
Bayesian characterization of uncertainty in species interaction
strengths

Considerable effort has been devoted to the empirical estimation of species interaction

strengths. This effort has focused primarily on statistical significance testing and on

obtaining point estimates of parameters that contribute to interaction strength magnitude,

leaving characterizations of estimation uncertainty and distinctions between the

deterministic and stochastic contributions to variation largely unconsidered. Here we

consider a means of quantifying interaction strength uncertainty by formulating an

observational method for estimating per capita attack rates as a Bayesian statistical

model. This formulation permits the explicit incorporation of multiple sources of

uncertainty. In doing so we highlight the informative nature of several so-called non-

informative prior choices in modeling the sparse data typical of predator feeding surveys

and provide evidence for the superior performance of a new neutral prior choice. A case

study application shows that while Bayesian point estimates may be made to correspond

with those obtained by frequentist approaches, estimation uncertainty as described by the

95% intervals is more biologically realistic using the Bayesian method in that the lower

bounds of the Bayesian posterior intervals for the attack rates do not include zero when

the occurrence of a given predator-prey interaction is in fact observed. This contrasts with

bootstrap confidence intervals that often do contain zero in such cases. The Bayesian

approach provides a straightforward, probabilistic characterization of interaction strength

uncertainty. In doing so it provides a framework for considering both the deterministic and

stochastic drivers of species interactions and their impact on food web dynamics.
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Abstract10

Considerable effort has been devoted to the empirical estimation of species11

interaction strengths. This effort has focused primarily on statistical significance12

testing and on obtaining point estimates of parameters that contribute to interaction13

strength magnitude, leaving characterizations of estimation uncertainty and14

distinctions between the deterministic and stochastic contributions to variation15

largely unconsidered. Here we consider a means of quantifying interaction strength16

uncertainty by formulating an observational method for estimating per capita attack17

rates as a Bayesian statistical model. This formulation permits the explicit18

incorporation of multiple sources of uncertainty. In doing so we highlight the19

informative nature of several so-called non-informative prior choices in modeling the20

sparse data typical of predator feeding surveys and provide evidence for the superior21

performance of a new neutral prior choice. A case study application shows that while22

Bayesian point estimates may be made to correspond with those obtained by23

frequentist approaches, estimation uncertainty as described by the 95% intervals is24

more biologically realistic using the Bayesian method in that the lower bounds of the25

Bayesian posterior intervals for the attack rates do not include zero when the26

occurrence of a given predator-prey interaction is in fact observed. This contrasts27

with bootstrap confidence intervals that often do contain zero in such cases. The28

Bayesian approach provides a straightforward, probabilistic characterization of29

interaction strength uncertainty. In doing so it provides a framework for considering30

both the deterministic and stochastic drivers of species interactions and their impact31

on food web dynamics.32

Keywords: nonlinear interaction strengths, predator-prey, functional response, JAGS,33

zero-inflated gamma, parameter estimation, non-informative neutral priors.34
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Introduction35

Quantifying the strength of species interactions is an important ecological challenge.36

Estimates can be used to identify keystone species whose impacts are disproportionate to37

their abundance (Power et al., 1996), help explain community structure (Wootton, 1994),38

are key to understanding food web stability (Allesina and Tang, 2012), and underlie39

forecasts of community dynamics (Yodzis, 1988). Estimates made on a per capita basis are40

particularly useful in that they underlie all other measures of interaction strength (Laska41

and Wootton, 1998). In this regard, a fundamental component of predator-prey interaction42

strengths is the nature of the predator’s functional response. For example, with linear43

Holling type I functional responses and linear density dependence in the prey, per capita44

interaction strengths correspond to the predators’ per capita attack rates. For nonlinear45

multi-species functional responses, such as the Holling type II functional response which46

most predators exhibit (Jeschke et al., 2004), the per capita attack rates are parameters47

reflecting the predators’ prey preferences (Chesson, 1983).48

Unfortunately, estimating interaction strengths in natural systems is difficult. In most49

food webs the large number of pairwise interactions—and the large number of weak50

interactions in particular—makes the use of manipulative experiments logistically51

prohibitive. Thus, many have resorted to indirect means of estimation, such as using52

energetic and allometric principles (Wootton and Emmerson, 2005). More effort still has53

been devoted to estimating interaction strength parameters by characterizing predator54

functional responses, largely on a pairwise experimental basis or by using observations of55

predator gut contents and kill rates (Vucetich et al., 2002; Jeschke et al., 2004).56

To date, most of the effort spent on measuring interaction strengths has focused on57

obtaining point estimates of parameters. For example, Paine (1992) used a bootstrapping58
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procedure only to quantify the uncertainty associated with the mean net strength of59

pairwise species interactions due to variation among experimental replicates. The focus has60

similarly been on point estimates and their statistical significance in the use of functional61

response experiments designed to determine the dependence of feeding rates on prey-62

and/or predator densities. Thus only the “deterministic core” of alternative functional63

response formulations has been of interest (Vucetich et al., 2002; Jeschke et al., 2004).64

