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ABSTRACT 1 

Ricker’s stock recruitment model is widely used to describe the spawner-offspring 2 

relationship for fishes. After model fitting, the spawning stock size that produces the maximum 3 

sustainable yield (SMSY), and the harvest corresponding to it (UMSY), are two of the most common 4 

biological reference points of interest to fisheries managers. However, to date there has been no 5 

explicit solution for either reference point because of the transcendental nature of the equation 6 

needed to solve for them. Therefore, numerical or statistical approximations have been used for 7 

more than 30 years. Here I provide explicit formulae for calculating both SMSY and UMSY in terms 8 

of the productivity and density-dependent parameters from Ricker’s model.  9 
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INTRODUCTION 10 

One of the most difficult problems in the assessment of fish stocks is establishing the 11 

relationship between the spawning stock and subsequent recruitment (Hilborn and Walters 12 

1992). Stock-recruitment models have been used for decades in fisheries management as a means 13 

of formalizing this relationship (Beverton and Holt 1957; Ricker 1954). Over time, a variety of 14 

functional forms have emerged to capture varying assumptions about depensatory and 15 

compensatory mortality (Hilborn and Walters 1992). In a classroom setting, deterministic 16 

versions of the models provide useful constructs for teaching about management reference points 17 

such as maximum sustained yield (MSY).  18 

In particular, Ricker’s stock recruitment model (Ricker 1954; Ricker 1975) is one of the 19 

most widely used models to describe the population dynamics of fishes, such that 20 

 R =αSe−bS , (1) 21 

R is the number of recruits produced, S is the number of spawners, α is the dimensionless 22 

number of recruits per spawner produced at very low spawner density, and b is the strength of 23 

density dependence (units: spawner-1). It is common to substitute α = ea into equation (1) and 24 

rewrite it as 25 

 R = Sea−bS . (2) 26 

To make the model reflect a stochastic process, equation (2) is typically multiplied by a log-27 

normal error term, so that 28 

 R = Sea−bSeε , (3) 29 

and ε is a normally distributed error term with a mean of -½σ and variance σ. The non-zero 30 

mean ensures that a is interpreted as the mean recruits per spawner rather than the median 31 
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(Hilborn 1985). Part of the model’s popularity is due to the relative ease with which its 32 

parameters are estimated. After log transformation, equation (3) is typically rewritten as  33 

 ln R / S( ) = a− bS +ε , (4) 34 

and the parameters are estimated via simple linear regression. I note here that estimation of the 35 

parameters via a simple observation-error model like (4) can lead to substantial biases in a and b 36 

if the sample size is low (n ≤ 10) due to autocorrelation in the residuals ε (Walters 1985). 37 

Once the model has been fit to data and any necessary bias corrections made, the 38 

parameters can be used to derive various biological reference points of interest to fisheries 39 

managers. Some of these metrics are rather trivial to compute. For example, the spawning stock 40 

size leading to maximum recruit production (SMSR) is simply 1/b. Other reference points are 41 

much less straightforward to calculate, however. In particular, the spawning stock expected to 42 

produce the maximum sustainable yield (SMSY) under deterministic dynamics is of common 43 

interest. 44 

To find SMSY, I express the yield (Y) as 45 

 Y = R− S = Sea−bS − S , (5) 46 

and then take the derivative of Y with respect to S: 47 

 dY
dS

= 1− bS( )ea−bS −1 . (6) 48 

SMSY is then determined by setting equation (6) to zero and solving for S. Upon initial inspection, 49 

however, there does not appear to be an explicit solution to this equation in terms of S, and 50 

therefore SMSY is typically solved “by trial” (Ricker 1975) with some form of gradient method 51 

(e.g., Newton's as in Hilborn 1985). 52 
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To simplify this issue for common applications, Hilborn (1985) developed a linear model 53 

relating the ratio of SMSY to equilibrium spawning stock size (Sr = a/b) to the parameter a. 54 

Specifically, for 0 < a ≤ 3 he estimated that 55 

 SMSY
Sr

=
SMSY
a b( )

