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Fibroblast growth factors as tissue repair and regeneration

therapeutics

Quentin M Nunes, Yong Li, Changye Sun, Tarja K Kinnunen, David G Fernig

Cell communication is central to the integration of cell function required for the

development and homeostasis of multicellular animals. Proteins are an important currency

of cell communication, acting locally (auto-, juxta-, or paracrine) or systemically

(endocrine). The fibroblast growth factor (FGF) family contributes to the regulation of

virtually all aspects of development and organogenesis, and after birth to tissue

maintenance, as well as particular aspects of organism physiology. In the West oncology

has been the focus of translation of FGF research, whereas in China and to an extent Japan

a major focus has been to use FGFs in repair and regeneration settings. These differences

have their roots in research history and aims. The Chinese drive into biotechnology and

the delivery of engineered clinical grade FGFs by a major Chinese research group were

important enablers in this respect. The Chinese language clinical literature is not widely

accessible. To put this into context, we provide the essential molecular and functional

background to the FGF communication system covering FGF ligands, the heparan sulfate

and Klotho co-receptors and FGF receptor (FGFR) tyrosine kinases. We then summarise a

selection of case reports that demonstrate the efficacy of engineered recombinant FGF

ligands in treating a wide range of conditions that require tissue repair / regeneration.

Alongside the functional reasons why application of exogenous FGF ligands does not lead

to cancers are described. Together, this highlights that the FGF ligands represent a major

opportunity for clinical translation, that has been largely overlooked in the West.
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14 Abstract

15 Cell communication is central to the integration of cell function required for the 

16 development and homeostasis of multicellular animals.  Proteins are an important currency 

17 of cell communication, acting locally (auto-, juxta-, or paracrine) or systemically 

18 (endocrine). The fibroblast growth factor (FGF) family contributes to the regulation of 

19 virtually all aspects of development and organogenesis, and after birth to tissue 

20 maintenance, as well as particular aspects of organism physiology. In the West oncology 

21 has been the focus of translation of FGF research, whereas in China and to an extent Japan a 

22 major focus has been to use FGFs in repair and regeneration settings.  These differences 

23 have their roots in research history and aims. The Chinese drive into biotechnology and the 

24 delivery of engineered clinical grade FGFs by a major Chinese research group were 

25 important enablers in this respect. The Chinese language clinical literature is not widely 

26 accessible. To put this into context, we provide the essential molecular and functional 

27 background to the FGF communication system covering FGF ligands, the heparan sulfate 

28 and Klotho co-receptors and FGF receptor (FGFR) tyrosine kinases. We then summarise a 

29 selection of case reports that demonstrate the efficacy of engineered recombinant FGF 

30 ligands in treating a wide range of conditions that require tissue repair / regeneration.  

31 Alongside the functional reasons why application of exogenous FGF ligands does not lead to 

32 cancers are described.  Together, this highlights that the FGF ligands represent a major 

33 opportunity for clinical translation that has been largely overlooked in the West.
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34 Overview

35 In unicellular organisms the unit of natural selection is the cell, whereas in multicellular animals 

36 natural selection operates on the organism. This is a very profound difference. The driver is 

37 likely to have been simple: there is a limit on the complexity of an individual cell, beyond which 

38 it is no longer robust. However, greater organism complexity allows new ecological niches and 

39 lifestyles to be exploited. Natural selection has given rise to multicellularity and cell 

40 specialisation, as a means to allow a high level of organism complexity in concert with simple 

41 and robust cells. This requires a deep functional integration of cells in the organism, achieved 

42 through cell communication, which occurs by cells delivering information through the synthesis 

43 and secretion of signalling molecules into the extracellular space; these then elicit signals in cells 

44 possessing appropriate receptor systems. The entire biochemical landscape, from ions and small 

45 molecules to proteins and polysaccharides is used to generate the repertoire of signalling 

46 molecules.

47 In multicellular animals, proteins are common currency in cell communication and are used to 

48 transmit information between cells in the organism both locally (intra-, auto-, juxta- and 

49 paracrine) and systemically (endocrine). Local transmission of information may be mediated by 

50 a soluble, secreted protein, or by a protein anchored in the extracellular matrix or on the plasma 

51 membrane of a neighbouring cell. The exploitation of proteins for cell communication by 

52 multicellular animals provides access to a very subtle language. This subtlety arises in part from 

53 the fact that an individual protein species may have many different isoforms (from splice variants 

54 to glycoforms), localisations and interacting partners. Each subset of molecular interactions that 

55 an individual protein species can partake in may elicit completely different, sometimes opposing, 

56 cellular responses, and, moreover, may change the distance over which communication occurs, 

57 e.g., paracrine versus endocrine.

58 Most therapeutics can be considered to manipulate cell communication, with varying aims, such 

59 as reducing overactive communication channels in cancer and inflammatory diseases, or 

60 increasing particular channels of communication for tissue repair and regeneration. Clearly, 

61 manipulating cell communication therapeutically is not without danger, since the opposite of the 

62 desired effect may occur. Less obvious, but an important focus of this review, is that the drivers 

63 of scientific discovery can narrow dramatically how a particular communication system is used 

64 clinically. This is exemplified by the fibroblast growth factor (FGF) family, which contributes to 
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65 the regulation of virtually all aspects of development and organogenesis, and after birth in many 

66 natural processes of tissue repair and the endocrine regulation of particular facets of organism 

67 physiology. In the West, the major focus of clinical translation has been on developing inhibitors 

68 of FGF-mediated cell communication for use in cancer therapy. In the East particularly in China 

69 and to an extent in Japan, a major focus has been to use FGFs in regenerative/repair medical 

70 settings, differences that have their roots in a combination of research history and research aims. 

71 The Chinese clinical literature is not widely accessible and we provide a summary of a number 

72 of published reports to illustrate the breadth and depth of successful clinical applications of FGFs.

73

74 The discovery of FGF ligands and their activities 

75 Historically, the growth factor activity was the first to be identified. In hindsight, the paper of 

76 Trowell and Wilmer, which measured the mitogenic activity of saline extracts of different tissues 

77 from the chick can be considered to be the first FGF paper (Trowell & Willmer 1939) � the 

78 activity they isolated from brain would consist of FGF-1, FGF-2 (Burgess & Maciag 1989), as 

79 well as other growth factors active on fibroblasts, e.g., pleiotrophin (Courty et al. 1991), and that 

80 from other tissues largely FGF-2 (Burgess & Maciag 1989; Fernig & Gallagher 1994). Over 30 

81 years later a growth factor activity that stimulated the growth of a fibroblast cell line was 

82 identified in partially purified extracts from bovine pituitary. It was called �fibroblast growth 

83 factor�, simply due to the assay used to measure activity (Rudland et al. 1974). Though an 

84 unsatisfactory name, because FGFs do far more than stimulate fibroblast growth and in a 

85 considerable number of instances they do not even possess this activity, the label has stuck (see 

86 (Burgess & Maciag 1989) for other early names and a brief overview of the discovery of FGF-1 

87 and FGF-2). A great deal of the early work on FGFs, including that of Trowell and Wilmer 

88 (Trowell & Willmer 1939), was from a cancer perspective, driven by the idea that uncontrolled 

89 proliferation is a hallmark of cancers and so growth factors must have a key role to play. 

