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Abstract—The volume of Web robot traffic seen by Web servers
and clouds continue to increase with the popularity of Internet
of Things (IoT) devices. Such traffic exhibits decidedly different
statistical and resource request patterns compared to humans.
However, the optimizations ensuring high levels of Web systems
and cloud performance requires traffic to exhibit the statistical
and behavioral patterns of humans, not robots. This necessitates
the design of novel Web system optimizations to handle Web
robot traffic effectively. Caches are a basic component of high
performing Web systems, but their effectiveness relies on accurate
resource request prediction. In this paper, we explore a suite of
classifiers for the resource request type prediction problem for
robot traffic. Our analysis reveals: (i) a striking difference in the
request patterns of robots across multiple servers from the same
domain; and (ii) that Elman neural networks hold promise to
predict request types despite these differences.

I. INTRODUCTION AND MOTIVATION

The proportion of traffic that can be attributed to Web
robots, defined as any automated agent (including software
agents and hardware IoT devices) that submits http requests
to a Web server automatically and without any human inter-
vention, has risen to staggering levels. Whereas decade old
studies found approximately 20% of requests to a Web server
are from robots, recent measurements identify over half of
all requests submitted to academic, e-commerce, staging, and
vertical search engine sites, and over 60% of traffic across
a swath of public Web systems to be generated by these
automatic crawlers [1]. This sharp rise is precipitated by the
proliferation of Web 3.0 technologies that encourage users to
share valuable in-the-moment thoughts and social data [2].
IoT devices that send automated requests to Web servers and
services that stand to further raise this proportion in the future.

The most basic driver for the performance of a Web server
may be a Web cache, which provide low response rates to
client requests [3], reduce the number of bottlenecks on a
network [4], and are instrumental for building scalable server
clusters [5]. However, prevalent Web caching architectures
and polices were developed without considering the possible
impact of Web robot traffic, which features differentiated func-
tionality [6], access patterns [7], and traffic characteristics [8].
Previous studies have noted that a cache’s hit ratio is reduced
by Web robot traffic [9], supporting the notion that the intrinsic
differences in their traffic compared to humans [6], [7] make
their requests incompatible with current Web caches. The

effect of an incompatible cache may be very significant: if
increases in Web robot traffic cause linear decreases in a
cache’s hit ratio from A to B, its performance is identical
to a cache facing no robot traffic and with a hit ratio of A,
but has an exponentially smaller size [10].

Given that robot traffic levels on the Internet have reached
never before seen heights and exhibit request patterns that
are decidedly different compared to humans [7], contempo-
rary Web caches that predict the next request made by a
session [11] are unlikely to be effective. Tantamount to the
construction of caches that yield high hit ratios, therefore, is
a method to predict the next resource requested by a Web
robot or IoT device. This paper explores the performance of
numerous machine learning classifiers for this purpose. Data
from multiple time periods and academic servers show how, in
contrast to what may be a prevailing assumption, the sequence
of resource type access patterns by Web robots are different
among Web servers even if they serve the same domain of
the Web. Moreover, we find that the features of a resource
request sequence matter more than the order of the requests
when making an accurate request type prediction, and that the
performance of most classifiers are very sensitive to the nature
of robot traffic to a Web server, even when the servers are from
the same domain. But Elman neural networks, which consider
both the frequency of recent resource types requested and the
order of such requests yield strong, consistent performance.
The findings ultimately suggest that Web caches are capable
of anticipating the types of resources Web robots will request
with low computational overhead, paving the way for the
development of new caching algorithms able to serve Web
robot and human traffic.

The layout of this paper is as follows: Section II discusses
the notion of a resource request type. Section III discusses
the classification algorithms used for our analysis. Section IV
describes the datasets used in our experiments. Section V
discusses the results of the comparative analysis. Related
research is presented in Section VI. Conclusions and future
work is offered in Section VII.

II. RESOURCE REQUEST TYPES

Ideally, Web caches should be equipped to predict the pre-
cise request that will be requested next by an active Web robot
session. However, this prediction task may be infeasible given
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Fig. 1: Request type distribution to the WSU Web server

the large set of possible resources present on a Web server and
because robots have the potential to request such resources in
a seemingly random order. Even the task of predicting the
specific type of resource extension may require a model to
predict one outcome out of hundreds, which is challenging
for lightweight classifiers that need to make decisions in the
moments between http resource requests in a session. Inspired
by our past work that was able to accurately separate Web
robots from humans in Web logs based on meaningful pattens
in the stream resource type requests from robots [12], this
work considers classifiers that predict resource types. This
prediction may be very useful for predictive web caching. For
example. because the popularity of robot requests exhibit a
power tail [8], the most popular resources of a predicted type
are the ones likely to be requested next.