More specifically, functional responses have often been fit to data using statistical models65

such as F = cN
1+chN

+ ε (the Holling type II response) whereby variation in a predator’s66

feeding rate (F ) is assumed to be controlled by a deterministic component governed by67

variation in abundance (N), attack rate (c) and handling time (h), and only a “shell” of68

stochastic variation (ε) is used to describe the variation left unexplained by the69

deterministic core. This is in contrast to considering the variation that is intrinsic to both70

the parameters (c and h) and variables (N) by describing each by a distribution that is71

itself governed by deterministic and stochastic sources of variation.72

The distinction between these two approaches to considering variation in interaction73

strength estimates is important when the uncertainty of estimates itself is of interest. This74

is particularly true when forecasting the dynamics of species rich communities where75

indirect effects can rapidly compound even small amounts of uncertainty (Yodzis, 1988;76

Novak et al., 2011). In such applications, knowledge of the (co-)variation of parameter77

estimates is essential to assessing the sensitivity of predictions under plausible scenarios of78

estimation uncertainty. Of course, estimates of uncertainty are also important in79

comparing the utility and consistency of different interaction strength estimation methods,80

and for the biological interpretation of the estimates themselves. Estimates derived from81

allometric relationships, for example, are typically associated with several orders of82
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magnitude of variation (Rall et al., 2012).83

Here we extend the observational method for estimating the per capita attack rates of84

predator-prey interactions presented by Novak and Wootton (2008) to characterize85

estimation uncertainty. Our interest in such observational methods stems from their ability86

to more easily accommodate instances of trophic omnivory than experimental and87

time-series methods, and because they retain the species-specific information lost in88

allometric and energetic approaches. Furthermore, with the method of Novak and Wootton89

(2008) attack rates may be estimated for multiple prey simultaneously while accounting for90

an inherent nonlinearity of predator-prey interactions because a multi-species Holling type91

II functional response is considered in the method’s derivation. Our stochastic formulation92

connects a deterministic functional response model with each of the sources of empirical93

data that contribute to the per capita attack rate estimates. The Bayesian framework in94

which we implement our approach thereby permits us to account for both variation due to95

sampling effort and the environment, and thus to explicitly incorporate the deterministic96

and stochastic sources of uncertainty intrinsic to the attack rate estimates.97

To assess the Bayesian method’s utility we apply it to data collected by Novak (2010),98

contrasting these estimates with those obtained by non-parametric and parametric99

bootstrapping procedures. Commensurate with the Bayesian approach we assess the effect100

of alternative prior choices on posterior point estimates and show that these estimates may101

be made consistent with those obtained by bootstrapping approaches by the choice of an102

appropriate non-informative prior. In addition, we show that estimation uncertainty as103

described by 95% intervals is considerably more constrained and biologically realistic when104

estimated within the Bayesian framework. Finally, we provide posterior probability105

distributions on the per capita attack rate estimates that lend themselves to a more useful106

5
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and descriptive characterization of interaction strength uncertainty.107

Methods108

Model framework109

Novak and Wootton (2008) present a method for estimating a predator’s per capita110

attack rates provided that a multi-species Holling type II functional response,111

Fi =
ciNi

1 +
S∑
k=1

ckhkNk

, eqn 1

describes the per predator feeding rate on the ith prey species (i = 1, ..., S). Their112

estimator for the attack rates may be shown to be equivalent to113

ci =
Ai
A0

1

hiNi

, eqn 2

where hi and Ni are the handling time and abundance of the ith prey species, Ai is the114

number of predators feeding on prey i, and A0 is the number of predators not feeding (see115

Appendix S1).116

Estimates of Ai and A0 come from one or more predator population “snapshot”117

feeding surveys in which the number of predator individuals feeding on each prey species is118

recorded. Other data sources are used to estimate prey abundances and handling times.119

For example, handling times are more easily measured in laboratory experiments than in120

the field, while abundance estimates may come from independently performed community121

surveys. Even if handling time data are based on field observations, they are unlikely to be122

measured on the predators observed in a feeding survey since the lengths of time those123

6
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predators have been feeding are unknown due to the snapshot nature of the surveys.124

Both eqn 1 and eqn 2 are implicitly deterministic mathematical models that include125

no statistical description of their stochastic component. In the next sections of this paper126

we develop a parameter-based version of eqn 2 that gives a stochastic formulation of the127

attack rate estimator that can incorporate sampling and environmental variation explicitly.128

Bayesian Methods129

Frequentist approaches for combining data from multiple sources to estimate functions130

of parameters generally rely on bootstrap methods or asymptotics like the multivariate131

delta-method. Both these approaches exhibit poor small-sample performance (Efron and132

Tibshirani, 1994; Kilian, 1998). This is relevant when dealing with predator feeding surveys133

as the Ai in eqn 2 are often very small for the rare prey species that typify predator diets134

