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Abstract

In many biological applications, we would like to be able to computationally predict muta-
tional effects on affinity in protein-protein interactions. However, many commonly used meth-
ods to predict these effects perform poorly in important test cases. In particular, the effects
of multiple mutations, nonalanine substitutions, and flexible loops are difficult to predict with
available tools and protocols. We present here an existing method applied in a novel way to
a new test case; we interrogate affinity differences resulting from mutations in a host-virus
protein-protein interface. We use steered molecular dynamics (SMD) to computationally pull
the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin recep-
tor (hTfR1). We then approximate affinity using the maximum applied force of separation and
the area under the force-versus-distance curve. We find, even without the rigor and planning
required for free energy calculations, that these quantities can provide novel biophysical insight
into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differenti-
ate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme
correlates well with relative free energy differences computed via free energy perturbation.
Second, although the static co-crystal structure shows two large hydrogen-bonding networks in
the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for
tight binding. Third, one viral site known to be critical for infection may mark an important
evolutionary suppressor site for infection-resistant h'TfR1 mutants. Finally, our approach pro-
vides a framework to compare the effects of multiple mutations, individually and jointly, on

protein-protein interactions.
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» 1 Introduction

23 The computational prediction of mutational effects on protein—protein interactions remains a chal-
2+ lenging problem. Several methods are available to perform an energy difference calculation from an
s experimentally determined co-crystal structure. For example, end point methods can be performed
26 rapidly, with relatively low computational cost (Gront et al. 2011; Kortemme et al. 2004). How-
27 ever, such methods can suffer from various simplifying assumptions. For example, they generally
28 use an implicit solvent approximation and assume the end state difference with minimal structural
29 rearrangement is sufficient to discriminate energetic differences (Gront et al. 2011; Kortemme et al.
s 2004). Alternative approaches have been developed using machine learning, training coefficients
a1 in a weighted equation containing geometric and energetic parameters (Vreven et al. 2011, 2012;
22 Bajaj et al. 2011; Hwang et al. 2010). Unfortunately, such machine-learning approaches often suf-
ss fer in novel applications, for which available training sets are small or non-existent. As such, these
s« methods are poorly suited for most host-virus protein—protein systems. By contrast, first principles
35 methods can forgo training, but currently available methods such as free energy perturbation (FEP)
s and thermodynamic integration (TI) rely on a transitional model (where one state may be wild-type
a7 and the other may be a mutant) to make rigorous free energy calculations (Gilson et al. 1997; Lu
ss et al. 2004; Chodera et al. 2011; Gumbart et al. 2013a). While these may be considered two of the
s gold standard techniques for calculating affinity differences, there are a huge number of theoreti-
s cal and technical complexities that must all be properly managed to ensure a converged solution
41 (Gumbart et al. 2013b). Such considerations quickly come to dominate the protocol, and the nec-
22 essary book keeping introduces the possibility of human error (Gumbart et al. 2013b). Moreover,
ss  as the two ending states look ever more dissimilar the chances of convergence fall rapidly. To en-
s sure convergence, these techniques are typically limited to small differences (such as point mutant
ss comparisons) with a few, very impressive exceptions (Wang et al. 2006; Gumbart et al. 2013a,b).
s For most investigators, larger differences quickly become intractable as the number of intermedi-
47 ate steps required to compute a converged solution grows or the complexity of adding restraining
ss  potentials and computing approximations expands (Wang et al. 2006; Gumbeart et al. 2013a,b).

49 Here we propose that much of these complexities can be avoided if all we are interested in is a

so relative comparison of the effects of different mutations on protein-protein interactions, rather than
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measuring an absolute or relative binding affinity with experimentally realistic units. We impart
a pulling force within an all-atom molecular dynamics simulation on one member of the complex
while the other is held in place. Then, we measure the force required for dissociation (Lu and
Schulten 1999; Isralewitz et al. 2001b,a; Park and Schulten 2004; Gumbart et al. 2012; Mifio et al.
2013). Although such biasing techniques are commonly used in protein-ligand binding problems,
they are less commonly applied to protein—protein interactions, and almost never to mutational
analysis in a protein—protein system. This is largely the result of free energy convergence dif-
ficulties and computational limitations (Cuendet and Michielin 2008; Cuendet and Zoete 2011).
Using a proxy for relative binding affinity rather than caluclating absolute affinities can solve these
problems. Here, as proxies, we use the maximum applied force required for separation and the
area under the force-versus-distance curve (AUC). For comparison, we also calculate relative free
energy differences using the traditional dual topology FEP paradigm, and we show that the two
approaches yield congruent results.

We used SMD and FEP to interrogate the interaction between machupo virus (MACV) spike
glycoprotein (GP1) and the human transferrin receptor (hTfR1) (Abraham et al. 2010; Charrel and
de Lamballerie 2003). Machupo virus is an ambisense RNA virus of the arenavirus family (Char-
rel and de Lamballerie 2003). Worldwide, arenaviruses represent a significant source of emerging
zoonotic diseases for the human population (Charrel and de Lamballerie 2003). Members of the
arenavirus family include the Lassa fever virus endemic to West Africa, the lymphochoriomenin-
gitis virus (LCMV) endemic to rodents in several areas of the United States, and the Guanarito,
Junin, and Machupo viruses endemic to rodents in South America (Charrel and de Lamballerie
2003). The South American arenaviruses typically infect humans after rodent contamination and
can cause a devastating hemorrhagic fever with high mortality (Charrel and de Lamballerie 2003).