90 Moreover, the ambition to cure cancers provided funding for this and much subsequent work on 

91 FGFs and other growth factors. This was not misplaced, since the analysis of experimental 

92 tumours and of activities capable of transforming cells in vitro enabled the discovery of some, 

93 but not all of FGFs -3 to -9 (summarised in (Burgess & Maciag 1989; Fernig & Gallagher 1994)) 

94 and there are a number of successful FGF receptor (FGFR) inhibitors in oncology (Carter et al. 

95 2015; Turner & Grose 2010).
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96 The interaction with heparin was key to the successful purification of FGF-1 and -2 (Maciag et al. 

97 1984; Shing et al. 1984), and was translated into work on the interaction of these FGFs with the 

98 glycosaminoglycan heparan sulfate (HS) in the pericellular and extracellular matrix, e.g., 

99 (Vlodavsky et al. 1987). The FGF receptor (FGFR) tyrosine kinases were then identified and 

100 soon after, the dependence of the growth factor activity of FGFs on HS (Rapraeger et al. 1991; 

101 Yayon et al. 1991) was discovered. This provided a framework within which to understand 

102 function, HS controlled the transport of FGFs between cells and was a part of a dual receptor 

103 (HS+FGFR) signalling system. Subsequently, some FGFs were found to not bind HS, but to 

104 interact with a protein co-receptor, Klotho; these FGFs do not elicit a growth factor response, but 

105 instead are endocrine hormones (Belov 2013; Kuro-o et al. 1997; Martin 2012). A further set of 

106 FGF proteins, the FGF homology factors or FHFs, are wholly intracellular and do not interact 

107 with any of the extracellular receptors and partners of FGFs. As such they are not directly part of 

108 the FGF cell communication system and lie outside the scope of this review (for review see 

109 (Goldfarb 2005)) 

110

111 The FGF communication system: molecules and structure

112 The core of the FGF communication system comprises a family of ligands, the FGFs, a family of 

113 cell surface signal transducing receptors, the FGFRs, and two distinct co-receptors, the Klothos 

114 and the glycosaminoglycan heparan sulfate, which is the physiologically relevant 

115 polysaccharide; heparin is often used as its experimental proxy, but has important structural 

116 differences.

117

118 The FGF ligand family

119 Phylogenetic analysis of human protein sequences indicates that there are seven FGF 

120 subfamilies: FGF1 and FGF2 (FGF1 subfamily); FGF4, FGF5 and FGF6 (FGF4 subfamily); 

121 FGF3, FGF7, FGF10 and FGF22 (FGF7 subfamily); FGF8, FGF17 and FGF18 (FGF8 

122 subfamily); FGF9, FGF16 and FGF20 (FGF9 subfamily); FGF11, FGF12, FGF13 and FGF14 

123 (FGF11 subfamily); FGF19, FGF21, and FGF23 (FGF19 subfamily) (Fig. 1). The members of 

124 FGF8, FGF9, FGF11 and FGF19 subfamilies are consistent in the phylogenetic analysis and 

125 gene location analysis. However, FGF5 and FGF3 are indicated to be members of FGF4 and 

126 FGF7 subfamilies by the analysis of gene location on chromosomes (Horton et al. 2003; Itoh 
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127 2007; Itoh & Ornitz 2008; Itoh & Ornitz 2011b). The phylogenetic relationship based on 

128 sequence maps to functional similarities of the FGFs (Ornitz et al. 1996; Xu et al. 2013; Zhang et 

129 al. 2006) and it is in this context that FGF subfamilies will be discussed here.

130

131 FGF ligand structure

132 FGFs� molecular weight ranges from 17 to 34 kDa in vertebrates, whereas it reaches to 84 kDa in 

133 Drosophila. All FGFs share an internal core of similarity with 28 highly conserved, and six 

134 invariant amino acid residues (Ornitz 2000). X-ray crystallography of FGFs shows that the FGF 

135 family possesses a similar folding pattern to the interleukins IL-1β and IL-1α (Zhu et al. 1991), a 

136  trefoil structure, formed by three sets (Fig 2a) of four  strands connected by loops (Fig. 2b) 

137 (Zhang et al. 1991). A variety of studies have demonstrated that the primary heparan sulfate 

138 binding site of FGF2 is formed by the strand 1/2 loop, strands 10 / 11 loop, strand 11 and 

139 strands 11 / 12 loop (Fig. 3b) (Baird et al. 1988; Faham et al. 1996; Li et al. 1994; Thompson 

140 et al. 1994; Zhang et al. 1991). The receptor binding site involves the strands 8-9 loop and is 

141 distinct from the primary heparan sulfate binding site (Figs 3a, b). This indicates that the binding 

142 to receptor and to heparan sulfate are physically separated (Itoh & Ornitz 2004; Ornitz & Itoh 

143 2001; Zhang et al. 1991). Secondary heparan sulfate binding sites are also present in many FGFs 

144 and their position on the surface of the ligands may follow their sequence phylogenetic 

145 relationship (Ori et al. 2009; Xu et al. 2012) (Figs 3b, c).

146

147 Receptors: Heparan sulfate and FGFR

148 Heparan sulfate :- Proteoglycans are O-glycosylated proteins, such as perlecan, glypicans and 

149 syndecans (Taylor & Gallo 2006; Yung & Chan 2007). The heparan sulfate chains bind and 

150 regulate the function of over 435 extracellular proteins, including the paracrine FGFs (Gallagher 

151 2015; Ori et al. 2008; Ori et al. 2011; Xu & Esko 2014). The proteoglycan core proteins are 

152 synthesized on the rough endoplasmic reticulum and then transported to the Golgi apparatus 

153 where the glycosaminoglycan chains are synthesised (Yanagishita & Hascall 1992). The 

154 glycosaminoglycan chains are linear polysaccharides mainly consisting of repeating disaccharide 

155 units (Fig. 4a) (Gallagher 2015; Ori et al. 2008; Taylor & Gallo 2006; Xu & Esko 2014). The 

156 members of the GAG family are heparan sulfate, chondroitin sulfate (CS), dermatan sulfate (DS), 

157 hyaluronan (HA) and keratan sulfate (KS) (Delehedde et al. 2001).
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158 Heparan suflate is made of repeating disaccharide units of glucuronic acid linked to N-