(Rossberg et al., 2006). Small values of Ai can be problematic even when the total number135

of predators surveyed is large (Agresti and Coull, 1998). Ignoring variation in abundance136

and handling time estimates to focus on the variation within the feeding surveys may avoid137

this problem, but will lead to underestimation of the uncertainty in the attack rate138

estimates. The Bayesian framework circumvents this problem.139

The Bayesian machinery is built around Bayes theorem:140

f(θ|data) ∝ f(data|θ) · f(θ). eqn 3

Here, f(data|θ) is the likelihood: a function specifying the likelihood of the observed data141

in terms of unknown parameters θ. f(θ) is the prior: a probability density function142

reflecting prior beliefs or uncertainty about the parameters. Together, these inform143

f(θ|data): the posterior distribution of the parameters given the data. Here, we consider144

7
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only objective (also called non-informative) priors, assuming an absence of prior beliefs or145

information about the parameters in question (Berger, 2006). In other situations,146

informative priors constructed from previously obtained knowledge or data may be useful.147

Note that we use f to represent the density function of an arbitrary distribution for148

convenience only, using the function’s argument(s) to indicate the specific distribution149

being referenced. For example, the density of a random variable X is indicated by f(x),150

and that of θ by f(θ), even though these are not necessarily the same density functions.151

We use bold letters for vectors and bold uppercase letters for matrices of random variables.152

A Bayesian Attack Rate Estimator153

A parametric formulation of the attack rate estimator (eqn 2) is154

ξi =
αi
α0

1

νiηi
. eqn 4

Here, for the ith prey species, ξi is the unknown attack rate, νi is the population prey155

abundance, ηi is the population handling time, αi is the population proportion of predators156

feeding, and α0 is the population proportion of predators that are not feeding on any prey157

species. In each case, the parameters refer to the broader (statistical) population, rather158

than sampled data only. By framing the attack rates this way, we are able to estimate159

them in the context of the broader population about which inference is desired.160

If data on prey-specific feeding proportions (F ), abundances (A), and handling times161

(H) are collected independently, the joint likelihood of these distributions may be written162

as:163

f(α,ν,η|F ,A,H) = f(F |α)f(A|ν)f(H|η). eqn 5
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Provided that the corresponding priors are also independent, Bayes theorem implies that164

f(α|F ) ∝ f(F |α)f(α), eqn 6a

f(ν|A) ∝ f(A|ν)f(ν), eqn 6b

f(η|H) ∝ f(H|η)f(η). eqn 6c

These may therefore be fit with independent models for each component. That is, the165

posterior distributions of the attack rates in eqn 4 may be estimated using Markov Chain166

Monte Carlo (MCMC) to obtain samples from each of the three posterior distributions in167

eqn 6 and combining these using eqn 4. If the three types of data are not gathered168

independently, then it is necessary to consider likelihood or prior models that account for169

this dependence (see Appendix S3).170

Case study data set171

To provide a concrete explanation of the additional details of the Bayesian approach172

we applied it to a dataset involving the predatory marine intertidal whelk Haustrum173

scobina. Haustrum feeds primarily on barnacles and mussels, often by first drilling through174

the shells of its prey. Handling times, which can be hours to days, are the times needed to175

drill and ingest a prey individual. The dataset contains information from replicate feeding176

surveys, quadrat-based abundance surveys, and laboratory-based handling time177

experiments, which we describe briefly below. Further details may be found in Novak178

(2010, 2013).179

Fifteen feeding surveys were conducted during low tides over two years. In each180

survey, the number of whelks feeding on each prey species was recorded, as was as the181

number not feeding (Table 1). The sizes of the predator individuals (both feeding and not182
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feeding) and of the prey being fed upon were also recorded (±1 mm), along with the183

average temperature of the month in which each survey was conducted. These three184

covariates contribute to the deterministic variation in per capita attack rate estimates.185

Species abundance surveys used 10-15 replicate quadrats randomly distributed along 3186

transects, each repeated 3 times over the same time periods as the feeding surveys. As is187

typical of community abundance surveys, numerous zeros exist in these data as many188

species did not occur in every quadrat (Table 1). The presence of such zeroes reflects both189

deterministic variation associated with real variation in species abundances, as well as190

stochastic variation associated with sampling effort.191

Handling times were estimated in laboratory experiments that manipulated predator192

and prey sizes and temperature. Replicated individuals housed in separate aquaria with193

different prey species were checked hourly to determine handling time durations. As a194

result, handling time measurements are interval censored, equally so for prey species with195

short (hour-long) and long (multi-day) handling times. Such uncertainty, along with196

variation in the number of replicate experiments that were performed for each of the prey197

species (Table 1), reflect additional sources of stochastic uncertainty.198

Treating the abundances, handling times, and feeding surveys data as independent, we199

now specify appropriate likelihood and prior models.200

Model formulation201

Accommodating variation in feeding surveys – Letting P be the total number of predators202

surveyed, Xi the number observed feeding on prey i, and X0 the number not feeding, we203

modeled the combined feeding survey data using a multinomial likelihood with Dirichlet204

10
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prior:205

(X0, X1, ..., XS) ∼MultP (α0, α1, ..., αS) eqn 7a

(α0, α1, ..., αS) ∼ Dirich(c, c, ..., c). eqn 7b

The resulting posterior distribution is also Dirichlet:206

(α0, α1, ..., αS)|x ∼ Dirich(c+ x0, c+ x1, ..., c+ xS). eqn 8

We will focus on the posterior medians rather than means as our point estimates of207

interest since they are the more appropriate measure of a skewed distribution’s central208

tendency (Gelman et al., 2013). The four most commonly used non-informative priors in209

this setting are Laplace’s prior (c = 1), Jeffreys’ prior (c = 1
2
), Perks’ prior (c = 1