The hTfRI1 is the primary receptor used by MACV for binding its host cell prior to infection.
The primary role of h'TfR1 in vivo is to bind transferrin for cellular iron uptake. The hTfR1 protein
contains three extracellular domains: two basilar domains and an apical domain. The two basilar
domains serve most of the transferrin-binding function (Abraham et al. 2010; Radoshitsky et al.
2011). Viral entry is initiated by GP1 binding to the apical domain of hTfR1. Previous work has
indicated that the GP1/hTfR1 binding interaction is the primary determinant of MACV host range

variation (Choe et al. 2011; Radoshitsky et al. 2011). The co-crystal structure shows that the high
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affinity interaction between GP1 and hTfR1 forces the normally flexible loop in the apical domain
of hTfR1 into a rigid §-pleated sheet domain. For GP1, several extended loops mediate binding to
hTfR1 (Abraham et al. 2010; Radoshitsky et al. 2011), and many of the interface interactions are
mediated by extensive hydrogen-bonding networks (Abraham et al. 2010). Experimental alanine-
scanning and whole-cell infectivity assays have identified several sites in both GP1 and hTfR1 that
are probably critical for establishing infection (Choe et al. 2011; Radoshitsky et al. 2011).

We applied our computational method to wild type (WT) and mutant complexes, and found
that we could resolve relative differences in unbinding and predict significant affinity changes.
Importantly, the affinity changes predicted using only max force or AUC show a strong correlation
with rigorous relative free energy differences computed by FEP. At sites known to be important for
successful viral entry, we found that the biochemical cause of reduced infectivity may not be as
simple as the static structure suggests. For example, the static structure shows a hydrogen-bonding
network connected to site N348 in hTfR1. According to our simulations, this network may not
affect binding affinity directly. In addition, our study offers an all-atom steered molecular dynamic
approach to avoid some of the pitfalls of several existing methods used to evaluate mutations in

protein—protein interfaces.

2 Materials and Methods

2.1 System Modeling

For our experiments, we used the experimentally determined GP1/hTfR1 structure (PDB-ID: 3KAS)
(Abraham et al. 2010). The apical domain of hTfR1 interacts directly with GP1 while the other two
domains are closer to the cell membrane and have essentially no interaction with GP1. The bio-
physical independence of the apical domain allowed us to isolate it without significantly affecting
the GP1/hTfR1 interaction.

We used the protein visualization software PyMOL (Schrodinger 2010) to remove residues
121-190, 301-329, and 383-756 in the hTfR1. No residues were removed from the viral protein.
Figure 1 shows a model of the initial structure and that of the pared structure. Although GP1 has

several glycosylatable residues, we opted to use the de-glycosylated protein for this study. The

5




108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

128

124

125

126

127

128

129

130

131

132

133

134

135

136

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.138v3 | CC-BY 3.0 Open Access | received: 27 Jan 2014, published: 27 Jan 2014

complexity of correctly parameterizing diverse sugar moieties is outside of the scope of this paper.
Furthermore, although it is known that GP1 is glycosylated, and some of those sugars contact
hTfR1, the sugars in the available PDB structure are not physiological for mammals (Abraham
et al. 2010). In total we removed 10 sugars from the crystal structure for this study.

After system reduction, the Visual Molecular Dynamics (VMD) (Humphrey et al. 1996) pack-
age along with its system of back-ends was used for all subsequent modeling. The Orient add-on
package allowed us to rotate the system axis such that the direction of steering was oriented di-
rectly down the z-axis. De-glycosylation simplified the system such that Autopsf could easily find
the chain terminations and patch them appropriately. The Solvate package was used to generate a
TIP3P water model with a 5 Angstrom buffer (relative to the maximum dimensions of the proteins)
on all sides except down the positive z-axis where a 20 Angstrom buffer was created. Finally, we
used the Autoionize package to place 150 millimolar NaCl and neutralize the total system charge.

In the end, each modeled system had approximately 28,000 atoms.

2.2 Equilibration

NAMD was used for all simulations in this study (Phillips et al. 2005). In addition to the modeled
system, for equilibration we generated a configuration file that fixed the a-carbon backbone. This
was accomplished by setting the B-factor column to 1 for the fixed atoms and to zero for all other
atoms. Further, we generated a configuration file with fixed a-carbon atoms at residues 41-92 (num-
bered linearly, in this case, starting at 1 for the first amino acid as was required for NAMD) in the
hTfR1. The second file was used to affix a harmonic restraint, thus preventing any unfolding due to
system reduction. More importantly, the harmonic restraint allowed the protein complex to equili-
brate while preventing any drift from its predefined position; the restraint did not constrain the struc-
ture of each protein, or the relative position or orientation of the two proteins to each other. Finally,
we calculated the system center and dimensions for use in molecular dynamics settings. The exact
NAMD configuration files are available on github (https://github.com/clauswilke/MACV_SMD).
We used the Charmm?27 (Brooks et al. 1983) all-atom force field. The initial system temperature
was set to 310K. Several typical MD settings were used including switching and cutoff distances
(see provided configuration files). In addition, we used a 2 femtosecond time step with rigid bonds.

