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ABSTRACT9

In biological mass spectrometry, crude instrumental data need to be converted into meaningful theoretical

models. Several data processing and data evaluation steps are required to come to the final results.

These operations are often difficult to reproduce, because of too specific computing platforms. This effect,

known as ’workflow decay’, can be diminished by using a standardized informatic infrastructure.

Thus, we compiled an integrated platform, which contains ready-to-use tools and workflows for mass

spectrometry data analysis. Apart from general unit operations, such as peak picking and identification

of proteins and metabolites, we put a strong emphasis on the statistical validation of results and Data

Mining.

MASSyPup64 includes e. g. the OpenMS/TOPPAS framework, the Trans-Proteomic-Pipeline programs,

the ProteoWizard tools, X!Tandem, Comet and SpiderMass. The statistical computing language R

is installed with packages for MS data analyses, such as XCMS/metaXCMS and MetabR. The R

package Rattle provides a user-friendly access to multiple Data Mining methods. Further, we added the

non-conventional spreadsheet program teapot for editing large data sets and a command line tool for

transposing large matrices. Individual programs, console commands and modules can be integrated

using the Workflow Management System (WMS) taverna.

We explain the useful combination of the tools by practical examples: 1) A workflow for protein identification

and validation, with subsequent Association Analysis of peptides, 2) Cluster analysis and Data Mining in

targeted Metabolomics, and 3) Raw data processing, Data Mining and identification of metabolites in

untargeted Metabolomics.

Association Analyses reveal relationships between variables across different sample sets. We present its

application for finding co-occurring peptides, which can be used for target proteomics, the discovery of

alternative biomarkers and protein-protein interactions.

Data Mining derived models displayed a higher robustness and accuracy for classifying sample groups

in targeted Metabolomics than cluster analyses. Random Forest models do not only provide predictive

models, which can be deployed for new data sets, but also the variable importance. We demonstrate that

the later is especially useful for tracking down significant signals and affected pathways in untargeted

Metabolomics. Thus, Random Forest modeling supports the unbiased search for relevant biological

features in Metabolomics.

Our results clearly manifest the importance of Data Mining methods to disclose non-obvious information

in biological mass spectrometry . The application of a Workflow Management System and the integration

of all required programs and data in a consistent platform makes the presented data analyses strategies

reproducible for non-expert users.

The simple remastering process and the Open Source licenses of MASSyPup64 (http://www.

bioprocess.org/massypup/) enable the continuous improvement of the system.
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INTRODUCTION12

Mass spectrometry provides qualitative and quantitative data about molecules. Since complex mixtures13

can be analyzed with high sensitivity and selectivity, mass spectrometry plays a central role in high-14

throughput biology (Jemal, 2000; Nilsson et al., 2010). Sequencing technologies have revolutionized the15

so-called ’Omics’ sciences on the level of nucleic acids, ’Genomics’ and ’Transcriptomics’ (Sanger and16

Coulson, 1975; Wang et al., 2009). But the study of the actual state of proteins and metabolites, which17

reflect the physiological condition of an organism, still relies mainly on mass spectrometry data.18

In ’Proteomics’, a combination of biochemical and instrumental techniques is used to obtain com-19

prehensive, quantitative information about the expression, modification and degradation of proteins20

at a certain physiological state (Wilkins et al., 1996; Anderson and Anderson, 1998). Although gel21

electrophoresis, immuno-precipitation and other separation strategies are used as first focusing steps, the22

identification of proteins usually relies on mass spectrometry methods (Shevchenko et al., 2006).23

’Metabolomics’ refers to the inventory of metabolites of an organism or tissue. The Metabolome24

may be seen as an endpoint (Ernest et al., 2012), which derives from biochemical processes that depend25

on genomic and environmental factors. Therefore, the study of metabolic phenotypes allows both, the26

accurate classification of genotypes (Montero-Vargas et al., 2013; McClure et al., 2015; Musah et al.,27

2015) as well as an evaluation of the physiological state of an organism (Garcı́a-Flores et al., 2012, 2015).28

General Mass Spectrometry Data Processing Workflow29

The data analysis of mass spectrometry experiments follow the all same logic, although the composition30

of the samples, the analytical question and the data format and quality might vary. A general workflow in31

biological mass spectrometry is given in Figure 1 and consists of the following steps:32

Figure 1. Universal workflow of mass spectrometry data analyses.