159 acetylglucosamine (Fig. 4a). In the Golgi apparatus, the synthesis of heparan sulfate chains is 

160 started by the assembly of a tetrasaccharide linkage onto a serine residue of the core protein by 

161 four enzymes acting sequentially (Xyl transferase, Gal transferase I and II and GalA transferase); 

162 the repeat disaccharide units, [4-GlcA 1-4 GlcNac1-]n (where n ~25 to 100) are then added by 

163 the copolymerases EXT1 and EXT2 (Dreyfuss et al. 2009; Lin 2004; Tumova et al. 2000). After 

164 the synthesis of the chain, clusters of N-acetyl glucosamine are removed and N-sulfate groups 

165 are added by the dual activity N-deacetylase-N-sulfotransferases (NDSTs) (Dreyfuss et al. 2009; 

166 Lin 2004; Tumova et al. 2000). The subsequent modifications on N-sulfated glucosamine 

167 containing disaccharides or their neighbours: an epimerase converts glucuronic acid to iduronic 

168 acid, which may then be 2-O sulfated and the glucosamine may be 6-O and 3-O sulfated 

169 (Dreyfuss et al. 2009; Lin 2004; Tumova et al. 2000). 

170

171 Since NDSTs selectively act on blocks of disaccharides, the modified heparan sulfate has a 

172 domain structure of NA, NAS domain and S domains (Fig. 4b) (Connell & Lortat-Jacob 2013; 

173 Dreyfuss et al. 2009; Gallagher 2015; Murphy et al. 2004; Ori et al. 2008). Differences in 

174 sulfation level of the NAS and NS domains provide the means for heparan sulfate to bind with 

175 varying degrees of selectivity to over 435 proteins (Ori et al. 2008; Xu & Esko 2014), including 

176 FGFs binding S-domains and antithrombin III binding transition domains (Turnbull et al. 2001; 

177 Xu & Esko 2014). Since the modification reactions by the sulfotransferases do not go to 

178 completion, the length and level of sulfation of HS chains are also variable in different cells and 

179 extracellular matrices (Dreyfuss et al. 2009; Kirkpatrick & Selleck 2007; Ori et al. 2008; Xu & 

180 Esko 2014).

181

182 FGFR

183 FGFRs, anchored on the membrane are the key to transferring induced signals into the cell, 

184 which direct the target cell activities, such as cell proliferation, differentiation and migration 

185 (Beenken & Mohammadi 2009; Ornitz 2000; Turner & Grose 2010). Five different FGFRs 

186 (FGFR1-4 and FGFRL1) and many of their alternative spliced isoforms have been found to bind 

187 with FGFs and activate a large number o signalling pathways (Itoh & Ornitz 2011a; Powers et al. 

188 2000; Wiedemann & Trueb 2000). FGFR1-4 possess three extracellular immunoglobulin-like 
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189 loops, I, II and III (often termed D1, D2 and D3), a transmembrane linker and a cytoplasmic 

190 kinase domain (Beenken & Mohammadi 2009; Goetz & Mohammadi 2013; Powers et al. 2000). 

191 FGFRL1 differs in that its intracellular domain lacks a tyrosine kinase (Kim et al. 2001; Sleeman 

192 et al. 2001; Wiedemann & Trueb 2000). Half of D3 is encoded in FGFR1, FGFR2 and FGFR3 

193 by alternative exons. This gives rise to the �b� and �c� isoforms of the transmembrane receptor, 

194 which impart additional ligand selectivity (Ornitz et al. 1996; Zhang et al. 2006). In addition, the 

195 tyrosine kinase FGFRs also bind heparan sulfate (Kan et al. 1993; Powell et al. 2002), which 

196 leads to one ternary FGF-FGFR-HS signalling structure (Schlessinger et al. 2000b).

197 The FGFRs have varying degrees of selectivity for different FGFs, and the selectivity is most 

198 conserved between FGFs in same subfamily (Ornitz et al. 1996; Xu et al. 2012; Xu et al. 2013; 

199 Zhang et al. 2006). FGF1 was recognised as a universal ligand for all the FGFRs, while FGF2 

200 and members of the FGF4 subfamily prefer to interact with FGFR 1c (Zhang et al. 2006). For the 

201 �c� isoform, the preference is FGFR1c > FGFR 2c and FGFR 3c, though the FGF4 subfamily is 

202 clearly distinguished from FGF1 subfamily in terms of their selectivity for FGFR 1b, which they 

203 do not bind, in contrast to FGF1 and FGF2 (Ornitz et al. 1996; Zhang et al. 2006). Members of 

204 the FGF8 and FGF9 subfamilies preferentially bind to FGFR 3c (FGFR 3c > FGFR 2c and 1c), 

205 while members of FGF7 subfamily mainly bind FGFR 2b and 1b (Ornitz et al. 1996; Zhang et al. 

206 2006). 

207

208 Klotho co-receptors

209 Klotho co-receptors (alpha and beta-Klotho/KLB) are type 1 transmembrane proteins that define 

210 tissue specific activities of circulating endocrine FGFs (for reviews see (Belov 2013; Kuro-o 

211 2012; Martin 2012). Klotho was originally identified as an aging suppressor gene (Kuro-o et al. 

212 1997). Findings that mice with disrupted Klotho expression display identical phenotypes to 

213 mice deficient in FGF23 including shortened life span, growth retardation, muscle atrophy, 

214 vascular calcification in the kidneys and disrupted serum phosphate balance led to the discovery 

215 of Klotho as an obligatory co-receptor for FGF23 to bind and activate FGFR in the kidney 

216 (Kurosu et al. 2006; Urakawa et al. 2006). Bone derived FGF23   acts in the aKlotho expressing 

217 kidney to regulate vitamin D and phosphate homeostasis. Beta-Klotho (KLB) was identified by 

218 its sequence homology to Klotho (Ito et al. 2000), and later identified as a co-receptor to allow 

219 FGF19 and -21 to bind and signal via their canonical FGFRs in bile acid, glucose and lipid 
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220 metabolism, respectively (Kharitonenkov et al. 2008; Kurosu et al. 2007; Lin 2007; Wu 2007).  

221 The ectodomains of Klotho co-receptors are composed of two KL domains with sequence 

222 homology to beta-glucosidases (Ito et al. 2000; Kuro-o et al. 1997). Klotho also exists in a 

223 secreted form, either via alternative splicing or via shedding of the ectodomain by matrix 

224 metalloproteases. The secreted form of Klotho has been shown to modulate glycans on Transient 

225 Receptor Potential calcium channels TRPV5 and TRPV6 (Chang et al. 2005) and renal outer 

226 medullary potassium channels (ROMK1) (Cha et al. 2009) in vitro, increasing their cell-surface 

227 retention.