S+1
), and210

Haldane’s prior (c = 0) (Hutter, 2013). However, these priors all result in posterior211

medians that may differ substantially from the sample proportions, which are the212

maximum likelihood estimates (MLEs), especially when any of the Xi are small. This leads213

to counter-intuitive attack rate point estimates for rarely observed prey species (Fig. 1).214

Kerman et al. (2011) showed that when c = 1
3
, the multinomial parameter posterior215

medians closely match the MLEs, referring to this prior as the non-informative neutral216

prior. We show that this result applies to the ratios of multinomial parameters as well by217

letting γi = αi

α0
and noting that the posterior distribution of γi is the ratio of Dirichlet218

components, which is the ratio of independent gamma random variables. This may be219

written as:220

f (γi|xi, x0) =
x0 + c

xi + c
· g
(
x0 + c

xi + c
· γi; 2(xi + c), 2(x0 + c)

)
eqn 9

11
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where g(y; d1, d2) is an F-distribution probability density function with d1 and d2 degrees of221

freedom. Using the approximation for the median of an F-distribution222

med(Fm
n ) ≈ n

3n−2
3m−2
m

(see Appendix S2) and setting it equal to the MLE of αi

α0
, xi
x0

, yields223

the solution c = 1
3
. Figure 1, which shows the log differences in posterior median relative to224

the MLE for several values of c, evidences that c = 1
3

is indeed a reasonable prior to use.225

Accommodating variation in abundance surveys – We used a zero-inflated gamma (ZIG)226

model to account for the numerous zeros in the abundances data. Letting Y1, ..., Yn denote227

the abundance measurements, and by conditioning on whether or not a zero occurs, the228

likelihood density of the ZIG distribution can be written as229

g(y;α, β, ρ) = ρI[y=0][(1− ρ)f(y, α, β)]I[y>0], y ≥ 0, eqn 10

where ρ is the probability of a zero, f(y;α, β) is the usual gamma density with shape α,230

rate β, and mean α
β
, and I[·] is the indicator function that equals 1 when its argument is231

true and 0 otherwise (Ospina and Ferrari, 2012). The ZIG density is separable in ρ and232

(α, β). It follows that the zero-inflation parameter can be treated separately, provided a233

separable prior is used. Thus, for each prey species, we modeled the number of observed234

zeros using a binomial distribution with a uniform prior on ρ and took235

log(α) ∼ Unif(−100, 100) and log(β) ∼ Unif(−100, 100) to approximate the independent236

scale-invariant non-informative prior f(α, β) = f(α)f(β) ∝ 1
α

1
β

(Syversveen, 1998).237

Accommodating variation in handling time experiments – We used regression to model the238

relationships between handling times and the predator-size, prey-size and temperature239

covariates of the laboratory experiments. Average handling times for use in the attack rate240
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estimation were obtained by combining these regression coefficients with the same covariate241

information obtained during feeding surveys.242

Specifically, we considered the ith handling time observation for a given prey species to243

be associated with a covariates vector Xi consisting of 1 followed by temperature, predator244

size, and prey size (all log transformed). We then modeled the likelihood of the ith245

handling time with a modified-Normal likelihood written as246

Hi ∼ Nli(e
XT

i β, σ2) eqn 11

where the subscript li refers to the censoring “window” length and indicates that a247

Unif( li
2
, li
2
) error was added to the normal distribution corresponding to the interval248

censoring with which handling times were observed. The exponential link of eqn 11 avoids249

negative mean handling time estimates.250

Treating the field covariates (predator size, prey size, and temperature) as random to251

account for sampling variability, we modeled the distributions of the (log-transformed)252

covariate observations X1, ...,XN , where N is the total number of field observations, as253

being independent and identically distributed and drawn from a multivariate normal254

distribution, N(µ,Σ′), with mean vector µ and covariance matrix Σ′ . Non-informative255

multivariate normal and inverse Wishart priors were used for µ and Σ′ respectively (Fink,256

1997). Letting X∗ follow the posterior predictive distribution (our estimate of the257

distribution of the covariates), the mean handling time may be written as258

E(H) = E[E(H|X∗)] = E(eβ
TX∗

). eqn 12

13
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We estimated this expectation by sampling from the regression parameters’ posterior259

distribution, sampling new covariates from their posterior predictive distribution,260

computing eβ
TX∗

for each sample, and averaging across all samples. The weak law of large261

numbers ensures convergence to E(eβ
TX∗

) as sample size increases (Petrov, 1995).262

Model implementation: Putting the pieces together to estimate per capita attack rates263

Using the likelihoods and priors of the feeding surveys, abundances and handling times264

described above, we drew samples from the parameters’ posterior distributions using265