1. Raw Data Import Fist of all, the raw data need to be converted into a format which is readable33

for the following data analysis programs. This step is not trivial, since the different manufacturers of34

mass spectrometers use a variety of proprietary data formats. Currently, the recommended standard by35

the Human Proteome Organization (HUPO) Proteomics Standards Initiative working group for mass36

spectrometry standards (PSI-MS) is mzML (Martens et al., 2011). Therefore, most MS data analysis37

programs are able to read and process this format. The ProteoWizard tools (http://proteowizard.38

sourceforge.net) allow the conversion of vendor-specific files to mzML archives (Chambers et al.,39

2012; Kessner et al., 2008). Since format-specific libraries are required, it is recommendable to execute40
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the conversion to mzML files directly on the control computer of the mass spectrometer. Alternatively,41

the ProteoWizard software can be installed with the vendor-libraries on a Windows computer. The42

ProteoWizard tools without licensed and Windows-specific libraries are available on MASSyPup64 for43

further pre-processing of MS data files.44

2. Spectra Processing Spectra are collected either in ’profile’ mode or in ’centroid’ mode. Profile45

spectra still contain the shape of peaks and thus may provide additional information about the measured46

compounds. However, the size of the data archives might be considerable, especially for high resolution47

measurements. In contrast, centroid spectra only consist of mass-to-charge (m/z) values and their intensity.48

In many cases, it is advisable to convert profile spectra to centroid spectra, to reduce computing effort.49

Typical operations of spectra processing include a baseline substraction, smoothing, normalization,50

and peak picking. On MASSyPup64, various programs are available for these tasks, such as: msconvert51

(Chambers et al., 2012), OpenMS/TOPPAS (Sturm et al., 2008) and R/MALDIquant (Gibb and Strimmer,52

2012).53

Some MS programs, such as Comet (Eng et al., 2015, 2013), X!Tandem (Craig and Beavis, 2004) and54

XCMS (Benton et al., 2008; Smith et al., 2006) do not require a prior external spectra processing, but can55

use raw mzML data as input.56

3. Feature Analyses The mass spectrometry signals need to be transformed into chemical information.57

Therefore, ’features’ have to be identified, which are e. g. defined by their m/z value and retention time.58

Usually the features display certain variations between samples, due to measurement tolerances. Those59

are corrected by an alignment of the feature maps, which finally allows to compare the abundance of60

features in different samples.61

Different strategies permit the quantification of features: Label-free quantification, the evaluation of62

different ion transitions (fragments of a molecule in so-called Multiple-Reaction-Monitoring, MRM) or63

the use of defined tags.64

The identification of molecules is desirable for most bioanalytical projects. For the identification65

of peptides and proteins, various search programs are available, which can be used or separately or in66

combination (Shteynberg et al., 2013). Identifying metabolites is still more challenging, although various67

databases, such as MassBank (http://www.massbank.jp/, (Horai et al., 2010)) and METLIN68

(https://metlin.scripps.edu/, (Smith et al., 2005)) and search algorithms have been published.69

The de-novo determination of chemical formulas from MS data is difficult, even with data from high-70

resolution instruments (Kind and Fiehn, 2006). Kind and Fiehn (2007) presented Seven Golden Rules71