228

229 Assembly of signalling complexes

230 The binding of the FGF ligand to its receptor with/without HS (co-receptor) causes the FGFR to 

231 dimerise. This in return enables phosphorylation of tyrosine residues in the kinase activation loop 

232 and then of tyrosine that are docking sites for signalling proteins (Goetz & Mohammadi 2013). 

233 The latter activate many intracellular signalling pathways, e.g. RAS-RAF-MAPK and PI3K-

234 AKT, which regulate cell fate and specific cell activities (Dorey & Amaya 2010; Turner & Grose 

235 2010). Previous studies suggest HS/heparin is required for many, but not all signalling (Izvolsky 

236 et al. 2003). FGF signalling can be negatively regulated by internalisation and degradation, as 

237 well as by transmembrane regulators, such as FGFRL1 and intracellular ones, e. g. Sprouty and 

238 Spry (Casci et al. 1999; Hacohen et al. 1998) and MAPK phosphatase 3 (Turner & Grose 2010). 

239 Since there is a great diversity of FGF ligands, FGFR isoforms and HS structure and feedback 

240 loops, the understanding of FGF signalling is still far from complete (Dorey & Amaya 2010).

241

242 Alternative partners

243 FGFs and FGFR interact directly with a large number of other partners, both extracellularly and, 

244 following the internalisation of ligand-receptor complexes, intracellularly. In some instances, e.g., 

245 FGF-2 binding integrins (Rusnati et al. 1997), these may be additional to the core complex of 

246 FGF, FGFR and HS, but in other cases, e.g., cadherins, these are orthogonal partners of one 

247 component of the core FGF communication system, the FGFR (Doherty & Walsh 1996). A 

248 partial list of the alternative extracellular partners has been reviewed in (Polanska et al. 2009b). 

249 The intracellular partners and functions of FGF receptor-ligand complex components 
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250 translocated to the nucleocytoplasmic space have also been recently reviewed (Coleman et al. 

251 2014). 

252

253 Diversification and switching of function: hints from C. elegans

254 C. elegans possesses one of the simplest FGF communication systems, comprising two ligands, 

255 EGL-17  (Burdine et al. 1997) and LET-756 (Roubin et al. 1999), a single FGFR, EGL-15 

256 (DeVore et al. 1995), and two orthologues of Klotho, KLO-1 and KLO-2 (Polanska et al. 2011). 

257 The EGL-15 receptor is alternatively spliced into an �A� and a �B� isoform, resulting in 

258 structural differences in the extracellular domain of the receptor between immunoglobulin 

259 domains I and II (Goodman et al. 2003). The major functions of EGL-15 are in the cell migration 

260 of sex myoblasts (DeVore et al. 1995) neural development (Bulow et al. 2004; Fleming et al. 

261 2005) and an early essential function (DeVore et al. 1995) associated with physiological 

262 homeostasis (Huang & Stern 2004; Polanska et al. 2009a; Polanska et al. 2011). EGL-17/FGF 

263 acts as a chemoattractant to guide sex myoblasts (Burdine et al. 1998), whereas LET-756/FGF is 

264 required for the essential function of EGL-15, as animals lacking LET-756 arrest at early larval 

265 stage (Roubin et al. 1999). In mammals, the �IIIb� and �IIIc� isoforms of FGFRs enable ligand 

266 selectivity. In C. elegans this ligand to receptor pairing is determined in part by tissue specific 

267 expression of the ligand and the �A� and �B� receptor isoforms (Goodman et al. 2003; Lo et al. 

268 2008). egl-15(5B) is predominantly expressed in the hypodermis (Lo et al. 2008), where it 

269 mediates fluid homeostasis (Huang & Stern 2004), whereas egl-15(5A) isoform is expressed in 

270 the M lineage, which gives rise to the sex myoblasts. Heterologous expression of egl-17 driven 

271 by let-756 promoter can stimulate EGL-15(5B) and partially rescue the larval arrest phenotype of 

272 mutants lacking LET-756 and expression of let-756 driven by egl-17 promoter can partially 

273 rescue sex myoblast migration in EGL-15-deficient worms (Goodman et al. 2003).  However, 

274 although expression of either isoform of egl-15 in the hypodermis can mediate the fluid 

275 homeostasis phenotype, only EGL-15(5A) isoform can mediate sex myoblast chemoattraction 

276 (Lo et al. 2008). Thus, the functional specificity of EGL-15 is determined by the extracellular 

277 receptor isoform and the availability of the ligand. That there are no multicelular organisms 

278 possessing just a single FGF ligand and one FGFR isoform may reflect the importance of 

279 selective communication between tissue compartments and of the ability of cells to switch the 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1378v1 | CC-BY 4.0 Open Access | rec: 18 Sep 2015, publ: 18 Sep 2015

P
re
P
ri
n
ts



280 ligand channel they are tuned to during development, without changing the receiver (the receptor 

281 kinase and downstream signalling). 

282 The role of EGL-15 in the regulation of C. elegans fluid homeostasis was first discovered in 

283 mutants of a phosphatase, which acts downstream of EGL-15 (Kokel et al. 1998). This 

284 phosphatase, CLR-1, acts as a negative regulator of EGL-15, and its absence leads to excess 

285 EGL-15 activity and accumulation of fluid within the C. elegans pseudocoelom and a clear (clr) 

286 phenotype. Excess EGL-15 activity and clear phenotype can also be achieved by mutation of N-

287 glycosylation sites in the extracellular domain of the EGL-15 receptor (Polanska et al. 2009a)as 

288 N-glycans act as a brake on receptor activation (Duchesne et al. 2006). Under laboratory 

289 conditions C. elegans must actively excrete fluid. The major organs responsible for fluid balance 

290 are the hypodermis, which expresses egl-15(5B) and klo-2 (Polanska et al. 2011) and the 

291 excretory canal, which is equivalent to the mammalian kidney and expresses klo-1 (Polanska et 

292 al. 2011). Complete loss of function of EGL-15 or LET-756 leads to loss of klo-1 expression and 

293 lack of functional excretory canals (Polanska et al. 2011), a likely explanation of the early larval 

294 lethality of the mutants defective of LET-756/EGL-15 signalling. 

