

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1398v1 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015



422 Camarinha-Silva, A., Wos-Oxley, M.L., Jáuregui, R., Becker, K., and Pieper, D. (2012) Validating T-
423 RFLP as a sensitive and high-throughput approach to assess bacterial diversity patterns in human 
424 anterior nares. FEMS Microbiology Ecology 79: 98-108.
425 Cardinale, B., Duffy, J., Gonzalez, A., Hooper, D., Perrings, C., Venail, P. et al. (2012) Biodiversity loss 
426 and its impact on humanity. Nature 486: 59-67.
427 Crawford, J., Deacon, L., Grinev, D., Harris, J., Ritz, K., Singh, B., and Young, I. (2012) Microbial 
428 diversity affects self-organization of the soil-microbe system with consequences for function. Journal of 
429 the Royal Society, Interface / the Royal Society 9: 1302-1310.
430 Dunbar, J., Ticknor, L.O., and Kuske, C.R. (2000) Assessment of Microbial Diversity in Four 
431 Southwestern United States Soils by 16S rRNA Gene Terminal Restriction Fragment Analysis. Applied 
432 and Environmental Microbiology 66: 2943-2950.
433 Ghizelini, A.M., Mendonça-Hagler, L.C.S., and Macrae, A. (2012) Microbial diversity in Brazilian 
434 mangrove sediments: a mini review. Brazilian Journal of Microbiology 43: 1242-1254.
435 Gomes, N., Borges, L., Paranhos, R., Pinto, F., Mendonça-Hagler, L., and Smalla, K. (2008) Exploring 
436 the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiology 
437 Ecology 66: 96-109.
438 Hackl, E., Zechmeister-Boltenstern, S., Bodrossy, L., and Sessitsch, A. (2004) Comparison of 
439 Diversities and Compositions of Bacterial Populations Inhabiting Natural Forest Soils. Applied and 
440 Environmental Microbiology 70: 5057-5065.
441 Hazen, T.C., Dubinsky, E.A., DeSantis, T.Z., Andersen, G.L., Piceno, Y.M., Singh, N. et al. (2010) 
442 Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science 330: 204-208.
443 Head, I., Jones, D., and Röling, W. (2006) Marine microorganisms make a meal of oil. Nature reviews 
444 Microbiology 4: 173-182.
445 Holguin, G., Vazquez, P., and Bashan, Y. (2001) The role of sediment microorganisms in the 
446 productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biology and 
447 Fertility of Soils 33: 265-278.
448 Hooper, D., Adair, E., Cardinale, B., Byrnes, J., Hungate, B., Matulich, K. et al. (2012) A global 
449 synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486: 105-108.
450 Jurelevicius, D., Alvarez, V., Marques, J., Lima, L., Dias, F.A., and Seldin, L. (2013) Bacterial 
451 community response to petroleum hydrocarbon amendments in freshwater, marine and 
452 hypersaline water-containing microcosms. Applied and Environmental Microbiology 79: 5927–
453 5935
454 Kaplan, C., and Kitts, C. (2004) Bacterial succession in a petroleum land treatment unit. Applied and 
455 Environmental Microbiology 70: 1777-1786.
456 Kimes, N., Callaghan, A., Aktas, D., Smith, W., Sunner, J., Golding, B. et al. (2013) Metagenomic 
457 analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the 
458 Deepwater Horizon oil spill. Frontiers in microbiology 4: 50.
459 Kostka, J.E., Prakash, O., Overholt, W.A., Green, S.J., Freyer, G., Canion, A. et al. (2011) Hydrocarbon-
460 Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted 
461 by the Deepwater Horizon Oil Spill. Applied and Environmental Microbiology 77: 7962-7974.
462 Lawrence, D., Fiegna, F., Behrends, V., Bundy, J., Phillimore, A., Bell, T., and Barraclough, T. (2012) 
463 Species interactions alter evolutionary responses to a novel environment. PLoS biology 10.
464 Liu, H., Yang, C., Tian, Y., Lin, G., and Zheng, T. (2011) Using population dynamics analysis by 
465 DGGE to design the bacterial consortium isolated from mangrove sediments for biodegradation of 
466 PAHs. International Biodeterioration & Biodegradation 65: 269-275.
467 Liu, W., Marsh, T., Cheng, H., and Forney, L. (1997) Characterization of microbial diversity by 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1398v1 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015