(7GR) for the heuristic filtering of possible chemical formulas. The 7GR software was recently re-72

implemented for better usability and enriched with several functions. Additionally, SpiderMass enables73

the construction of a custom data base with expected compounds for a certain biological context, which74

increases the probability of correctly identified metabolites (Winkler, 2015).75

4. Statistics and Data Mining Biological systems often exhibit notable variances, also measurement76

errors and wrong assignments of molecules are possible. Thus, usually biological and technical replicates77

are analyzed and the results are subjected to statistical analyses. More recently, Data Mining strategies78

are employed to unveil non-obvious information.79

Different approaches for Statistics and Data Mining are presented below, as well as their practical80

application to Proteomics and Metabolomics data sets.81

5. Integration and Interpretation In a last step, the information obtained has to be interpreted within82

a biological context. Changes of protein concentrations can indicate the involvement of physiological83

processes. Metabolic information can lead to information about pathways which are affected in certain84

conditions. Often, the identification of marker molecules is pursued, with the purpose to employ them85

later, e. g. for the early detection of diseases.86

Statistics and Data Mining87

The American Statistical Association describes Statistics as “the science of learning from data, and of88

measuring, controlling, and communicating uncertainty; and it thereby provides the navigation essential for89

controlling the course of scientific and societal advances.” (http://www.amstat.org/, Davidian90

and Louis (2012)). Accepting this broad definition, Data Mining (DM) is a sub-discipline of Statistics.91
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Data Mining enhances ’classic’ Statistics methods with machine learning (’artificial intelligence’)92

algorithms and computer science. Data Mining supports the understanding of complex systems, which93

contain wealth of data with interacting variables. An important aspect of DM is the development of94

models, which represent the data in a structured form and support the extraction of information and95

creation of knowledge (Williams, 1987, 1988, 2011).96

Creation of models can be distinguished into descriptive and predictive (Figure 2).97

Figure 2. Building of descriptive and predictive models.

Descriptive Models Descriptive models analyze relationships between variables or between individual98

samples. Since these models search for structures in a given data set, they are developed using the whole99

data set. Two important strategies are:100

• Association Analysis?101

• Cluster Analysis?102

Predictive Models Predictive models search for rules, which connect input and output variables. Those103

variables can be categorical (tissue type, color, disease/ healthy) or numeric. If the target is categorical,104

the final model performs a Classification. If the target is numeric, a Regression. Important model builders105

are:106

• Decision Tree Model?107

• Random Forest Model?108

• Support Vector Maschine (SVM) Model?109

• Boost Model110
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• Linear Regression Model?111

• Neuronal Network Model112

For models marked with a ?, a practical example in Proteomics and/or Metabolomics is given below.113

For more details about the knowledge representation of DM models, their algorithms and examples we114

refer to Williams (2011).115

Data Mining Process and Model Development116

Data Mining (DM) is mostly used in Economics, e. g. for managing risks of bank loans or for detecting117

fraudulent activities. However, the activities for developing a model is similar for any DM project. The118

Cross Industry Standard Process for Data Mining (CRISP-DM) defines six phases (Shearer, 2000):119

1. Business Understanding120

2. Data Understanding121

3. Data Preparation122

4. Modeling123

5. Evaluation124

6. Deployment125

Obviously, in case of an Omics project we would replace ’Business Understanding’ by ’Problem126

Understanding’ or ’Biological System Understanding’. The ’Data Preparation’ is an important issue for127

analyzing mass spectrometry data. Depending on the number of samples and data quality, it might be128

necessary to eliminate variables or samples from the data set, to scale the data, to impute missing data129

points, etc. (Williams, 2011).130

There is an important difference in the development of descriptive and predictive models. For131

descriptive models, the complete data set is used. For predictive models, the data set is separated into a132

training, a validation and a testing dataset, e. g. in a proportion 70:15:15 (Figure 2). The training data133

serve for developing the model, the validation data set for monitoring the actual performance of the model,134

and the testing data for estimating the final performance of the model.135

Final models can be exchanged between different computing environments using the XML based136