295 Thus, in C. elegans the same FGFs act as growth factors, morphogens and hormones, whereas in 

296 mammals different FGFs perform the local and systemic functions. EGL-15 associates with 

297 Klotho co-receptors to mediate the fluid homeostasis function (Polanska et al. 2011), which is 

298 entirely analogous to the mode of action of endocrine FGFs in mammals.. Although there is 

299 currently no genetic evidence to suggest that, as in mammals, the assembly of a signalling 

300 complex of the C. elegans FGF ligands with EGL-15 and subsequent receptor activation would 

301 depend on the heparan sulfate co-receptor in vivo, biochemical evidence shows that EGL-

302 15/FGFR binds to heparin, a proxy for HS (Polanska et al. 2011), whereas sequence alignment of 

303 EGF-17 and LET-756 to mammalian FGFs indicates that they possess HS binding sites (Xu et al. 

304 2012). Importantly, binding to HS would not preclude a hormone homeostatic activity of C 

305 elegans FGFs, since the range of the FGF would be significant compared to the animal�s body 

306 size; C. elegans is small, (adult hermaphrodites ~1 mm). Thus, a reasonable hypothesis is that 

307 the communication system used in development, LET-756 and EGL-15 is then co-opted into 

308 endocrine homeostasis. As animals grew larger, this would not longer be possible.  

309 Diversification of the FGF family and weakening of heparan sulfate binding would then allow 

310 both the growth factor/morphogen activity, which is local due to heparan sulfate binding and the 
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311 systemic hormonal activity to be retained. In support of this idea is the demonstration that a 

312 human FGF-1 with its primary heparan sulfate binding site mutated is reprogrammed from a 

313 growth factor to a FGF-21 like hormone, controlling metabolism (Suh et al. 2014).

314

315 The aspects of FGF activities linked to cancers 

316 As noted above, a great deal of the early work on FGFs was from a cancer perspective, though 

317 there was also a considerable effort directed at regeneration of damaged tissues. While there is a 

318 bias in the scientific literature against reporting negative results, there are some reports that 

319 showed in animal models and in clinical samples that there was not a simple relationship 

320 between FGF ligand expression and tumour formation and progression. Thus, when FGF-2 

321 mRNA levels were analysed in a cohort of breast cancer patients, elevated expression of FGF-2 

322 mRNA correlated with a good prognostic outcome, the opposite of the result expected from the 

323 naïve perspective that �FGF2 = uncontrolled growth + angiogenesis = cancer� (Anandappa et al. 

324 1993). Similarly, in a syngeneic rat model of breast cancer, overexpression of FGF2 failed to 

325 produce any metastases (Davies et al. 1996). Given the difficulty in publishing negative results, 

326 there is likely a very large body of work that demonstrates the absence of a direct association 

327 between the expression of FGF ligands and cancer.

328 One reason is that, at least for FGF-1 and FGF-2, the ligand is often not limiting. That is, there is 

329 a lot of ligand stored on heparan sulfate in tissues, which is then accessed during repair. The 

330 discovery of the storage of FGF2 on heparan sulfate of extracellular matrix (Vlodavsky et al. 

331 1987) was followed by the realisation that stored FGF2 could elicit a response at least in cultured 

332 cells (REFS Presta), by diffusion within matrix (Duchesne et al. 2012). The expression of other 

333 FGF ligands is, in contrast, often induced. However, like FGF1 and FGF2, their activity is 

334 restricted, again through binding to heparan sulfate and due to their selectivity for FGFRs. An 

335 important facet of development and endogenous tissue repair is the mobilisation of FGF ligands 

336 by heparanase, a beta glucuronidase, which cleaves heparan sulfate in NA and NAS domains, 

337 liberating growth factor bound to an S domain (Arvatz et al. 2011; Barash et al. 2010; Kato et al. 

338 1998; Patel et al. ; Ramani et al. 2013). This plays a key role in many cancers (Arvatz et al. 2011; 

339 Barash et al. 2010; Ramani et al. 2013). Thus, the mechanistic link between the FGF 

340 communication system and cancers is on the side of the mobilisation of FGFs from such stores 

341 (particularly by heparanase, though proteases are likely to also have a role) and of increases in 
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342 the activity of FGFRs (Carter et al. 2015; Turner & Grose 2010). Thus, in contrast to their 

343 ligands, the FGFRs are established drivers of tumour progression. This arises from: activating 

344 mutations; isoform switching, e.g., between the classic epithelial, FGFR2-IIIb isoform that binds 

345 FGF-7 family members and FGFR2-IIIc isoform, that binds epithelial synthesized and 

346 mesenchymally stored FGFs, including FGF-2 (Carter et al. 2015; Turner & Grose 2010).

347

348 FGFs as repair factors

349 The use of FGFs to repair damaged tissue is a long-standing research area, however, until 

350 recently in the West it was entirely confined to model systems.  In Japan, alongside the cancer 

351 research track, a repair track leading to clinical applications was developed. In contrast, in China 

352 FGF research was from the late 1980s spearheaded by the drive to develop a biotechnology 

353 industry. This resulted in successful engineered production of FGF1 and FGF2, e.g., (Wu et al. 

354 2005; Wu et al. 2004; Yao et al. 2006; Zhao et al. 2004) and a substantial effort in experimental 

355 medicine, including pharmacokinetic and toxicity studies, e.g., (Li et al. 2002; Xu et al. 2003) to 

356 develop clinical applications. In much of this work the original nomenclature, aFGF and bFGF is 

357 used for FGF1 and FGF2, respectively; in the following summary of some of the clinical studies 

358 the currently accepted numerical nomenclature is employed. A major clinical focus in China has 

359 been the use of FGF2 as a repair/regeneration factor in conditions as diverse as burns, chronic 

360 wounds, oral ulcers, vascular ulcers, diabetic ulcers, pressure ulcers and surgical incisions. As 

361 the Chinese studies are not generally accessible, we have summarised a number of these below, 

362 alongside other work on the same conditions.

363

364 Clinical applications of FGF2

365 Burns

366 Liu XH et al. (Liu et al. 2005) investigated the use of FGF2 in the treatment of burns and chronic 

367 wounds. Patients were divided into a burn wound group (n=62), a donor site wound group 

368 (n=36) and a chronic wound group (n=65). The burn wounds included superficial partial 

369 thickness burns and deep partial thickness burns; chronic wounds included wounds that did not 

370 heal following routine treatment for 4 weeks, residual granulation wounds, pressure ulcers, 

371 sinuses, and diabetic ulcers. The burn wound group was treated with FGF2 in addition to the 

372 standard treatment. Self-control randomization was applied to the burn wound group and donor 
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373 site wound group with comparisons of the same subject before and after treatment. The control 

374 group was treated with equal amounts of saline in addition to the standard treatment. The results 

375 showed that FGF2 significantly shortened the time to complete wound healing in the three 

376 wound groups compared to the control group. 