Following our previous work, we partitioned the set of
resources served by a web server into the classes featured
in Table I. We further expanded these partitions by separating
from the web class the specific resources css, and js and
the img class the resources jpeg and png. We rationalize this
additional division by examining the distribution request types
on the Wright State University (WSU) Web servers from May
1st to July 31st 2015 in Figure 1. It shows that the html,
css, js, jpeg, and png file types each represent a significant
percentage of the resources requested on a Web server. Of
all img type files, png and jpg requests represent 23.5%
and 49.5% of the population respectively. Similarly for web
files, html, js and css represent 65.4%, 13.6% and 7.1%
of the population respectively. Since these specific resources
represent a large number of requests, separating them out from
the more general web and img classes enables the predictor to
predict more specific resource types. Such specificity enables
a Web cache that admits resources based on request type
predictions to choose from among a smaller set of resources.

Class Extensions
text txt, xml, sty, tex, cpp, java
web asp, jsp, cgi, php
html html, htm
css css
js js

img tiff, ico, raw, pgm, gif, bmp
png png
jpg jpeg, jpg
doc xls, xlsx, doc, docx, ppt, pptx, pdf, ps, dvi
av avi, mp3, wvm, mpg, wmv, wav

prog exe, dll, dat, msi, jar
compressed zip, rar, gzip, tar, gz, 7z
malformed request strings that are not well-formed

noExtension request for directory contents

TABLE I: Representative resources in each class
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Fig. 2: Extracting samples from a resource request pattern

III. CLASSIFICATION ALGORITHMS

To predict the type of an incoming request sent by a Web
robot, we consider classification algorithms that try to predict
the type of the nth resource requested during a Web robot
session given a sequence of the past n − 1 request types.
A record of the training set is denoted ri = (vi, li) where
vi is an ordered sequence of the past n − 1 request types
and li = xn is the type of the resource requested after the
sequence vi. Derivation of such sequences from a Web server
access log is illustrated in Figure 2 with n = 10. The first
record is composed of the first nine requests and its class
label is given by the tenth request; the second record contains
the second through tenth request and its class label is given
by the eleventh request; and the third record contains the third
through eleventh request and its class label is the type of the
twelfth request. The trained predictor will maintain a history
of the types of the last n− 1 requests of a Web robot session
and, based on this history, generate a probability distribution
for the type of request that will be made next.

The selection of resource request type sequences as our
training data is intentional. Although other features such as the
standard deviation of requested page depth, the percentage of
consecutive sequential http requests, the html-to-image ratio,
and the percentage of 4xx error responses are robot session

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1386v1 | CC-BY 4.0 Open Access | rec: 22 Sep 2015, publ: 22 Sep 2015



features used in previous machine learning classifiers [13],
they may not be indicative of the future resource request
behavior of Web robots. This is because the kinds of resources
requested by a Web robot are likely to be independent of
session level features. For example, whether or not a robot has
a penchant for html or image files, or if a robot generates many
4xx error responses, may have little to do with its decision
for the next type of resource it requests. It is instead the
decisions about what resources should be requested and the
way it chooses to crawl a Web site’s structure (specified a
priori by its programming) that is central to a resource request
prediction. Such decisions are encoded in the sequence of past
resource requests, not session summary statistics.

We next present the set of classifiers that were chosen for
request type prediction. A special focus is given to the Elman
neural network (ENN) classifier, a recurrent neural network
that we hypothesize will work best for request type prediction.