Markov Chain Monte Carlo (MCMC). MCMC sampling was done using JAGS with the R266

package ‘rjags’ (Plummer and Stukalov, 2014). Parameter samples were then combined267

using eqn 4 to produce samples from each prey’s attack rate posterior distribution. This268

use of eqn 4 treated handling times, H , as being independent of the predator feeding269

surveys, F , even though covariate observations of predator size, prey size and temperature270

from the feeding surveys informing F were used to inform H by combining them with the271

laboratory-based handling time regression coefficients associated with these covariates. We272

established the validity of this assumption by examining the relationship between feeding273

proportions and covariate averages between the individual surveys (see Appendix S3).274

We verified Markov chain convergence using trace plots, removed pre-convergence275

samples, and thinned each chain to ensure independence among the remaining samples.276

Burn-in times and thinning values were selected separately for feeding survey, abundance,277

and handling time models based on trace plots and autocorrelation function plots.278

Inferences were based on 1,000 samples after confirming that independent sets of 1,000279

samples led to the same conclusions.280

14
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Results281

Comparison of Bayesian and bootstrapping procedures282

To assess the utility and performance of our Bayesian approach we contrasted point283

and 95% interval estimates from (i) the model with Laplace’s prior (c = 1) on the Dirichlet284

feeding proportions, (ii) the model with Haldane’s prior (c = 0), and (iii) the model with285

the neutral prior (c = 1
3
) to estimates obtained by (iv) non-parametric and (v) parametric286

bootstrapping procedures. In contrast to the Bayesian 95% credible intervals, which reflect287

the range of values within which a parameter will occur with 95% probability, the 95%288

confidence intervals associated with bootstrapping do not have a direct probability-based289

interpretation. Rather, if we repeatedly constructed 95% confidence intervals on ‘new’290

datasets, about 95% of them would contain the ‘true’ value of the parameter.291

Non-parametric bootstrapping was performed by sampling with replacement from each292

of the feeding survey, abundance, and handling-time datasets until the same number of293

samples had been drawn as was present in each dataset (Efron and Tibshirani, 1994). Per294

capita attack rates were calculated for many sets of such resampled data to estimate the295

mean and 95% confidence intervals of their bootstrapped distributions.296

The parametric bootstrap was implemented using the likelihood functions of the Bayes297

method. That is, we used the data to estimate the parameters of the three likelihood298

functions (i.e. eqn 7, eqn 10, eqn 11) by maximum likelihood, used these fit likelihood299

functions to simulate new datasets, combining samples from the three distributions to300

calculate per capita attack rates and estimate medians and 95% confidence intervals of the301

resulting bootstrapped attack rate distributions.302

The comparison of the approaches indicates that the model with the neutral prior303

(c = 1
3
) on the feeding proportions was indeed both sufficient for, and performed best in,304
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describing the variation inherent in the estimated rates with which Haustrum scobina305

attacked its eight prey species (Fig. 2). It exhibited median point estimates most closely306

matching the point estimates of the two bootstrapping approaches. The two bootstrap307

distributions however, frequently exhibited lower 95% confidence interval end points of308

zero; a nonsensical result given that the consumption of these species was in fact observed.309

As expected (Fig. 1), the models having Laplace’s (c = 1) or Haldane’s (c = 0) prior310

resulted in inflated and depressed attack rate point estimates respectively, particularly on311

prey species that were observed infrequently in the feeding surveys.312

Figure 3 shows the posterior probability distributions of Haustrum scobina’s per capita313

attack rates on each of its prey species as estimated using the neutral prior (c = 1
3
). The314

distributions are roughly symmetric on the logarithmic scale, indicating right skew and315

justifying the use of the median as the point estimate of their central tendency.316

Discussion317

Effort devoted to estimating the strengths of species interactions has centered on obtaining318

point estimates, leaving the characterization of estimation uncertainty largely unconsidered.319

This shortcoming reflects not only the logistical difficulty of quantifying interaction320

strengths in nature’s species-rich communities, but is also a consequence of the still nascent321

integration of the mathematical and statistical methods available to food web ecologists.322

The fitting of deterministic mathematical models to data requires that they be323

formulated as stochastic statistical models whose constants – like the per capita attack324

rates considered here – be treated as unknown parameters to be estimated. For the325

observational estimator of Novak and Wootton (2008) the unknown attack rate parameters326

of interest are functions of other unknown parameters that must themselves be estimated.327
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Uncertainty in attack rate estimates thus reflects the contributions of both the328

deterministic and stochastic variation of these component parameters. The propagation of329

both such forms of variation is inherent to all other experimental and observational330

approaches as well.331

Advantages of the Bayesian approach332

Unlike frequentist methods, Bayesian methods offer a relatively straightforward way to333

estimate parameters that are functions of other parameters using multiple sources of334

information. This is particularly, though not necessarily, so when the posterior335

distributions of these parameters are independent. Bayesian methods also permit a more336

natural interpretation of the uncertainty that accompanies parameter estimates and337

provide a complete characterization of this uncertainty in the form of posterior probability338

distributions; frequentist methods provide the moments and intervals of distributions339

whose interpretation is arguably less intuitive (Clark, 2005).340

In the context of reticulate food webs and predator-prey interactions, the complete341

probabilistic characterization of uncertainty regarding observational interaction strength342