Predictive Model Markup Language (PMML) format (Grossman et al., 2002).137

State of the Art for Statistics and DM in Biological Mass Spectrometry138

For Proteomics, bioinformatic pipelines are already well established. The different peptide/ protein search139

engines deliver distinct scores, which indicate the confidence of a identification hit, such as the Mascot140

score, the e-value or the XCorr (Kapp et al., 2005; Becker and Bern, 2011). But independently of the141

employed MS/MS search program, a subsequent statistical anaysis is necessary. The PeptideProphet142

and ProteinProphet algorithms allow the statistical modeling of peptide and protein identification results143

(Nesvizhskii et al., 2003; Keller et al., 2002). Using target-decoy database searches permit the estimation144

of false discovery rates (Elias and Gygi, 2007). Commercial, as well as Open Source platforms integrate145

those individual programs to create complete proteomic workflows (Nelson et al., 2011; Keller et al., 2005;146

Rauch et al., 2006; Deutsch et al., 2010, 2015). Finally, the submission of results in standard formats to147

public databases makes the data available to the community (Johannes Griss, 2009; Barsnes et al., 2009;148

Vizcaı́no et al., 2010; Côté et al., 2012; Vizcaı́no et al., 2013; Mohammed et al., 2014; Reisinger et al.,149

2015; Killcoyne et al., 2012; Desiere et al., 2006).150

In Metabolomics, still more issues are awaiting resolution. E. g. the unequivocal assignment of151

mass signals to the correct compounds and the estimation of the statistical confidence of metabolite152

identifications is still challenging.153

The R packages XCMS/XCMS2 (Smith et al., 2006; Benton et al., 2008) and metaXCMS (Tautenhahn154

et al., 2011; Patti et al., 2012) permit the realization of complete metabolic workflows and the comparison155

of various samples. Correct application of included functions improve the detection, quantification and156

identification of metabolites (METLIN database, (Benton et al., 2010; Tautenhahn et al., 2008; Smith157

et al., 2005)). The XCMS collection is technically mature and comprehensive, but for most casual users158

too complicated to handle. XCMS Online(Tautenhahn et al., 2012) facilitates the use of XCMS by159

non-experts. However, the control over data and the option to optimize the code for project-specific needs160

is limited in the online version.161
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MZmine 2 is another, java-based, framework for mass spectrometry data workflows with some162

statistical tools such as Principle Components Analysis (PCA) and Clustering capabilities, which is163

especially user-friendly and extensible (Pluskal et al., 2010).164

Resuming, various bioinformatic solutions are already available for the processing and statistical165

analysis of Proteomics and Metabolomics data. But the concept of Data Mining is still not implemented166

in current biological mass spectrometry.167

The traditional Omics approach is exploratory and starts from a biological question or problem.168

Usually it is rather curiosity- than hypothesis-driven. An Omics study normally ends with a statistically169

valid descriptive model, which is interpreted from a biological point of view. Often, the results help to170

build theories or hypotheses, which are testable afterwards.171

In stark contrast, predictive models from Data Mining modeling can be immediately deployed and172

support decision making. Especially clinical applications (biomarker studies) and projects with limited173

sample availability (ecology, identification of microorganisms, ’Biotyping’) could greatly benefit from the174

implementation of Data Mining strategies. Data Mining algorithms are also capable to uncover rules or175

patterns in complex data structures, without being biased by a (bio)scientist’s expectations.176

Aim of this Study177

Data Mining strategies promise high potential for the analysis of biological mass spectrometry data,178

but there is still scarce use of it in current MS based Omics studies. On the other side, there is179

already a rich variety of excellent software for mass spectrometry data processing software (http:180

//www.ms-utils.org/), and also for statistics and Data Mining available (Williams, 2011; Gibb181

and Strimmer, 2012; Luca Belmonte and Nicolini, 2013; Williams, 2009).182

Thus, we compiled a computational platform for the high-throughput data analysis in Proteomics183

and Metabolomics, which facilitates the rapid set-up of workflows and the subsequent Data Mining.184