We used periodic boundary conditions with the particle mesh ewald (PME) method of computing

6




137 full system electrostatics outside of the explicit box. Furthermore, we used a group pressure cell,
13¢  flexible box, langevin barostat, and lavegin thermostat during equilibration. A harmonic restraint
139 (called harmonic constraint in VMD) was set as stated previously.

140 To start the simulation, the barostat was switched off and the system was minimized for 1000
141 steps. Next, the fixed backbone was released, and the system was minimized for an additional 1000
12 time steps. Subsequently, the system was released into all-atom molecular dynamics for 3000 steps.
143 Finally, the langevin barostat was turned on and the system was simulated for 2 ns (1,000,000 steps)
144 of chemical time. For each mutant, twenty independent equilibration replicates were run with an

145 identical protocol.

ws 2.3 Steered Molecular Dynamics

127 We used the final state from each equilibrated system to restart another MD simulation. Our steer-
148 ing protocol is fundamentally similar to Cuendet and Michielin (2008) with slightly different pa-
149 rameter choices. Perhaps the one significant difference lies in our choosing to not use a thermostat
150 or barostat. We can make this choice because we are not trying to calculate the binding free en-
151 ergy by any physically rigorous approach (the Jarzynski inequality being one example). Following
152 equilibration, the final state of each simulation was used to generate a configuration file fixing the
153 a-carbon on residues 1, 58, 73-83, 96, 136, 137, 138, and 161 (again with linear numbering) in
15« the hTfR1. These residues were selected as they are far from the binding interface and sufficiently
155 distributed to prevent any orientational motion of the receptor relative to the viral spike protein.
156 The center of mass of the a-carbons of all residues (163-318 in linear numbering) in GP1 received
157 an applied force during the simulation. The NAMD convention does not actually apply a force to
158 all a-carbon atoms but rather uses the selection to compute an initial center of mass. Then, during
159 the steering run, the single center of mass point is pulled with the parameters described below.
160 We used the same force field parameters (exclude, cutoff, switching, etc.), the same integrator pa-
161 rameters (time step, rigidbonds on, all molecular being wrapped, etc.), and the same particle mesh
12 ewald parameters as in equilibration. Periodic boundary conditions were incorporated as part of
163 the system (as is the convention in NAMD restart) and PME was again used to approximate full
164 system electrostatics.

165 We ran test simulations at several force constants and visually inspected the results. A force
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constant of 5 kcal/mol/A? was chosen due to its relatively low signal-to-noise ratio. This constant
is slightly lower than the more common 7 kcal/mol/A? found in several recent studies; that value is
commonly selected primarily because it is the force constant found in the SMD tutorial available
through the NAMD developers. Moreover, the force constant could very likely be set to a range of
nearby values with little loss in predictive power.

In SMD experiments the pulling velocity should be as low as possible for the available com-
putational time (Cuendet and Michielin 2008; Cuendet and Zoete 2011). We choose a velocity of
0.000001 A/fs = 1 A/ns, and direction down the positive z-axis. One could use faster pulling if
the computing time must be reduced, but slower than necessary pulling speeds are not typically
considered problematic.

SMD was run for 15 ns (7,500,000 time steps) of chemical time. For each simulation, we
randomly selected one of the equilibration runs for restart. We ran 50 replicate simulations per
mutant for a total of 550 SMD simulations. All GP1/hTfR1 complexes separated by greater than 4
A and many separated to 10 or more.

To leave the final trajectory of a tractable size, only 1000 evenly spaced frames were retained
from each simulation, leaving a final trajectory size of 323 MB. See the supplemental movie for
a representative unbinding trajectory. Initial development of the SMD protocol was carried out
on the Lonestar cluster at the Texas Advanced Computing Center (TACC). All production SMD
simulations were performed on the Hrothgar cluster at Texas Tech University, using NAMD 2.9.
Each simulation was parallelized over 60 computational cores and utilized approximately 20 hours
of computing time. The total chemical time simulated for this project was nearly 10 us, requiring

slightly over 1 million cpu-hours.

2.4 Free Energy Perturbation

Briefly, we used the traditional dual topology approach to FEP (Gao et al. 1989; Pearlman 1989).
This involves a thermodynamic cycle where a set of atoms are progressively decoupled from the
environment while another set of atoms are progressively coupled. To compute the relative free
energy difference requires knowing the free energy change when the transformation is carried out
for the bound complex and the individual protein. Then, one can compute the relative free energy

difference between a WT and mutant complex by taking the difference between the energy required
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to decouple/couple the atoms in solution from the energy required to decouple/couple the atoms in

the bound complex (Gao et al. 1989; Pearlman 1989).

Again, the NAMD configuration file is made available via github (https://github.com/clauswilke/MACV _SMD)

We used a similar configuration to that in equilibration. One significant difference was to make a
cubic water box with a side length equal to the long axis of the complex plus a 10 A buffer on either
side, and simply restrict center of mass motion with the NAMD setting. This was done to avoid
affecting the system energy while calculating free energy differences.