estimates opens the door for probabilistic predictions of species effects and population343

dynamics (Calder et al., 2003; Yeakel et al., 2011). This stands in contrast to the typical344

use of arbitrarily chosen interaction strength ranges in stochastic simulations and345

numerical sensitivity analyses (Yodzis, 1988; Novak et al., 2011). An alternative choice to346

use bootstrapped (frequentist) confidence intervals to inform predictions could lead to347

additional problems when lower interval bounds extend to zero for prey species that are348

rarely found in a predator’s diet. First, draws of zeros would amount to the outright349

removal of the predator-prey interaction and could lead to biased predictions through the350
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underestimation of food web complexity. Second, as evidenced by Haustrum scobina’s351

feeding on Mytilus galloprovincialis (Fig. 2), prey species whose attack rate confidence352

intervals extend to zero may in fact experience very high per capita attack rates on353

average. Treating these interactions as potentially absent would fail to identify strong354

interactions that are rarely observed only because of strong top-down control of the prey355

populations’ sizes, for example. Such issues do not occur in the Bayesian framework where356

the Dirichlet prior distribution is conjugate for the multinomial likelihood, thereby357

producing a Dirichlet posterior from which MCMC samples of zero cannot occur.358

Considerations and implications359

Bayesian methods offer a powerful tool, but they should not be applied without360

careful consideration of the prior distribution. The choice of objective (‘non-informative’)361

prior is particularly important when data are sparse (Van Dongen, 2006; Boshuizen and362

Van Baal, 2009). It follows that, for rarely observed prey species, different prior363

specifications lead to different point estimates of the per capita attack rates (Figs. 1 and364

2). That is, while priors with concentration parameters c > 1
3

(e.g., Laplace’s prior) will365

produce higher attack rate point estimates the less frequently a prey species is observed in366

the predator’s diet, priors with concentration parameters c < 1
3

(e.g., Haldane’s prior) will367

produce lower attack rate point estimates the less frequently a prey species is observed in368

the predator’s diet (see also Fig. S2). The biological implication of choosing to use one369

such prior over another is that this choice can alter the relative frequency of weak and370

strong interactions. Thus, the choice of priors can alter inferences of population dynamics371

and food web stability when models are parameterized with empirical estimates (Allesina372

and Tang, 2012). These considerations are avoided only when all prey occur frequently in a373
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predator’s diet (see Mytilus galloprovincialis and Chaemaesipho columna in Fig. 2). In such374

cases, the large sample sizes mean that the likelihood overwhelms the prior regardless of its375

information content such that Bayesian and frequentist estimates are similar.376

The use of the neutral prior produces posterior distribution median point estimates377

that are least influenced by the prior and thus most like the point estimates of the378

frequentist bootstrap methods (Figs. 1, 2, S2). We therefore suggest that this be the379

preferred objective prior to use. Tuyl et al. (2008) argue against the use of such sparse380

(c < 1) priors for binomial parameters as they put more weight on extreme outcomes. For381

example, if Y ∼ Bin(n, p) and Y ∈ {0, n}, the use of sparse priors leads to inappropriately382

narrow credible intervals. Fortunately, this problem is avoided in our application because383

all considered prey species (and “not feeding”) are observed at least once384

(i.e. Y ∈ {1, ..., n− 1}). In hierarchical models, to which our Bayesian framework could be385

naturally extended (Cressie et al., 2009), Y ∈ {0, n} is more likely for any individual386

survey, but this is not an issue as inference at the survey level is not desired.387

An influence of Bayesian prior choice also occurs in the estimation of prey abundances388

by means of a zero-inflated gamma likelihood model. Here the assumption that a389

zero-inflated gamma is descriptive of the abundance structure of all prey species can lead390

to the inflation of per capita attack rate estimates for species that are ubiquitous. When391

species occur in all but a few sampled quadrats, relatively little data are available to392

estimate the probability of obtaining a count of zero. In such situations the influence of393

even an uninformative uniform prior will be increased, resulting in an inflated estimate of394

the proportion of zeros and thus a reduced estimate of a species’ abundance. Attack rate395

estimates are thereby inflated because a species’ abundance occurs in the denominator of396

the estimator (eqn 2). For our dataset, where many species were present in all sampled397
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quadrats (Table 1), this inflation effect appears to have been weak as seen by comparing398

the results of the Bayesian models to the frequentist bootstrapping procedures for which399

such inflation does not occur (Fig. 2); the probability of obtaining a value of zero during400

bootstrapping is equal to the sample proportion of zeros in the data, which is zero for401

species that are always observed. Arguably, however, this inflation effect of the prior that402

is inherent to the use of the zero-inflated gamma in a Bayesian framework is appropriate403

because observations of species absences at the spatial scale of quadrats are fundamentally404

different from observations of species presences when no prior knowledge about the405

patchiness of species’ abundances is available.406

Issues of prior choice aside, Bayesian methods offer a more complete characterization407

of the estimated uncertainty of parameter estimates in the form of posterior probability408

distributions. Several metrics may be chosen to summarize the shapes of these409

distributions. For example, means, medians and modes are all commonly used as point410

estimates to reflect a distribution’s typical and most likely value. For strongly skewed411

distributions – such as those observed here (Fig. 3) – medians are a more representative412

metric of a distribution’s central tendency. Furthermore, a distribution’s median, unlike its413

mean, will always fall within the equal-tailed interval that is typically used to describe the414

uncertainty or variation surrounding the distribution’s estimated central tendency. Of415

course, point estimates provide little information on a distribution’s shape. Confidence or416

credible intervals provide more such information with which to characterize parameter417

uncertainty and variation. The typical metrics for these intervals are equal-tailed, but for418

posterior distributions the highest posterior density (HPD) interval may also be useful419