MASSyPup64 (http://www.bioprocess.org/massypup) is a 64-bit live system, which can be185

run directly from external media. For installation, the iso image is burned on a DVD or installed onto a186

USB stick (e. g. with Rufus from https://rufus.akeo.ie). Open Source licenses of the software187

and the remastering utility provided on Fatdog64 promote the further development and the adjustment to188

the needs of a laboratory.189

Based on real datasets from Proteomics and targeted and untargeted Metabolomics we demonstrate190

the creation of efficient data processing workflows. Further, we stress out the opportunity to discover191

non-obvious biological knowledge by Data Mining methods in biological mass spectrometry.192

METHODS193

Operating system194

The original MASSyPup distribution was built on a 32-bit platform and contains multiple programs for195

analyzing mass spectrometry data Winkler (2014). The new MASSyPup64 is much more focused on the196

high-throughput processing of ’big data’ and the subsequent Data Mining. MASSyPup64 is bootable on197

Windows (including with EFI ’secure boot’) and Linux PCs.198

As starting point, the 64-bit Linux distribution Fatdog64 was chosen (http://distro.ibiblio.199

org/fatdog/web/). The system is preferably installed on DVD or USB media. Data from all available200

local drives are accessible for analysis.201

The mass spectrometry programs, special libraries and additional tools were compiled, if necessary202

and installed in the directory branch of /usr/local. Most programs can be started directly from a203

console window.204

For Python (https://www.python.org/), versions 2 and 3 are installed. The default Python 2205

is called by python, version 3 by python3.206

Fatdog64 contains already a remastering tool with Graphical User Interface. Since the MASSyPup64207

version already occupies several Gigabytes, it is recommendable to choose the “small initrd” option.208

The current release of MASSyPup64, as well as FNAs (Frequently Needed Answers) and a list209

of currently installed software can be found on the project homepage (http://www.bioprocess.210

org/massypup/). All components are Open Source software, which permits the free distribution and211

modification of the system.212
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Workflow Management Systems213

The ideal Workflow Management System (WMS) should be visual, modular and easy to understand. The214

facile integration of external commands and the development of new functions should be possible. Further,215

the WMS should allow to analyze data, which are stored outside the running platform, i. e. without216

uploading the data to the WMS. The last requirement is important, since mass spectrometry projects often217

are exceed various Gigabytes of data volume and thus copying or moving them is inconvenient.218

After trying various options, two WMS were installed on MASSyPup64:219

1. TOPPAS220

2. Taverna221

The Trans-Proteomic-Pipeline 4.8.0 was compiled and installed on MASSyPup64, but without222

configuring the hosting server. Consequently, the TPP tools are available for being employed in workflows,223

but the web-interface is not running. Below, a workflow emulating the TPP for protein identification and224

validation is demonstrated.225

Statistics and Data Mining226

For statistical analyses, Data Mining and graphics, we compiled and installed an ’R’ software environment227

(https://www.r-project.org/). A large scientific community is contributing to this powerful228

programming language (The R Journal, http://journal.r-project.org/).229

R and packages. Adopted for bioinformatics, especially genomics. Bioconductor, large community,230

open source. Running on institutional clusters.231

Above mentioned XCMS/XCMS2/metaXCMS (Smith et al., 2006; Benton et al., 2008; Tautenhahn232

et al., 2011; Patti et al., 2012) packages were installed, as well as MALDIquant/MALDIquantForeign for233

spectra processing (Gibb and Strimmer, 2012) and MSI.R for evaluating Mass Spectrometry Imaging234

(MSI) data (Gamboa-Becerra et al., 2015).235

For the linear model analysis of metabolomic data, we included MetabR (http://metabr.236

r-forge.r-project.org/), which provides a Graphical User Interface (GUI) and can be used for237

both, statistical data evaluation and data preparation for Mining.238

Rattle - the R Analytical Tool To Learn Easily - represents a sophisticated and free environment for239