377 Guo XH et al. (Guo 2006) randomly assigned 80 cases of deep partial thickness burn wounds to 

378 a treatment group and a control group. In the treatment group, a gauze pad impregnated with 

379 FGF2 solution was applied to the debrided wound, which was then covered with another gauze 

380 pad containing 1% (w/w) silver sulfadiazine. Apart from substituting normal saline for FGF2 the 

381 control group was subjected to the same treatment as the FGF2 group. The results showed that 

382 the average healing time for superficial partial thickness burn wounds in the FGF2-treated group 

383 was significantly shorter as compared to the control group (9.51 ± 1.86 days vs. 12.43 ± 2.03 

384 days, p <0.05). Similarly, the healing time in the deep partial thickness burn wounds in the FGF2 

385 treatment group was significantly shorter than the control group (18.36 ± 4.87 days vs. 22.35 ± 

386 5.60 days, p <0.01). 

387 FGF2 has also been shown to accelerate healing and improves scar quality in second-degree 

388 burns (Akita et al. 2008). Since the speed of wound healing is an important factor influencing the 

389 outcome of treatment, as well as a crucial step in burn wound treatment and the quality of wound 

390 healing has a direct bearing on the quality of life of patients, FGF2 clearly has clinical efficacy in 

391 a variety of burn settings.

392

393 Surgical wounds

394 Surgical incisions:- Surgical incisions leave scars as part of the normal healing process. These 

395 scars vary from being narrow, wide, atrophied or hypertrophic and sometimes cause medical 

396 problems, or social ones because of their cosmetic appearance (Rockwell et al. 1989). A study by 

397 Ono et al. (Ono et al. 2007) examined the effect of local administration of FGF2 on sutured 

398 wounds. FGF2 was injected into the dermis of the wound margins using a needle immediately 

399 after the skin was sutured following an operation. None of the patients treated with FGF2 had 

400 hypertrophic scars compared to the control group and scarring was significantly lower in the 

401 groups treated with FGF2, as compared to the control group.

402
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403 Skin graft wounds:- Healing of the donor site wounds, created after skin graft harvesting, 

404 involves the regeneration of epithelial cells in the residual skin appendages (Metcalfe & 

405 Ferguson 2007). Early healing of donor site wounds helps to reduce trauma and body 

406 consumption, thereby facilitating the treatment of the primary disease. 

407 Xu et al. (Xu et al. 2000) conducted a clinical study to examine the efficacy of topical 

408 application of FGF2 on 48 donor site wounds in 34 patients, which were created by harvesting 

409 intermediate split thickness skin grafts. The wounds before treatment served as self-controls. 

410 Following the harvesting of the skin grafts, the wound surface was evenly coated with FGF2 

411 using a cotton swab, covered with vaseline gauze, and dressed. The control wounds were 

412 smeared only with the vehicle without the FGF2, the rest of the topical treatment procedures 

413 being identical as the treatment group. The results showed healing time in wounds treated with 

414 FGF2 was 2.8 days shorter compared to control wounds (p <0.01). Moreover, FGF2-treated 

415 wounds appeared flatter, smoother and firmer and were difficult to tear off, as compared to the 

416 control wounds. The use of FGF2 yielded no adverse reactions.

417

418 Full thickness skin grafts in avulsion injuries:- Matsumine et al. (Matsumine 2015) described the 

419 topical use of FGF2 in the treatment of avulsion wounds with full thickness grafts using the 

420 avulsed skin. The contaminated subcutaneous fat tissue on the inside of skin was excised and the 

421 avulsed skin was processed into a full-thickness skin graft. Drainage holes (5-10 mm in 

422 diameter) were made on the graft to prevent seroma and haematoma formation. FGF2 was 

423 sprayed onto the graft bed, followed by application of the graft. Skin grafts that did not take were 

424 scraped away, preserving the revascularized viable dermis where possible. FGF2 was then 

425 sprayed again onto this surface to promote epithelialization. Wound closure was achieved in all 

426 cases with conservative therapy. This procedure promoted wound healing with the formation of 

427 good-quality, flexible scars and prevented postoperative ulcer formation and scar contracture.

428

429 Cosmetic surgical incisions:- Wound healing quality is important in the success of cosmetic 

430 surgery. Lu et al. (Lu et al. 2009) examined the effects of FGF2 on wound repair in 60 female 

431 patients who underwent cosmetic surgery. All surgical incisions were clean cuts, and self-

432 controls were used. In the treatment group FGF2 was applied once daily until removal of stitches, 

433 starting with the first postoperative day. Wounds due to laser resurfacing were smeared with 
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434 FGF2 twice daily until natural decrustation occurred. The control group was subjected to 

435 conventional dressing change until removal of stitches. The results showed that in the FGF2 

436 group whose wounds resulted from laser resurfacing, the average decrustation time was 

437 significantly shorter than in the control group (6.2 days vs. 8.1 days, p <0.05). The FGF2-treated 

438 groups showed good healing. In addition, exudate and swelling post surgery were milder in the 

439 FGF2 groups than in the control group. There were no adverse reactions in the FGF2 groups. 

440 Quality of wound healing was superior and the healing time was shorter in the FGF2 groups as 

441 compared to the control group, indicating that FGF2 has a favourable effect on cosmetic surgical 

442 incision healing. 

443

444 Obstetric wounds:- Dehiscence of caesarean section incisions may occur in the form of a 

445 superficial dehiscence, in which the skin and subcutaneous fat layer break open, most often due 

446 to fat liquefaction caused by subcutaneous fat hypertrophy in pregnant women. In addition, a 

447 long trial of labour, excessive vaginal examinations, vaginitis, and intrauterine infections may 

448 potentially lead to an increase in infected incisions. Anaemia, hypoproteinemia, malnutrition, 

449 and diabetes in the perinatal period can result in poor healing capacities of local tissues. These 

450 factors can adversely affect wound healing extending hospital stay, and increasing costs. 

451 Chen et al. (Chen & He 2004) randomly assigned 60 patients with wound dehiscence following a 

452 caesarian section to two groups: an observation group and a control group. After debridement of 

453 the wounds, FGF2 was sprayed on the wounds and they were sutured the next day. Wound 

454 dressings were changed regularly. The control group was treated similarly, but without the use of 

455 FGF2 spray. The results showed that there was no difference in the healing time of patients with 

456 dehiscence measuring 5 cm or above in the observation group as compared to the control group 

457 (7.6 ± 1.0 days vs.to 7.4 +/- 0.8, p > 0.05). However, the healing time in patients with dehiscence 

458 measuring 5 cm or below was significantly shorter than the control group (6.8 ± 1.5 days vs. 11.2 

459 ± 1.2, p < 0.01).

460

461 Orthopaedic trauma wounds:- FGF signalling plays an important role in skeletal development 

462 (Su et al. 2008). Tissue necrosis and infection of fresh skin defect wounds, grafted flaps, and skin 

463 grafts occurs following orthopaedic trauma surgery. In order to shorten the healing time and 
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464 reduce the rate of skin re-grafting, FGF2 has been directly applied to fresh and debrided necrotic 

465 wounds. 