(Gelman et al., 2013). While intervals characterized by highest posterior density are more420

resistant to distribution skewness and will always include the distribution’s mode,421
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equal-tailed intervals are invariant under monotone transformations, making them easier to422

interpret after log-transformation. Log-transformation is frequently necessary in the423

context of interaction strengths given the wide range of values that the community-wide424

strengths of species interactions typically exhibit (Wootton and Emmerson, 2005).425

Ultimately, the entire joint posterior distribution should be presented whenever possible426

(Chen and Shao, 1999). When this is not practical, the choice of posterior summaries will427

depend on the goal of the analysis.428

Conclusion429

While many ecological processes can be described in purely mathematical terms,430

mathematical models are often most useful when they are linked with real data (Codling431

and Dumbrell, 2012). Linking models with data is necessary to validate and compare432

models, and to parameterize them for real-world use in predicting future system dynamics433

(Bolker, 2008). This has been a challenging task in the study of species rich food webs, not434

least because of the difficulty of parameter estimation in typical food web models and435

challenges with integrating data collected across multiple spatial and temporal scales.436

Statistical models of predator-prey interactions that consider both deterministic and437

stochastic variation in data are needed to accompany the numerous mathematical models438

that have been proposed. Our work represents a step in this direction.439
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1. Tables527

Feeding Abundance Handling-time

Prey Species Observations Zeros Experiments

Chamaesipho columna 265 0 6

Xenostrobus pulex 185 0 52

Austrolittorina antipodum 3 2 0

Austrolittorina cincta 2 0 46

Epopella plicata 2 0 1

Mytilus galloprovincialis 1 24 15

Notoacmea Radialspokes 1 5 66

Risellopsis varia 1 3 68

Not Feeding 1,629

Total Surveyed 2,089

Table 1: Summary statistics for the datasets used to estimate the per capita attack rates

with which the intertidal predator Haustrum scobina feeds on its eight prey species. “Feeding

observations” indicates the total frequency with which predator individuals were observed to

be feeding on each prey species across all feeding surveys. “Abundance zeros” indicates the

number of zeros recorded in the 30 quadrat-based community surveys of species abundances.

“Handling-time experiments” indicates the number of laboratory experiments that were used

to estimate handling time regression coefficients for each prey species.
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2. Figure Legends528

Figure 1: Comparison of alternative non-informative priors in estimating the ratio of the529

proportions of feeding versus not feeding predator individuals. The x-axis reflects the530

number of predators observed in the process of feeding on a given prey species, with a total531

of 1,629 individuals assumed to have been not feeding, corresponding to the number not532

feeding in our dataset (Table 1). The y-axis shows the difference in logarithms of the533

posterior median using a Dirich(c, ..., c) prior and the maximum likelihood estimate of the534

ratio. From top to bottom in the graph, the values of c are 1 (Laplace), 1
2

(Jeffreys’), 1
3

535

(neutral), 1
S+1

= 1
9

(Perks’), and 0 (Haldane’s). The neutral prior (c = 1
3
) leads to estimates536

that closely match the maximum likelihood estimates.537

Figure 2: Comparison of the frequentist and Bayesian approaches to estimating the538

per capita attack rates with which Haustrum scobina consumed its 8 prey species.539

Variation in attack rate estimates is illustrated for each procedure by the medians and 95%540

equal-tailed intervals of their distributions. Procedures are organized the same for each541

prey species as, from top to bottom: (i) non-parametric bootstrap, (ii) parametric542

bootstrap, (iii-v) Bayesian procedure with sparsity parameters 0 (Haldane’s prior), 1
3

543

(neutral prior), and 1 (Laplace’s prior) respectively. Unlike the 95% confidence intervals for544

the bootstrap procedures which often span zero (= 10−7 for graphical convenience), the545

95% posterior posterior intervals of the Bayesian method indicate the regions where attack546

rates lie with 95% probability.547

Figure 3: Posterior distributions for Haustrum scobina’s per capita attack rates548

(prey · predator−1 · prey−1 ·m−2 · day−1) and its components (ξi = αi

α0
· 1
νi
· 1
ηi

) using neutral549

(c = 1
3
) Dirichlet prior on feeding proportions.550
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3. Figures551
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Appendix552