468 determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied 
469 and Environmental Microbiology 63: 4516-4522.
470 Lorenzo, V. 2008. Systems biology approaches to bioremediation. Curr. Opin. Biotechnol. 
471 19:579–589.
472 Lu, Z., Deng, Y., Van Nostrand, J., He, Z., Voordeckers, J., Zhou, A. et al. (2012) Microbial gene 
473 functions enriched in the Deepwater Horizon deep-sea oil plume. The ISME Journal 6: 451-460.
474 Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D., and Verstraete, W. (2008) How to get more out 
475 of molecular fingerprints: practical tools for microbial ecology. Environmental Microbiology 10: 1571-
476 1581.
477 McGenity, T., Folwell, B., McKew, B., and Sanni, G. (2012) Marine crude-oil biodegradation: a central 
478 role for interspecies interactions. Aquatic biosystems 8: 10.
479 Nemergut, D., Costello, E., Hamady, M., Lozupone, C., Jiang, L., Schmidt, S. et al. (2011) Global 
480 patterns in the biogeography of bacterial taxa. Environmental Microbiology 13: 135-144.
481 O'Donnell, A., Young, I., Rushton, S., Shirley, M., and Crawford, J. (2007) Visualization, modelling and 
482 prediction in soil microbiology. Nature reviews Microbiology 5: 689-699.
483 Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB,Simpson GL, Solymos P, Steve
484 ns MHH, and Wagner H. (2013). Vegan: Community Ecology Package. R package version 2.0-
485 7. Available at http://CRAN.R-project.org/package=vegan
486 Osborn, A., Moore, E., and Timmis, K. (2000) An evaluation of terminal-restriction fragment length 
487 polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. 
488 Environmental Microbiology 2: 39-50.
489 Pah, A., Guimerà, R., Mustoe, A., and Amaral, L. (2013) Use of a global metabolic network to curate 
490 organismal metabolic networks. Scientific reports 3: 1695.
491 Pazos, F., Valencia, A., and Lorenzo, V. (2003) The organization of the microbial biodegradation 
492 network from a systems-biology perspective. EMBO reports 4: 994-999.
493 Pilloni, G., Granitsiotis, M., Engel, M., and Lueders, T. (2012) Testing the limits of 454 pyrotag 
494 sequencing: reproducibility, quantitative assessment and comparison to T-RFLP fingerprinting of 
495 aquifer microbes. PLoS ONE 7.
496 Polidoro, B., Carpenter, K., Collins, L., Duke, N., Ellison, A., Ellison, J. et al. (2010) The loss of 
497 species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5.
498 R Core Team (2013). R: A language and environment for statistical computing. R Foundation for 
499 Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/.
500 Ramsay, M.A.,Swannell, R.P.J., Shipton, W.A., Duke, N.C., and Hill, R.T. (2000) Effect of 
501 bioremediation on the microbial community in oiled mangrove sediments. Marine Pollution 
502 Bulletin 41:413-419.
503 Read, S., Marzorati, M., Guimaraes, B., and Boon, N. (2011) Microbial Resource Management 
504 revisited: successful parameters and new concepts. Applied Microbiology and Biotechnology 90: 861-
505 871.
506 Ruamps LS, Nunan N, and Chenu C. (2011) Microbial biogeography at the soil pore scale. Soil 
507 Biol Biochem 43: 280–286.
508 Santos, H., Cury, J., do Carmo, F.v., dos Santos, A., Tiedje, J., van Elsas, J. et al. (2011) Mangrove 
509 bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for 
510 oil pollution. PLoS ONE 6.
511 Schütte U, Abdo Z, Bent S, Shyu C, Williams C, Pierson J, and Forney L. (2008). Advances in 
512 the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA 
513 genes to characterize microbial communities. Appl Microbiol Biotechnol 80(3):365–380.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1398v1 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015

http://cran.r-project.org/package=vegan
http://www.r-project.org/


514 Sutton, N., Maphosa, F., Morillo, J., Abu Al-Soud, W., Langenhoff, A., Grotenhuis, T. et al. (2013) 
515 Impact of long-term diesel contamination on soil microbial community structure. Appl Environ 
516 Microbiol 79: 619-630.
517 Tian, Y., Luo, Y.-r., Zheng, T.-l., Cai, L.-z., Cao, X.-x., and Yan, C.-l. (2008) Contamination and 
518 potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen, China. 
519 Marine Pollution Bulletin 56: 1184-1191.
520 Venail, P., and Vives, M. (2013) Positive effects of bacterial diversity on ecosystem functioning driven 
521 by complementarity effects in a bioremediation context. PLoS ONE 8.
522 Whitman, W.B., Coleman, D.C., and Wiebe, W.J. (1998) Prokaryotes: the unseen majority. Proc 
523 Natl Acad Sci USA 95: 6578–6583.
524 Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K. et al. (2009) 
525 Initial community evenness favours functionality under selective stress. Nature 458: 623-626. 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1398v1 | CC-BY 4.0 Open Access | rec: 27 Sep 2015, publ: 27 Sep 2015