466 Zang et al. (Zang et al. 2005) investigated the use of a FGF2 biological protein sponge for 

467 traumatic ulcers. Sterile FGF2 biological protein sponge was applied to traumatic skin ulcers in 

468 20 patients. The results showed that the wound-healing rate within 3 weeks was 95% in the FGF 

469 group and 55% in the control group, and that the rate of skin re-grafting in the FGF2 group was 

470 significantly lower than that in the control group. Wound secretions and peri-wound 

471 inflammation were markedly less severe in the FGF2 group as compared to the control group. No 

472 obvious adverse reactions were reported in either group. These data indicate that FGF2 

473 biological protein sponge may promote the healing of traumatic ulcers and shorten healing time.

474

475 Oral Diseases:- Oral ulcers are a common disease of the oral mucosa and tend to recur. 

476 Pathologically, ulcers of oral mucosa are mainly characterized by dissolution, rupture, and 

477 shedding of local oral mucosal epithelium to form non-specific ulcers. 

478 A study by Jiang et al. (Jiang et al. 2013) investigated the use of topical application of 

479 diosmectite (DS) and FGF2 paste in the treatment of minor recurrent aphthous stomatitis. Four 

480 pastes, containing FGF2 and DS, DS alone, FGF2 alone, and vehicle only, were used in 129 

481 participants. DS-FGF2 significantly lowered ulcer pain scores (p < 0.05 for days 3, 4, 5, and 6) 

482 as compared to the other pastes. Ulcer size was significantly reduced (p < 0.05 for days 2, 4, and 

483 6) in this group. No obvious adverse drug effects were observed. 

484 Radiotherapy is commonly used to treat head and neck cancer. However, when the radiation dose 

485 rises to about 20 Gy - 30 Gy, acute inflammation of the oral mucosa usually occurs, the 

486 symptoms of which include, among other things, oropharyngeal pain, and oral ulcers associated 

487 with oedema or pseudomembrane formation. Food intake is affected as a result. Moreover, the 

488 severity of the symptoms increases with the radiation dose. Patients who experience serious 

489 symptoms have to suspend the treatment, and the final efficacy of the treatment is thus impaired.

490

491 Huang et al. (Huang et al. 2009) used FGF2 in 20 patients who had stomatitis as a result of 

492 radiation therapy for head and neck cancer. The treatment group was treated with FGF2 whereas 

493 the control group was treated with alternate mouthwash (0.9% (w/v) sodium chloride and 2.5% 

494 (w/v) sodium bicarbonate solution). The results showed that FGF2 significantly reduced the 
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495 incidence of radiation stomatitis and shortened the healing time of stomatitis. No local or 

496 systemic adverse reactions were noted. 

497 Ren et al. (Ren & Shun 2002) conducted a double-blind study, in which 121 patients with mild 

498 aphthous ulcers were randomly assigned to either FGF2 group (n=63) or control group (n=58). In 

499 the FGF2 group, FGF2 was locally sprayed onto the surface of ulcers; in the control group, 0.2% 

500 (w/v) chlorhexidine solution was sprayed on the ulcers. The results showed that the effective rate 

501 at day 3 was 90.48% in the FGF2 group and 60.34% in the control group (p < 0.05). Meanwhile, 

502 the average healing time of ulcers was significantly shorter in the FGF2 group than in the control 

503 group. The results show that FGF2 exhibits significant efficacy for mild recurrent aphthous oral 

504 ulcers.

505

506 Tympanic membrane perforations:- While most traumatic perforations of the tympanic 

507 membrane tend to heal spontaneously, large perforations may often fail to do so. The 

508 management of these is still open to debate, with a number of specialists recommending an early 

509 myringoplasty to improve outcomes (Conoyer et al. 2007). Lou and Wang (Lou & Wang 2013) 

510 undertook a prospective, sequential allocation, three-armed, controlled clinical study to compare 

511 perforation edge approximation vs. FGF2 application in the management of traumatic 

512 perforations of the tympanic membrane. Patients were divided into 3 groups: no intervention 

513 (n=18), edge approximation (n=20) and direct application of FGF2 (n=20). Otoscopy was 

514 performed before and after treatment and response measurements were made, such as closure 

515 rate, closure time and rate of otorrhoea. Perforation closure was significantly higher in the FGF2 

516 group (100%) as compared to the edge approximation (60%) and control (56%) groups (p<0.05). 

517 Average closure time was significantly shorter in the FGF2 treatment group (12.4+/- 3.6 days) as 

518 compared to the edge approximation (46.3 +/- 8.7 days) and control (48.2 +/- 5.3 days) groups 

519 (p<0.05). Lou et al. (Lou et al. 2014) showed that a lower dose of FGF2 (01 to 0.15 mL) was 

520 more effective than a higher dose (0.25 to 0.3 mL). Hakuba et al. (Hakuba et al. 2010) 

521 demonstrated that FGF2 combined with atelocollagen was an effective treatment for chronic 

522 tympanic membrane perforations.

523

524 Pressure Ulcers:- Treatment of pressure ulcers is a major problem for clinical care. Pressure 

525 ulcers can increase patients� suffering, extend the duration of illness, and, when serious, may 
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526 even prove to be life threatening due to sepsis resulted from secondary infection. Commonly 

527 used treatments over the years have included innovative mattresses, ointments, creams, solutions, 

528 dressings, ultrasonography, ultraviolet heat lamps, and surgery.

529 Robson et al. (Robson et al. 1992) investigated the role of FGF2 in the treatment of pressure 

530 ulcers with a randomized, blinded, placebo-controlled trial, which enrolled 50 patients with 

531 pressure ulcers varying in size from 10 to 200 cm3. The results showed that compared with 

532 placebo-treated patients, the number of FGF2-treated patients whose ulcers shrank by 70%, 

533 increased significantly (60/100 vs. 29/100, p = 0.047). Histological analysis of FGF2-treated 

534 wounds showed a significant increase in the number of fibroblasts and capillaries. 

535

536 Diabetic foot:- Diabetic foot is a serious complication of diabetes and an important cause of 

537 diabetes-related disability. When diabetic foot develops, the patient's feet are prone to injury, 

538 infection, ulcers and gangrene.

539 Uchi et al. (Uchi et al. 2009) conducted a randomized, double blind, dose-ranging, placebo-

540 controlled trial to examine the clinical efficacy of FGF2 in the treatment of diabetic ulcer. 

541 Patients� diabetic ulcers were randomized into a placebo group (n = 51), a 0.001% (w/v) FGF2 

542 treatment group (n = 49) and a 0.01% (w/v) FGF2 treatment group (n = 50), with the primary 

543 outcome being the percentage of patients showing a 75% or greater reduction in the area of ulcer. 