= 0.5− 0.07a , and (7a) 56 

 SMSY =
a 0.5− 0.07a( )

b
. (7b) 57 

Although this approximation is very useful due to its simplicity, there is no underlying 58 

fundamental support for the statistical form of the relationship. 59 

METHODS 60 

Here I make use of the Lambert W function, W(z), to demonstrate an explicit solution to 61 

equation (4) that precludes the need to estimate SMSY via numerical methods or Hilborn’s (1985) 62 

statistical model. This function has been used for explicit solutions to Roger’s random predator 63 

equation in ecology (McCoy and Bolker 2008) and susceptible-infected-removed (SIR) models 64 

in epidemiology (Reluga 2004; Wang 2010). Specifically, W(z) is defined as the function that 65 

satisfies 66 

 W (z)eW (z) = z  (8) 67 

for any complex number z (Lambert 1758 and Euler 1783 as cited in Corless et al. 1996). Here 68 

we are interested only in real values, however, so I replace z with x and note that W(x) is only 69 

defined for x ≥ -1/e (Corless et al. 1996). Furthermore, this function is not injective and has two 70 

values for -1/e ≤ x ≤ 0, but as I show below, we are concerned only with the region where x > 0 71 

and W(x) is a singular, non-negative value. 72 

 I begin my explicit solution of SMSY by setting equation (6) to zero, such that 73 

 1− bSMSY( )ea−bSMSY =1 . (9) 74 
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After rearranging terms and multiplying both sides by e, we arrive at 75 

 1− bSMSY( )e1−bSMSY = e1−a . (10) 76 

At this point I note the relationship between equations (10) and (8), with 1 – bSMSY = W(z) and 77 

e1-a = z. Therefore, we can write 78 

 1− bSMSY =W e1−a( ) , and hence (11) 79 

 SMSY =
1−W e1−a( )

b
. (12) 80 

We now have an explicit solution for SMSY that depends only on the parameters a and b from 81 

equation (2). As mentioned above, W(x) is only defined for x ≥ -1/e, which does not pose any 82 

problems here because x = e1-a > 0 ∀ a ∈ ℝ. For visualization purposes, I show a plot of W(e1-a) 83 

versus a in Figure 1. 84 

 We can also derive an explicit formula for calculating the fraction of the return harvested 85 

at SMSY, which I call UMSY. As Ricker (1975) shows,  86 

 UMSY = bSMSY , (13) 87 

and therefore substituting (12) into (13) gives  88 

 UMSY =1−W e1−a( ) . (14) 89 

In practice W(x) may be approximated numerically using some form of gradient method. 90 

Corless et al. (1996) recommend Halley’s method, with the update equation given by  91 

 wj+1 = wj −
wje

wj − x

ewj wj +1( )−
wj + 2( ) wje

wj − x( )
2wj + 2

. (15) 92 

I use an initial guess of w0 = ¾ ln(x+1) based on the shape of W(x) over the range of a typically 93 

considered in fisheries research (i.e., 0 < a < 3; Hilborn 1985). Although implementing equation 94 
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(15) may seem a bit daunting to individuals less familiar with numerical methods, a variety of 95 

contemporary software packages (e.g., MATLAB, R) include built-in functions to calculate W(x) 96 

directly. This means that anyone using a personal computer to estimate the parameters in a 97 

Ricker model can easily estimate SMSY from equation (12) as I demonstrate in Table 1. I show the 98 

results from my R implementation for a range of a and b in Figure 2. 99 

For those preferring to use Excel, there is unfortunately no built-in function to calculate 100 