The transition protocol for bound and free protein systems were identical. They started with
1000 steps of minimization and 250,000 steps of equilibration in the starting state for the forward
and reverse directions. Phase transitions were carried out in steps of A=0.05. Each transition
was carried out for 250,000 steps. The first 100,000 steps after phase transition were reserved for
equilibration and the final 150,000 steps were used for data collection.

The VMD mutator tool was used to generate the necessary topology file and the parseFEP tool
(Liu et al. 2012) in VMD was used for subsequent analysis. We used it to perform error analysis
and compute the Bennett acceptance ratio as the maximum likelihood free energy difference of the
two states under consideration. Though the larger transitions presented difficulty in a small number
of windows, forward and reverse hysteresis was generally in good agreement for all complexes.
The double mutants were performed by first doing the Y211A mutation followed by the other of

the two mutants. Then, the AG’s were simply added together to get the total energetic difference.

2.5 Post-processing

The python packages MDAnalysis (Michaud-Agrawal et al. 2011) and ProDy (Bakan et al. 2011)
were both used at various points in post-processing. The molecular trajectory (comprising the
atomic coordinates per time) was parsed to compute the center-of-mass for each of the two com-
plexes. The starting center-of-mass distance was set to zero and the distance was re-computed at
each time step relative to the starting distance.

The statistical package R was used for all further analysis and visualization. Each of the 50
independent trajectories per mutant produced a fairly noisy force curve. The force curves for each
mutant were smoothed over all replicates by using the smooth.spline() and predict() functions in R

with default settings. The two primary descriptive statistics we used were maximum interpolated
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applied force and total area under the interpolated curve (AUC). We tested for signifiant differences
in maximum force or AUC by carrying out t tests for all pairwise combinations (each mutant com-
pared to each other mutant), using the pairwise.t.test() function in R. We adjusted p values to cor-
rect for multiple testing using the False-Discovery-Rate (FDR) method (Benjamini and Hochberg
1995). The ggplot (Wickham 2009) package was used to generate most of the figures.

Analysis scripts and final data (except MD trajectories) are available on the github repository

accompanying this publication (https://github.com/clauswilke/MACV_SMD).

3 Results

3.1 The GP1/hTfR1 system

The GP1/hTfR1 interface (Figure 2) marks a particularly important and useful test system. There
are several sites on both the human and viral protein known to affect the infectivity phenotype
of MACV. Many of the important sites have been mapped by in vitro flow-cytometry based entry
assays. The GP1/hTfR1 interface appears not to be dominated by one particular type of interaction
(electrostatics, hydrogen-bonding, or van der Waals). In addition, much of the binding domain
on hTfR1 is on a loop that is flexible prior to viral binding, but organizes to become a strand
of a (-sheet on binding. As a result, many other computational techniques (Gront et al. 2011;
Kortemme et al. 2004) are only marginally useful. The complex nature of this interface represents
a particularly difficult challenge for traditional computational analysis.

In total, we tested 7 point mutants and 3 double mutants in addition to the WT complex (Ta-
ble 1). All of the mutations are within 5 A of the protein—protein interface. Mutations in hTfR1
at site 211 have proven capable of causing loss-of-entry according to in vitro flow-cytometry in-
fection assays or known host-range limitations (Radoshitsky et al. 2008; Choe et al. 2011; Ra-
doshitsky et al. 2011). Most likely, this effect is caused by the destruction of a critical hydrogen
bond to Ser113 or Ser111 in GP1. The lost hydrogen bond would lead to the subsequent loss of a
large hydrogen-bonding network seen in the crystal structure (Table 1) (Abraham et al. 2010). In a
manner similar to site 211, N348 appears to be important for binding by participating in a critical

hydrogen bonding network (Radoshitsky et al. 2008; Abraham et al. 2010) to GP1. In particular,
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251 N348Lys is reported in the literature to cause significantly reduced viral entry in vivo (Table 1)
252 (Radoshitsky et al. 2008; Abraham et al. 2010). Finally, an alanine mutation at site 111 in GP1
253 (mutation VR111A) has also been shown to cause decreased entry (Table 1) (Radoshitsky et al.
254 2011). For notation purposes, the viral site is always referred to with a preceding ‘v’.

255 Despite the fact that viral binding occurs at the site of a flexible loop in the free hTfR structure,
256 our data shows after binding the strand is extremely rigid. In the bound conformation, only two
257 sites of the loop have root mean squared fluctuation (RMSF) values in the top half of all receptor
258 sites during equilibration (Figure 3), and those are almost completely exposed to solvent. This is
259 unsurprising considering the high degree of burial that occurs as a result of viral binding. Com-
260 puting the root mean squared deviation (RMSD) of the entire structure over the trajectory shows
261 that none of the mutations are so deleterious as to cause rapid unbinding. In fact, the RMSD over
262 trajectory looks highly invariant across mutants (Figure 4). In the unbound state, calculated near
263 the end of the SMD trajectory, all of the residues in the WT receptor interfacial strand are in the
26« top half of RMSF over all receptor sites (Figure 5). Thus, if sufficient simulation time is not ded-
265 icated to allowing this unfolding process, standard free energy techniques may miss the energetic

266 contributions that result from ordering the flexible loop in the hTfR apical domain.