A. Elman neural networks

We hypothesize that both the features of a request sequence
as well as the order of types carry important information for
predicting the type of the subsequent request. For example,
consider the two request sequences 〈web, web, img, img,web〉
and 〈web, img,web, img,web〉. On the one hand, both se-
quences exhibit similar features, namely, that they are com-
posed of 3 web and 2 img requests. These features may
imply that the next request will be either for a web or img
resource. But recognizing that requests for the same resource
come in pairs in the first sequence and that the request types
are alternating in the second, we may predict that the type
of the next request will be web in the first and img in the
second pattern respectively. A promising predictive model for
our problem should thus be able to find associations between
both the features of a request (e.g. the number and kinds of
request types present), as well as the order in which these
requests are in. An ENN is a classification model able to
satisfy these requirements [14]. Illustrated in Figure 3, an
ENN is a feed-forward neural network with a single hidden
(blue) and recurrent (red) layer. Each hidden unit corresponds
to a logistic function whose parameters are fitted so that the
function can identify the presence of an implicit pattern or
characteristic in the input data. For example, the training phase
may fit the parameters of a hidden unit layer to ‘activate’, that
is, return a value close to 1, when a request sequence contains
only web or img requests. Another separate hidden unit may
activate if doc requests are dominant in the sequence.

Importantly, an ENN is augmented with a recurrent context
layer (the red units in Figure 3) that, during the training phase,
store the output of hidden layer nodes activated during the
training process. These values are fed back into the same
hidden layer node during training of the subsequent request.
This recurrence effectively tunes the parameters of the hidden
unit to not only the features of a training record, but also
to the ordering of requests in previously seen records. To
conceptualize this, consider the diagram of an ENN with three
hidden states in Figure 3. During training on record ri, the
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Fig. 3: Elmen Neural Network

hidden units use vi to emit a value based on their present
parameters, which are routed to the output units as well as to
a context unit. The hidden unit parameters are then adjusted
according to the error between the networks prediction and
the actual class label li. When the network begins its learning
process for training sample ri+1, the hidden nodes now emit
a value based on vi+1 as well as its previous activation value
from vi through the recurrent context layer. Since this previous
activation value represents a hidden unit’s computation from
when an img type in the first position of feature vector vi,
a doc in the second position of vi, and so forth, the hidden
node’s new value will consider the state of previous request
sequences as well. Similarly, when the ENN begins training
over record ri+2, the context layer incorporates the state of
the hidden units from the previous two training vectors.

B. Comparative algorithms

The relative importance of request pattern features and its
order is unknown a priori. In order to evaluate our hypothesis
that both the features and the order of a resource request
pattern is important, we consider alternate classifiers to com-
pare the performance of the ENN against that focus on either
aspects, but not both. These classifiers, implemented through
the WEKA Java library [15] are:

• Discrete time Markov chain (DTMC) [16]: order-
based. A DTMC encodes the probability that a resource
request of type j is requested following a request for a
resource of type i. The model is ‘memoryless’, in the
sense that the predictions are only based on the type of
the last request seen. It thus captures the order of a request
sequence without regard to features such as the frequency
different types of resources emerge.

• Multinomial logistic regression (MLR) [17]: feature-
based. The MLR trains an ensemble of binary logistic re-
gression models, one for each pair of possible outcomes.
One model is chosen as a ”pivot” and every other model is
compared to this pivot. The predicted class is the outcome
selected by highest accuracy.

• J48 decision tree (J48) [18]: feature-based. The J48
is an implementation of the C4.5 algorithm to build a
decision tree. Each node of the tree uses the attribute
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with the maximum information gain that best separates
each subset of the tree into classes.

• Support vector machine (SVM) [19]: feature-based. A
SVM maps the data into a k-dimensional space and uses
a hyperplane to split the data points while maximizing
the margin between points of different classes. We use
the default radial basis function (RBF) kernel for our
experiments. The RBF kernel enables fast evaluation and
provides fewer terms for approximation [20].

• Näive Bayes (NB) [21]: feature-based. NB uses prior
observations to calculate the probability that a feature will
occur given a class. The classification of an observation
is given by the product of the probabilities of each feature
occurring, given a class label.

• Feed forward neural network (NN) [22]: feature-based.
The NN is the basis for the ENN shown in Figure 3, but
because it lacks a context layer, does not consider the
order of resource type sequences.

IV. DATASET DESCRIPTION

This section describes the datasets used to compare the
performance of the classifiers for request type prediction. They
capture Web robot requests from Web servers across two
different universities, namely Wright State University (WSU)
and the University of Connecticut (UConn) over different time
periods. Despite the fact that both datasets come from an
academic domain, we demonstrate their exposure to Web robot
traffic with differing request type patterns. We describe the
identification of Web robot sessions and contrast the resource
request activity of Web robots in them.