W(x), but I have implemented equation (15) as the VBA function ‘LAMBERTW’ and include it 101 

as the Excel Add-In file ‘LambertWfunc.xlam’ as part of the supplementary material1. For those 102 

unfamiliar with installing Excel add-ins, I also provide instructions on how to do so in the 103 

supplementary material (Figure S1). 104 

RESULTS AND DISCUSSION 105 

In addition to its convenience, solving for SMSY via W(x) also offers an appreciable 106 

computational advantage. As a test, I randomly selected 1000 values of a and b over the same 107 

ranges as shown in Figure 2, and then solved for SMSY using both Newton’s method as suggested 108 

by Ricker (1975), and Halley’s method as in equation (15). Although both methods were 109 

remarkably quick, Halley’s method was always faster and less variable (Figure 3). Therefore, 110 

estimating SMSY via Halley’s method might save significant time in applications such as 111 

management strategy evaluations that are much more computationally intensive than a simple 112 

one-case solution. 113 

Here I have outlined a new method to easily calculate SMSY from the productivity (a) and 114 

density-dependent (b) parameters in a Ricker model using readily available functions in several 115 

software packages. This method is much more straightforward than trying to solve for SMSY using 116 

                                                
1 Available for download at http://faculty.washingon.edu/scheuerl/LabertWfunc.xlam 
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numerical methods and should be useful in many classroom settings. Although there could be 117 

some utility in actually going through the exercise of numerically deriving the answer, it is rare 118 

nowadays, for example, for anyone to code a random number generator because of their 119 

ubiquitous implementation in standard software. In addition, the explicit analytical solution is 120 

closed-form with respect to the special functions, and therefore precludes the need to estimate 121 

SMSY via Hilborn’s (1985) approximation. Thus, due to the speed and ease with which these new 122 

equations are calculated, I recommend that practitioners use them for SMSY and UMSY in lieu of 123 

those listed in Appendix III of Ricker (1975) and Table 7.2 of Hilborn and Walters (1992). 124 
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Table 1. Example code for directly calculating SMSY in R, Matlab, and Excel; the values for a and 150 

b were chosen arbitrarily. Note that the R code requires the ‘gsl’ package to be installed, and the 151 

Excel code requires the ‘LAMBERTW’ function contained in the Excel Add-in file 152 

LambertWfunc.xlam. 153 

Software Code example 

R 

 
> library("gsl") 
> a = 1 
> b = 5e-4 
> Smsy = (1 - lambert_W0(exp(1 - a))) / b 
 

MATLAB 

 
>> a = 1 
>> b = 5e-4 
>> Smsy = (1 - lambertw(exp(1 - a))) / b 
 

Excel 

 
 A B 

1 a 1 
2 b 5e-4 
3 Smsy =(1 - LAMBERTW(EXP(1 - B1))) / B2 

  
 154 
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 155 

Figure 1. Plot of W(e1-a) over a range in values of a typically encountered in fisheries.  156 
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 157 

Figure 2. Contour plot showing values of SMSY for combinations of the a and b parameters in 158 

Equation (2).  159 
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 160 

Figure 3. Box-and-whisker plots showing the distribution of the number of iterations that each of 161 

the two numerical methods takes to converge to SMSY using a threshold of 10-6.  162 
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 163 

Figure S1. Instructions for installing the LAMBERTW function in Excel. 164 

1) Download LambertWfunc.xlam and save it anywhere on your hard drive. 

2) Start Excel. 

3) Depending on your version of Excel, do either (a) or (b) below 

a) Microsoft Excel for Mac 2011: 

i) Click Tools, and then select Add-ins... 

ii) From the dialog box, click Select… 

iii) Browse to wherever you saved the file in Step (1) and select LambertWfunc.xlam. 

iv) Click Open, which returns you to the Add-Ins dialogue box. 

v) Verify the box is checked next to LambertWfunc.xlam. 

vi) Click OK. 

b) Microsoft Excel for Windows (versions 2007, 2010, 2013) 

i) Click the Office Button (v2007) or the File tab (v2010/2013). 

ii) Click on Options near the bottom of the list. 

iii) From the pop-up window, choose the Add-Ins category. 

iv) In the Manage box at the bottom, click Excel Add-ins, and then click Go. 

v) In the Add-Ins dialog box that appears, click Browse. 

vi) Browse to wherever you saved the file in Step (1) and select LambertWfunc.xlam. 

vii) Click OK.  

viii) Click OK to close the Add-Ins dialog box. 
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