27 3.2 Molecular dynamics simulations

268 We analyzed the GP1/hTfR1 system using two molecular dynamics techniques. First, by carrying
269 out SMD using a known force constant and pulling with a constant velocity, we could calculate
270 the applied force during protein—protein dissociation (Cuendet and Michielin 2008; Cuendet and
a1 Zoete 2011). A typical averaged force curve comparison can be seen in Figure 6, and individual
272 images of all averaged force curves are available in the associated github repository, in folder
273 figures/force_curves. As seen in Figure 6, the dissociation distance was relatively consistent among
27+ mutants. The supplementary movie visually illustrates the separation distance between peptide
275 domains. The quantities maximum applied force and AUC were derived from the force-versus-
276 distances curves. Their summary statistics are reported in Table 2. As we are more interested in
277 the phenotypic impact of interface mutations we avoided many of the more physically rigorous, but
278 technically complicated calculations that are possible with SMD (Isralewitz et al. 2001b,a).

279 Before systematically applying SMD to the GP1/hTfR1 interaction, we needed to ensure the
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method was sufficiently sensitive to distinguish between relatively minor point mutations. While
SMD has been applied previously to measure the binding energy of high-affinity T-cell receptor
interactions (Cuendet and Michielin 2008; Cuendet and Zoete 2011), it is rarely used to parse small
energy differences in a protein—protein interaction energy landscape. For this initial sensitivity anal-
ysis, we tested alanine substitutions congruent with the traditional experimental and computational
approach.

We proceeded to compare our SMD results to that of the standard dual topology FEP approach
to calculate relative free energy differences. The correlation between the energetically rigorous
FEP and our statistical approach is high. For all 11 complexes tested, the correlation between max
force and FEP was r = —0.795 at p = 0.0034 (Figure 7), and the correlation between AUC and
FEP was r = —0.593 at p = 0.055. Because of the strong correlation, we refer exclusively to the
SMD results for the remainder of this work, focusing primarily on max force.

We found that relative to WT, one alanine mutation (Y211A) produced a very large and statis-
tically significant difference in the maximum applied force and AUC (Figure 6, Table 3), while the
other two did not (Table 3). When considering additional mutants (also discussed below), we found
that maximum applied force was generally sufficient to distinguish mutants (Tables 3 and 4), and
AUC was able to add a few more statistically significant differences (Table 5). In general, how-
ever, and consistent with the FEP results, maximum applied force seemed to be the more sensitive

statistic than AUC.

3.3 Comparative analysis of the GP1/hTfR1 interface

Considering the involvement of extended hydrogen-bonding networks in the GP1/hTfR1 interface
(Figure 2), it was not clear that individual alanine mutations, even those that should destroy such
networks, would significantly change the strength of interaction. One major advantage of first prin-
ciples simulations is the ability to test mutations other than alanine without additional underlying
assumptions in the energy function. As shown in Table 1, we made additional mutations based on
biochemical intuition or available experimental data to chemically diverse amino acids including
tryptophan, lysine, aspartate, and threonine. Several mutations caused significant relative affinity
changes. In addition, to detect synergistic effects, we tested several double mutants where both

mutations appeared to cause similar changes in binding. Then, we compared the size of those
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a9 differences to single mutants (Figure 8 and 9).

310 Although Y211A appears to have a large impact on binding affinity, no single mutant can pro-
s11 - vide enough evidence to understand the biochemical difference in binding mechanism. Since ala-
sz nine is both smaller than tyrosine and also incapable of participating in hydrogen-bond interactions,
a1z we tested further mutations to identify the critical biochemical difference responsible for change in
314 binding affinity. In particular, we substituted smaller side chains that, like tyrosine, were capable
a5 of hydrogen bonding. We chose Y211D and Y211T, two mutations that have been discussed in the
st context of selection pressure on hosts in rodent populations (Radoshitsky et al. 2008; Choe et al.
a7 2011; Radoshitsky et al. 2011). Both mutations proved capable of causing a significant change
s1s 1n binding affinity in our simulations, but the change appeared to be increased affinity (Figures 8
si9 and 9, and Table 4).

320 We also simulated several point mutations at N348 in the hTfR1. As discussed above, the
321 alanine mutation at this site showed no significant difference in maximum applied force or AUC
a2 from WT (Tables 4 and 5). In addition, neither the N348Lys nor the N348W mutation showed
223 a significant difference from WT. For both of these mutations, however, mean maximum applied
s2«  force and mean AUC was lower than for WT (See Table 2). On the other hand, there was a de-
a5 tectable difference between N348A and N348Lys (Tables 4 and 5), with N348Lys being a weaker
a6 binder. Moreover, N348W showed nearly identical results to N348Lys. The mutations to large
327 amino acids (N348W and N348Lys) produced nearly identical affinity changes, whereas the muta-
328 tions to amino acids not capable of hydrogen bonding (N348A and N348W) produced significantly
a0 different affinity changes (Table 3). To check the consistency of our results, we hypothesized that
a0 the combination of Y211A and N348W, being chemically disconnected in two different hydrogen-
a3 bonding networks, would lead to a synergistic loss-of-binding. As expected, the double mutant
sz was the weakest binding mutant tested (p < 1079, Tables 4 and 5) in this study. Further, according
a3 to maximum applied force (but not AUC), the combination of Y211A and N348W also showed
s« significantly weaker binding than Y211A by itself (Tables 4 and 5). We suspect that the effect
a5 of N348W alone is near the limit of detection using our method. A larger number of replicates
ass  would possibly have resolved affinity differences between N348W and WT or other mutants more
37 consistently.