S1 On Novak and Wootton’s ‘Species x’553

This paper expands on the observational method for estimating attack rates presented554

by Novak and Wootton (2008):555

ci =
FiAx

(Fx − Ax)hiNi

,

where ci is the attack rate, hi is the handling time, and Ni is the abundance, all for the ith556

prey species. Ai and Fi are the proportions of all predators and feeding predator557

respectively feeding on the ith prey species. x refers to an arbitrarily chosen prey species558

that is the same for all ci. Here we show that this equation can also be written in a more559

simplified form, showing that the estimates are not dependent on the choice of species x.560

Define A0 to be the observed proportion of predators that are not feeding, so that561

A0 = 1−
S∑
i=1

Ai. Then, the F ′is can be obtained by normalizing A′is: Fi = Ai
S∑

j=1
Aj

= Ai

1−A0
.562

Noting that:563

Fx − Ax =
Ax

1− A0

− Ax =
Ax − Ax(1− A0)

1− A0

=
Ax[1− (1− A0)]

1− A0

=
AxA0

1− A0

.

It follows that564

FiAx
Fx − Ax

=
Ai

1−A0
· Ax

AxA0

1−A0

=
AiAx
AxA0

=
Ai
A0

.

This can be further simplified by noting that the A′is have a common denominator (total565
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number surveyed). This means that the original attack rate equation can be written as566

ci =
Ai
A0

· 1

hiNi

=
# feeding on i

# not feeding
· 1

hiNi

.

This shows that the estimate does not involve species x. Moreover, the total number567

surveyed need not be known to estimate a subset of the attack rates.568

S2 F-distribution median569

In general, the median of the F-distribution does not have a closed form. However, we570

can derive an approximation by relating the F-distribution to the beta-distribution.571

Let X ∼ Fm
n . We can express X as the ratio of scaled, independent Chi-squared

distributions Cm ∼ χ2
m and Cn ∼ χ2

n:

X =
Cm/m

Cn/n

It follows that we can express X as the ratio of scaled independent gamma distributions572

Gm ∼ gamma(m
2
, 2) and Gn ∼ gamma(n

2
, 2):573

X =
Gm/m

Gn/n

=
n

m

Gm

Gn

We can then normalize the gamma distributions:574

X =
n

m

Gm

Gm+Gn

Gn

Gm+Gn
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Letting (D1, D2) ∼ Dir(m
2
, n
2
) and using the relationship between Dirichlet and gamma575

distributions,576

X =
n

m

D1

D2

Using the marginal distribution for Dirichlet components result and the fact that577

D1 +D2 = 1, we have that578

X =
n

m

B

1−B

where B ∼ Beta(m
2
, n
2
). Note that this is a monotone transformation of B, so it preserves579

the median. When m > 2 and n > 2, the median of B is approximately
m
2
− 1

3
m
2
+n

2
− 2

3

(Kerman,580

2011). Substituting this result, we have that581

med(X) =
n

m

med(B)

1−med(B)

=
n

m

m
2
− 1

3
m
2
+n

2
− 2
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=
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=
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m
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S3 Accounting for dependence among information sources582

In our dataset, predator feeding surveys included covariate information (predator size,583

prey size, and temperature) that was used to estimate field handling times on the basis of584

regression models for handling times parameterized using laboratory data. In estimating585

attack rates we treated the field covariates as part of the handling times data H and586

assumed they were independent of the feeding proportions data F . The validity of this587

assumption may be assessed by plotting the regression covariates versus the observed588

feeding proportions, as shown in figure S1. In this figure, every point represents a single589

feeding survey. The x-axes are the averages of the (log-tranformed) covariate and the590

y-axes are the proportions of predators feeding. Only two species had sufficient data to be591

plotted and showed little evidence of a dependence.592

If a lack of independence were evident it would need to be accounted for in the593

covariates distribution model. That is, although our model for the covariates was a594

multivariate normal, feeding survey level information (specifically proportions of predators595

feeding on each prey species) could be added to the model to affects its multivariate mean.596

This way, the mean covariate vector would be a function of the proportion of predators597

feeding on that prey type. Posterior distribution sampling could then be done by first598

sampling from the feeding proportions posterior distributions and then using the sampled599

feeding proportions to obtain samples from the handling times.600
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S4 Supporting Figures601

log10 Predator Size (mm) log10 Prey Size (mm) log10 Temperature (°C)
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Figure S1: Average field covariates versus feeding proportions. Each point corresponds to a

single feeding survey. Only species that appeared in more than three separate feeding surveys

are shown. Of the eight species and three covariates, only Xenostrobus pulex showed any

evidence of a relationship between feeding proportions and feeding covariates (i.e., between

F and H in eqn 5).
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Figure S2: Given the skewed nature of prey-specific per capita attack rate posterior proba-

bility distributions, the distribution median serves as a more appropriate point estimate than

the mean. Fig. 1 illustrates the difference between the posterior median and maximum like-

lihood estimate of the ratio of feeding and non-feeding predators as a function of the number

of feeding individuals, showing how the neutral (c = 1
3
) prior minimizes this difference. As

a generalization of Fig. 1, in the left panel, we illustrate this difference as a function of both

the number of predators observed feeding and the number observed not feeding. The right

panel shows that the “optimal” value of c that minimizes this difference (a function of both

feeding and non-feeding individuals) is typically around 1
3
. In both cases, the survey data

from our example are shown as black dots.
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