A. Data Collection

The WSU dataset contains a record of over 244,000 requests
sent to its public facing Web servers between May 1st and
July 31st 2015. Because these requests include both human
and robot requests, a filtering step is necessary to extract
only Web robot requests. We note that numerous Web robot
detection methods exist [23], however, some admit a small
amount of error. Because we need a dataset consisting of
verifiable Web robot requests to compare classification algo-
rithms, we adopt a heuristic procedure that labels a session
as a robot from a curated knowledge base of Web robot user-
agent fields. Specifically, we submit queries to the website
www.botsvsbrowsers.com, an online database containing data
from over 1.4 million reported web user-agents and IP ad-
dresses from Web server administrators across the world. Since
there is no public API available, we submit http requests to url
pages using Python’s BeautifulSoup [24] http parsing library.
Each http request will return a list of user-agents, tagged as
bot or browser, that approximately match the query. Because
the site returns a set of user-agent fields that are similar to the
query, there is the possibility that both human and robot user-
agents are present. We thus conservatively label a user-agent
as a robot only if more than 75% of the user-agents returned
by the database is tagged as bot. The identified Web robot
requests are then ordered by time, IP address, and user-agent

(a) WSU (b) UConn

Fig. 4: Web robot resource type request distribution

to group them into sessions with a 30 minute timeout [9]. This
leads to a total of 54,371 robot sessions.

The second dataset consisted of Web robot requests captured
in the Web logs of the School of Engineering at UConn. This
data was provided as a text file of all Web robot requests
from the data providers. The robot requests in this dataset
was derived from a preprocessing routine involving a blacklist
of well known Web robot user-agent strings [12]. Although
the two datasets emerged from different processing routines,
both approaches filter away any requests that are not verifiably
generated by a Web robot. The UConn data set features over
125,000 robot requests captured between January 30th and
February 12th of 2009.

B. Robot activity comparison

We now summarize and compare the request type patterns
exhibited by Web robots in the two datasets. Figure 4 compares
the distribution of the resource types requested by robots. It
shows how the most popular resource types in the WSU dataset
are html (33.8%), followed by doc (14%), web (12%), and jpg
(11.9%). Resource type favoritism in the UConn data is very
different, however, with web as the most popular resource type
(43.7%), followed by html (18.4%) and doc (15%). These
differences may arise because, although both datasets come
from an academic domain, resource request types are driven by
the functionality of a Web robot [6]. This suggests that robots
with varying functionality and interests may be crawling these
two academic Web sites.

We also summarize the request type sequences exhibited by
robots in the two servers using Figure 5. It shows the transition
probabilities of a DTMC model fitted to all Web robot requests
seen in the WSU and UConn logs, respectively, with bolder
colors corresponding to higher probability transitions. For the
WSU Web servers (Figure 5a), we find that the probability
of consecutive requests for the same type of resource is
significant for every type of resource. Moreover, html files are
seen to have a non-negligible probability of being requested
following any resource type request. This is not surprising
since html files represent a large proportion of the dataset. In
contrast, the types of resources requested by Web robots in the
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(a) WSU (b) UConn

Fig. 5: Request type patterns of Web robots

UConn data (Figure 5b) show a lower probability of requesting
the same resource type consecutively. It is important to note
how Web robots to exhibit different request patterns on the two
different academic Web servers. This note lets us evaluate the
types of classifiers that will perform best across datasets that
feature varying resource request patterns.

V. RESULTS AND DISCUSSION

This section compares the performance of the collection
of classifiers for prediction resource request types over the
two Web server logs. For both logs, only sessions with length
k ≥ 10 are considered. We chose k based on a robot detection
study which found that k ≥ 10 was sufficient to identify the
session as human or robot using resource request patterns [12].
This resulted in collecting 117,114 request sequences from the
WSU logs and 93,539 request sequences from the UConn logs.
We down sampled to 90,000 sequences so that an identical
number are used to evaluate the Web servers. Training was
performed over the oldest 70% of the sequences and testing
with 30% of the most recent sequences.