338 Last, we further analyzed a single mutation in GP1, vR111A. As mentioned previously, in our
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simulations this mutant showed no significant change in either maximum applied force or AUC
(Tables 4 and 5), even though both quantities were, on average, lower than in WT (Table 2). This
result was somewhat surprising, since Y211A, presumably disrupting the same hydrogen-bonding
network as vVR111A, displayed a significant reduction in affinity. To probe the interaction between
position 111 in the GP1 and position 211 in the hTfR1 further, we also tested the double mutant
vR111A/Y211A. This double mutant showed affinity indistinguishable from WT and significantly
higher than Y211A alone (Table 3). This result shows that the two sites do indeed interact, and that
replacing the hydrogen-bonding network at these sites with a hydrophobic interaction could lead to

comparable binding affinity.

4 Discussion

We have applied a method utilizing steering forces in all-atom molecular dynamics simulations to
evaluate the effects of mutations at the GP1/hTfR1 interface. We modeled mutations at several sites
in the GP1/hTfR1 interface, and verified that our computational protocol was sensitive enough to
distinguish point mutants in hTfR1. Further, we identified two test statistics, maximum applied
force and AUC, that can be used as proxies for binding affinity. Both of these statistics correlate
well with FEP, but offer the simplicity of not requiring a large commitment to planning for the
theoretical issues inherent to free energy methods. We systematically tested several point mutations
to understand their contribution to the binding interaction. In the case of N348Lys, we have shown
that the static structure provides little insight into why this mutation causes loss-of-infectivity in
vivo. While N348 appears to be involved in a hydrogen-bonding network in the static structure,
change in binding at that site may actually be caused by size and charge restriction. We also found
that a negatively polar residue at site 211 in hTfR1 seem critical for a tight binding interaction.
Any non-polar mutation at Y211 in hTfR1 is likely to completely halt viral entry and dramatically
decrease the chances of MACYV infection.

Traditionally SMD has been either applied to compute equilibrium free energies via a non-
equilibrium approximation (Park et al. 2003; Park and Schulten 2004; Giorgino and Fabritiis 2011),
used to estimate protein stability through unfolding (Lu and Schulten 1999), or used to calculate the

absolute free energy of small molecule ligand binding (Dixit and Chipot 2001). Likewise, others
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have used SMD to understand the process of binding and unbinding at a resolution unmatched by
experiment (Cuendet and Zoete 2011; Giorgino and Fabritiis 2011). Here, we have shown that
SMD can provide insight into the relative strength of protein—protein interactions. Via SMD, one
can separate mutations whose likely effect is altered binding affinity with simple statistics like
maximum force of separation. Thus, SMD may open avenues for subsequent experimental work in
some situations where FEP may be prohibitively difficult.

Our findings rationalize several effects observed in both infectivity data and rodent populations
(Radoshitsky et al. 2008; Choe et al. 2011). First, we found that some substitutions at positions
211 and 348 did affect the strength of receptor binding. However, the computational data suggest
that the reason and nature of the effects at these two sites are very different. At position 211,
mutations to non-polar residues cause a large change in binding. This is congruent with what is
known from viral entry data (Radoshitsky et al. 2008; Choe et al. 2011). By contrast, mutations at
position 348 need only be small to maintain WT binding. The ability to hydrogen bond appears to
be insignificant. This can be inferred from the fact that Y211A paired with large (W) and positively
charged (Lys) substitutions at position 348 results in a larger than expected synergistic difference.
That is, the double mutant Y211A/N348W caused a much larger decrease in binding than we
expected from either mutation individually. Third, the GP1 mutation vR111A causes a loss-of-
infection during in vitro infectivity assays (Radoshitsky et al. 2011), yet it was indistinguishable
from the WT complex in our simulations. Although Y211A was the most disruptive single mutant
we tested, VR111A in the GP1 was able to restore mean maximum applied force to WT levels
(Table 2), and to levels significantly higher than observed for Y211A alone.

We would like to emphasize here that we cannot expect perfect agreement between our simula-
tions and the available experimental data, but the correspondence to a well established free energy
method bolsters our conclusions. While we have shown that our method can distinguish individual
point mutations, we do not know the limit of detection with our method. First, it is possible that
some mutants display measurable phenotypic effects in experiments yet appear identical in simula-
tion. More extensive sampling or refinement of the simulation protocol could help to differentiate
such mutants (see also next paragraph). Second, the SMD method is fundamentally limited by the
accuracy of our starting structure. Third, the available experimental data for the GP1/hTfR1 sys-

tem were generally obtained from entry assays or whole-cell binding assays rather than molecular
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binding assays. A mutant may cause a phenotypic difference in infectivity without generating a
signal by our method. For example, entry could be lost in the experimental system because the
protein is grossly or partially misfolded. An additional analytical step with circular dichroism or an
analogous technique could clarify such large-scale folding differences. Further, since our simula-
tions start with a bound structure, any changes that may dramatically affect the rate of association
(different folds, trafficking issues, etc.) or relative orientation of the two proteins would be under-
estimated by our method.