544 The area of ulcer decreased by 75% or more in 57.5% (27/47), 72.3% (34/47), and 82.2% 

545 (37/45) in the placebo, 0.001% (w/v) FGF2 and 0.01% (w/v) FGF2 groups, with significant 

546 differences between the 0.01% (w/v) FGF2 treatment and placebo groups (p = 0.025). Cure rates 

547 were 46.8%, 57.4%, and 66.7% in the placebo, 0.001% (w/v) FGF and 0.01% (w/v) FGF2 

548 groups. This trial showed that FGF2 accelerates healing of diabetic ulcers.

549

550 Other applications:- Repair of cerebrospinal fluid leakage is difficult, which is especially so 

551 when a large fistula, with concomitant mucosal damage and infection, has developed from 

552 repeated transsphenoidal operations. Kubo et al. (Kubo et al. 2005) reported a 27-year-old 

553 woman with intractable cerebral spinal fluid rhinorrhea who had undergone repeated operations 

554 for a relapsing Rathke's cleft cyst. They repaired the sellar floor defect using mucosal flaps via 

555 an endonasal endoscopic approach and occluded the fistula by applying FGF2 to the area to 

556 promote granulation. FGF2 was repeatedly applied endoscopically to the mucosal flaps, which 
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557 turned into granulation-like tissue, and complete mucosal covering was attained. This method of 

558 treating the intractable fistula with mucosal flaps and FGF2 may present a new clinical 

559 application of FGF2 and should be examined in a large number of patients in the future.

560 The mucosa of the vocal folds atrophies with age causing glottal insufficiency, which is difficult 

561 to treat. Hirano et al. (Hirano et al. 2008) reported a case of a patient, with atrophied vocal folds, 

562 who was treated with FGF2 injections into the folds under local anaesthesia. The atrophy of the 

563 vocal fold improved within a week following the injection and the glottic gap disappeared. 

564 Aerodynamic and acoustic parameters also showed remarkable improvement, when measured. 

565 Subsequently, a trial (Hirano et al. 2012) demonstrated that this treatment might be safe and 

566 effective in the treatment of age-related vocal fold atrophy.

567

568 Prospects

569 In Europe and N America the substantial investment by cancer sources into growth factors such 

570 as the FGFs has resulted in oncology directed clinical translation, in the form of FGFR inhibitors 

571 (Carter et al. 2015; Turner & Grose 2010). In contrast the biotechnology drive in China resulted 

572 in exploitation of engineered FGF ligands to repair and regenerate damaged tissue in a wide 

573 range of settings, with Japan having clinical experience in both areas. We have not been able to 

574 identify reports of adverse reactions to treatment with FGF ligands � these undoubtedly occur, 

575 but the frequency or their severity may be too low and confounded by the underlying medical 

576 condition, such that they have not appeared in the case literature. In any event, it is clear that the 

577 Chinese and Japanese experience with FGF ligands as biologics in repair and regeneration 

578 clinical scenarios has been an outstanding success; FGFs in China have progressed from 

579 engineered biotechnology products (Wu et al. 2005; Wu et al. 2004; Yao et al. 2006; Zhao et al. 

580 2004) to the Chinese Pharmacopeia (Pharmacopeia 2015). Many of the conditions, e.g., diabetic 

581 foot, make important and growing demands on healthcare systems and carry considerable 

582 socioeconomic costs. Thus, Western medical practice may usefully follow where China has led 

583 and explore the use of FGF ligands as repair and regeneration agents. The realisation of the 

584 clinical potential of the FGF communication system outside of oncology has been long overdue 

585 on the West. However, with industry now actively engaged in, for example, developed of FGF21 

586 based therapeutics for metabolic syndrome (Kharitonenkov & Shanafelt 2008; Kharitonenkov & 
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587 Shanafelt 2009; Zhang & Li 2014) and of FGF18 in osteoarthritis (Carli et al. 2012; Mori et al. 

588 2014) it is likely that we will see FGF biologics in clinical use in the West, as well as in the East.
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Figure 1(on next page)

Phylogenetic relationship of the FGFs based on amino acid sequence

According to amino acid sequence, Dendroscope was used to show that FGF family is divided

into seven subfamilies. The branch lengths relates directly to the evolutionary relationship of

FGFs.
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Figure 2(on next page)

Schematic diagram of the core structure unit of the beta-trefoil

PDB ID: 2FGF ( Zhang et al. 1991 ) .   (A) The first ascending strand ( �� �� ��������	 �� 


descending strand ( d�� �� ��������� ��������
�� ���
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Figure 3(on next page)

FGF interactions with FGFR and heparin/heparan sulfate

(A): Ternary structure of FGF-FGFR-heparin complex (1FQ9 ( Schlessinger et al. 2000a ) ).

FGFs interact with the D2 and D3 domain and the linker between these two domains. A

heparin octasaccharide, binds to the conserved canonical binding site on FGFs, which is

opposite to the N- terminal, and to the basic canyon in the FGFR. (B): Heparin binding sites

of FGF2 (1FQ9) identified by a selective labelling approach ( Ori et al. 2009 ) . Three binding

sites were recognised: the canonical binding site (HBS1), and two secondary and relatively

weaker binding sites (HBS2 and HBS3). (C): Heparin binding site of FGF9 (1G82 ( Hecht et al.

2001 ) ). Only the conserved HBS1 was identified, indicating that FGF9 does not possess

secondary polysaccharide binding sites ( Xu et al. 2012 ) , subsequently confirmed in

biophysical experiments ( Migliorini et al. 2015 ) . Green indicates the N-terminal of the

proteins. Grey is FGFR1. Magenta are FGFs (FGF2 in B and FGF9 in C). The residues in blue

are the heparin binding sites of the FGFs.
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Figure 4(on next page)

Structures of disaccharide units of HS and heparin

(A): Structure of disaccharide unit of heparin/HS. Top: the glucuronic acid containing

disaccharide. This is generally not or only slightly modified by sulfation (in red). Bottom: the

iduronic acid containing disaccharide, which always contains an N-sulfated glucosamine (red)

and is often further modified by O-sulfation (red). (B): Structure of HS chains. The

polysaccharide chain is covalently linked to a serine on the proteoglycan core protein. The

sulfate groups are added by sulfotransferases after the GAG chain is polymerised. Due to the

hierachical dependence of the post polymerisation reactions and the sulfation of discrete

blocks of N-acetylglucosamines by N-deacetylase-N-sulfotransferases (NDSTs), the HS chain

has a domain structure of alternating NA (GlcA/GlcNAc), NAS (~ one disaccharide in two is N-

sulfated) and S (every glucosamine is N-sulfated) domains. Chain lengths vary from ~25

disaccharides to over 100. Heparin, a common experimental proxy for heparan sulfate is ~

30 disaccharides in length and can be considered to be a highly sulfated NS domain.
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