Figure 6 shows the accuracy of the seven classifiers. Their
prediction accuracy is similarly high across the WSU data,
but shows more variability with the UConn data. Interestingly,
the DTMC order-based classifier performs the worst over
the WSU data set. This is surprising because the first-order
resource request pattern visualized in Figure 5a appear highly
predictable: the next resource type is often identical to the
type of the last request. Moreover, the ENN, which is order-
and feature-based, performs nearly as well as purely feature-
based classifiers. This suggests that request sequence features
are more important than the order in which resources are
requested. However, in the UConn results, order-based algo-
rithms performed very well with the DTMC yielding accuracy
comparable to the feature-based classifiers. The ENN gives
very strong results, performing 13.4% higher than the best
feature-based classifier (SVM).

Our analysis suggests that, no matter the dataset, the
features of a resource request sequence matter the most to
make an accurate request type prediction. Moreover, the order
of these resource type requests may significantly improve the
accuracy of feature-based prediction as demonstrated by the

Fig. 6: Prediction Accuracy

ENN’s performance over the UConn dataset, or marginally
reduce performance as seen by the WSU dataset. We hypoth-
esize that there exists a connection between the complexity of
the request type sequences and the effectiveness of an order-
based classifier. For example, the request type patterns of
robots over the WSU dataset (Figure 5a) exhibit a very simple
structure. The simplicity of this structure suggests that there
is little information that can be gleamed from studying the
order of resource requests. For example, the DTMC principally
learns that the same type of resource is often requested
consecutively over the WSU data set, but such a rule is a
coarse summarization of how robots decide to submit resource
requests. The higher complexity of resource request order in
the UConn dataset (Figure 5b), however, encodes a larger
amount of information that an order-based classifier can use
to learn more specific, telling patterns in Web robot request
sequences. Fortunately, the ENN model appears to discount
the order of request sequences when they are insignificant
(leading to only marginally worse performance over the WSU
data) or promote them if they carry predictive power (leading
to significantly better performance over the UConn data). This
suggests that the ENN thus shows promise as a generalizable
predictor of request type patterns for Web robot traffic.

VI. RELATED WORK

Previous studies of Web robot traffic concentrate on the
characterization of their traffic and on the application of
machine learning methods to predict Web robot activity.
Characterizations of Web robot traffic emphasize summarizing
and fitting the request- and session-level features of their
traffic to statistical distributions. For example, Dikaiakos et
al. revealed that heavy-tailed distributions exist in the inter-
arrival times of Web robot requests, and that robots generate
4xx response codes at a rate nearly twice that of the total Web
client population [25]. Our past work [6], [7] also confirm the
presence of heavy-tailed patterns in the response and inter-
session times of Web robot requests. However, less work has
been performed to understand the behavioral patterns of Web
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robots, particularly with respect to patterns in their resource
type requests. In this work, we present a look into these seldom
studied request patterns across multiple Web servers.

Machine learning methods have been applied to Web robot
traffic for detection purposes. Stevanovic et al. argue that two
features, namely the standard deviation of requested page-
depth and the percentage of consecutive sequential HTTP
requests belonging to the same web directory, are essential
to separate robots from humans in Web server logs [13]. Yang
et al. also consider association rule mining to create an n-gram
model of occurrence frequencies. The n-gram model encodes
adjacent sequences (substrings) of items accessed just before
a prediction, prunes substrings with a low support, and uses
the remainder to build a prediction model [11]. With a large
amount of work already devoted to the Web robot detection
problem [23], this work takes the next step: given a way to
separate out human and robot requests from a Web server
log, it uses applied machine learning methods to improve the
capability of Web systems to handle the detected sessions.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a comparative analysis of classification
algorithms for predicting the next type of resource requested
by a web robot. Our findings conclude that features of a
resource request sequence are more important than the order
of the request sequence when making an accurate prediction
for the next resource type. Furthermore incorporating order
of a request sequence to a feature-based prediction may
significantly improve the prediction accuracy (seen in UConn
data) or marginally reduce the accuracy (seen in WSU data).
The performance of order-based classifiers may be correlated
to the complexity of the resource request patterns of a dataset.
Moreover, we conclude that the ENN, an algorithm that
considers the order and features of request sequences, yields
accurate and consistent performance irrespective of the nature
of the robot activity on the web server.

Future work will further explore how feature- and order-
based features can be incorporated to predict resource types,
and whether deeper neural networks with larger recurrent
layers can improve classification performance. We will also
use these results to build a new predictive caching system
for Web robot traffic, and devise systems to integrate both
human and robot caches together to yield superior caching
performance for Web servers, data centers, and clouds.
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