There are a few additional challenges for investigating host-virus interactions via molecular
dynamics simulation. As with any atomistic simulation, there is going to be a fairly large noise-to-
signal ratio. To reduce noise, one could further customize each simulation, e.g. by determining the
optimal pulling speed. Furthermore, larger amounts of computational resources will have a direct
and powerful impact on the strength of any atomistic study (Jensen et al. 2012). Such resources
could come in the form of increased compute time, improved code, or customized hardware for
floating point operations (Shaw et al. 2011). With improved resources, we could investigate thou-
sands of individual permutations in the GP1/hTfR1 binding interface. In addition, with additional
compute time it would be possible to incorporate equilibrium sampling approaches (Buch et al.
2011) or use brute force equilibrium approaches (Giorgino et al. 2012) to improve resolution.

For future studies, although our approach offers the simplicity of not requiring prior knowledge
about a system of interest (other than a bound model), at this point SMD may not the best approach
for many relative affinity calculations. To ensure one’s results are independent of the dissociation
path one selects would require computing the work of separation for all likely paths. Such an
approach eventually requires using the Jarzynski inequality (Jarzynski 1997) to establish a lower
limit for binding energy and would quickly become computationally inefficient for evaluating a
large number of mutations in most systems. However, considering the strong correlation between
FEP and SMD in this system, it may not be important to ensure one’s results are path independent
for relative affinity calculations, as long as the same path is used for all complexes.

More importantly, with no a priori knowledge of the appropriate number of equilibration sam-
ples, the best duration of equilibration, the appropriate number of pulling runs, or the best pulling
speed means the computational expense in our SMD protocol may not be commensurate with the

information provided. For example, another all atom approach that makes calculations via short
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227 simulations of spatially restrained complexes has proven capable of generating relatively accurate
228 binding affinities with less compute time than is required from our steering strategy (Gumbart et al.
29 2013a,b). That being said, there is no reason to believe this SMD approach to mutagenic stud-
s30 1es could not be optimized to reduce computational expense. Further analysis will be needed to

s31 understand the lower limits of resources required for accurate predictions.
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Figure 1: The GP1/hTfR1 complex. GP1 is shown in blue and hTfR1 is shown in green. (A)
The full, de-glycosylated GP1/hTfR1 co-crystal structure. (B) The reduced structure used in SMD

simulations.
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Figure 2: The two hydrogen bonding networks. GP1 is shown in blue and hTfR1 is shown in
green. (A) The first network including Y211 and R111 is shown in white, and the second network
containing N348 is shown in pink. (B) Near view of the first network with contacts in yellow. (C)

Near view of the second network with contacts in yellow.
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Figure 3: RMSF values during equilibration. The RMSF values for every site in the bound complex
computed during the equilibration phase of the protocol. Each color represents the average over
20 trajectories of a single mutant. Indices 17-25 are the hTfR flexible loop. The plot shows the
flexibility of each site is essentially independent of mutation, and two sites (indices 17 and 18)
above 0.72 A are a part of the flexible loop in the free receptor. However, these two residues are not
actually found in the protein—protein interface, but rather are almost completely solvent exposed

with the virus bound.
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Figure 4: RMSD values during equilibration. The RMSD values over the time of the trajectory
computed during the equilibration phase of the protocol. Each color represents the average over 20
trajectories of a single mutant. The plot shows none of the mutants causes immediate unbinding
of the protein—protein complex. In addition, the universal upward trend near the end of the equi-
libration trajectories may indicate the crystal is more tightly packed than would normally occur in

solution.
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Figure 5: RMSF values of WT hT{R in equilibration and SMD. The RMSF values for every site in
the WT receptor were computed during the equilibration phase and during final 50 frames of the
SMD trajectories. The black line was computed over equilibration and the red line during SMD.
The plot shows the solution mobility of the hTfR flexible loop increases more than the average

during the unbinding process.

26
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.138v3 | CC-BY 3.0 Open Access | received: 27 Jan 2014, published: 27 Jan 2014




Distance (A)

Figure 6: Force versus distance curve of WT and the Y211A mutant. The average force curve
for 50 replicates of the WT complex is shown in black, and the average of 50 replicates of the
Y211A mutant is shown in red. There is a large difference in both maximum applied force and

AUC between the two complexes.
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Figure 7: Max force versus free energy perturbation. Scatter plot of maximum force in SMD versus
the relative free energy difference calculated by FEP for all 10 mutants tested plus the WT complex.
The WT complex for FEP was simply set to 0.0. The correlation between the two is » = —0.795
with p = 0.0034.
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Figure 8: Distribution of interpolated maximum force for three different GP1/hTfR1 complexes.
The WT GP1-hTfR1 complex in the middle is flanked by the tighter binding mutant Y211D on the
right and the weaker binding double mutant N348W/Y211A on the left. The large non-overlapping

areas indicate a large and statistically significant difference in these three complexes.
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Figure 9: Distribution of interpolated maximum force for all bound complexes tested. Stars above
the boxplots indicate a statistically significant difference in mean maximum force relative to the

WT complex.
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Table 1: Summary of prior information available for each mutation tested. Observed in vivo
refers to mutations that have been observed in rodent populations. Phenotype in vitro refers to the

observed phenotype in in vitro viral entry assays.

Mutation Observed in vivo Phenotype in vitro
WT Yes Normal Entry
N348A No -
N348K Yes Diminished Entry
N348W No -
VRI11TA No Diminished Entry
N348A/Y211A No -
VR111A/Y211A No -
Y211D Yes No Expression
Y211T No Diminished Entry
Y211A No No Expression
N348W/Y211A No -
31
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Table 2: Summary statistics for each mutation tested. piyvar 1S the mean in piconewtons and oyar is
the standard deviation of maximum applied force over all simulations. payc is the mean and oayc
is the standard deviation of AUC over all simulations. AG is the free energy difference in kcal/mol

calculated via FEP by the dual topology paradigm.

Mutation pmar (pN) OMAF HAUC OAUC AG (kcal/mol)
WT 734.4856 131.6513 145460.4 60232.26 0.000
N348A 748.5217 137.4864 1339139 51078.64 -2.149
N348K 705.0707 108.5079 141084.4 54450.28 +3.184
N348W 697.3642  132.6436 136886.0 53796.44 +3.033
VRI11A 713.8081 106.7374 136103.2 52070.85 +0.466
N348A/Y211A  703.7027 128.5866 113464.2 57451.62 +5.203
VRITTA/Y211A 741.0642 131.6287 130070.6 47665.56 -2.440
Y211D 825.2586 115.4343 158878.7 63039.08 +2.760
Y211T 806.8593 136.5648 167110.7 78849.29 +0.875
Y211A 654.1138  108.5343 108090.0 43661.09 +2.526

N348W/Y211A  594.9044 134.8233 108984.2 45451.00 +8.206

32
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.138v3 | CC-BY 3.0 Open Access | received: 27 Jan 2014, published: 27 Jan 2014




Table 3: Pairwise differences (row variable minus column variable) in mean maximum applied

force. Bolded values are statistically significant at p < 0.05.

WT N348A N348W N348K VRIIIA N348A/Y211A vRI11A/Y211A Y211D Y211T Y211A

N348A +14.036

N348W -29.414  -43.451

N348K -37.121  -51.157 -7.7060
vR111A -20.677  -34.713  +8.7370 +16.443

N348A/Y211A  -30.782 -44.819 -1.3670 +6.3380 -10.105
VRIIIA/Y211A +6.5790 -7.4570 +35.993 +43.700 +27.256 +37.361

Y211D +90.772  +76.736 +120.19 +127.89 +111.45 +121.56 +84.194

Y211T +72.373 +58.337 +101.79 +109.50 +93.051 +103.16 +65.795 -18.399

Y211A -80.371 -94.407 -50.956 -43.250 -59.694  -49.588 -86.950 -171.14  -152.75

N348W/Y211A -139.58 -153.62 -110.17 +102.46 -118.903 -108.80 +146.16 +230.35 -211.95 -59.209
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Table 4: Pairwise difference p—values for maximum applied force. Bolded values are statistically

significant at p < 0.05.

WT N348A N348W  N348K  vRI111A N348A/Y211A VRI111A/Y211A Y211D Y211T Y211A
N348A 0.60
N348W 0.31 0.077
N348K 0.20 0.038 0.81
VRIITA 0.51 0.16 0.79 0.60
N348A/Y211A  0.29 0.07 0.95 0.81 0.77
VRI11A/Y211A 0.82 0.79 0.21 0.13 0.35 0.20
Y211D 0.00093  0.0012 1.4x10~° 5.0x107° 5.6x107° 1.2x107° 0.0022
Y211T 0.01 0.018 0.00022  8.7x10~° 0.0008 0.0002 0.021 0.56
Y211A 0.0034 7.2x107%  0.074 0.13 0.035 0.079 0.0016 4.2x10710  4.2x10°®
N348W/Y211A  3.9x10~7 1.1x10°° 6.5x10° 0.00021 1.6x10~° 7.2x10~° 1.3x10°7 12x10710 2.0x107'*  0.036

Table 5: Pairwise difference p—values for interpolated AUC. Bolded values are statistically signif-

icant at p < 0.05.

WT N348A N348W N348K VRIIIA N348A/Y211A VRII11A/Y211A Y211D  Y211T Y211A

N348A 0.33

N348W 0.76 0.59

N348K 0.59 0.80 0.76

VvRII1A 0.55 0.85 0.76 0.94

N348A/Y211A  0.017  0.07 0.031 0.076  0.08
VRITTA/Y211A 0.26 0.76 0.46 0.68 0.72 0.22

Y211D 0.33 0.029 0.18 0.09 0.08 0.00046 0.029

Y211T 0.09 0.0056 0.046 0.027  0.023 4.1x107° 0.006 0.59

Y211A 0.0056 0.027  0.016 0.029  0.031 0.75 0.09 8.2x107° 8.5x10°6

N348W/Y211A  0.006 0.029  0.017 0.032  0.034 0.76 0.1 9.4x10~° 8.5x10°% 0.94
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