Data Mining (http://rattle.togaware.com/,Williams (2011, 2009)). The GUI facilitates the240

loading, visualization and exploration of data, especially for beginners without profound R knowledge.241

Rattle also supports the export models in PMML standard format and was installed on MASSyPup64242

with all suggested packages (including database connectors, ggobi http://www.ggobi.org/, etc.).243

Special Tools for Large Data Set Editing and Shaping244

Standard spreadsheet software such as Excel, LibreOffice Calc or Gnumeric become very sluggish, if it245

comes to the editing of large tables. With R, huge tables can be handled and various of GNU programs246

(http://www.gnu.org/manual/blurbs.html), such as grep, sed, wc, .. can be used247

to edit big data files. But the import and manipulation of data is not always very practical with those248

tools. Therefore, some special programs for data manipulation were included into the MASSyPup64249

distribution.250

Spreadsheet Program Teapot251

The non-traditional ’Table Editor And Planner, Or: Teapot!’ was originally developed by Michael Haardt252

and Jörg Walter and is currently hosted at SYNTAX-K http://www.syntax-k.de/projekte/253

teapot/. For best performance and usability, Teapot was re-compiled and statically linked with the254

FLTK GUI toolkit (http://www.fltk.org).255

Large Matrix Transposing256

Frequently, it is necessary to transpose a data matrix before loading it into another program. This257

can be efficiently done with the command ’transpose’ (version 2.0 by Dr. Alex Sheppard, http:258

//www.das-computer.co.uk). The C program was modified and re-compiled to change the the259

default maximum matrix size to 100,000 × 100,000.260
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RESULTS AND DISCUSSION261

Proteomics: Identification of proteins, PeptideProphet/ProteinProphet Validation, Text262

Mining and Association Analysis263

Data Set and Bioanalytical Question264

Peroxidases are related to the post-harvest insect resistance of maize kernels (Winkler and Garcı́a-Lara,265

2010; Garcı́a-Lara et al., 2007). Therefore, protein fractions of highly insect-resistance maize kernels266

with peroxidase activity were subjected to 1D or 2D gel electrophoresis and subsequently analyzed with267

LC-MS/MS. The data set consists of three samples: 2DM, a spot from 2D gel electrophoresis of maize268

kernels with peroxidase activity; 1DM, a protein band from 1D gel electrophoresis of partially purified269

peroxidase, and 1DR, a protein band with peroxidase activity from recombinant production of a putative270

peroxidase, which was cloned from cDNA. Details about the project can be found at López-Castillo et al.271

(2015).272

The workflow should identify potential candidates of peroxidases, and suggest peptides for a targeted273

screening of peroxidases.274

Taverna Workflow Design275

The design of the Proteomics workflow using taverna was inspired by the work of Bruin et al. (2012), but276

several modifications were undertaken:277

Peptide Search The search engine X!Tandem (Craig and Beavis, 2004) was replaced by Comet (Eng278

et al., 2015, 2013), in order to simplify the configuration by the user. All necessary parameters for279

the peptide identification are defined in the comet.params file, which has to be located in the same280

directory as the raw data files, which are expected in mzML format. A template for the comet.params file281

can be created by invoking the command comet -p. The location of the protein (or DNA) database282

is set with the database name option. For performing a concatenated decoy search (Elias and Gygi,283

2007), the parameter decoy search needs to be set to 1. The separate generation of a decoy database284

is not required anymore.285

PeptideProphet/ProteinProphet Validation The results of the Comet search are written directly to286

pep.xml format and can be passed to the PeptideProphet script (Keller et al., 2002). The processed287

pep.xml files are subsequently evaluated using ProteinProphet (Nesvizhskii et al., 2003). Both validation288

programs are part of the Trans-Proteomic-Pipeline (TPP) (Keller et al., 2005; Deutsch et al., 2010, 2015)289

and integrated into the workflow by very simple tool modules, which facilitate the modification of290

parameters by advanced users.291

Creation of Output in Different Formats After the writing of the validated prot.xml files, the results292

are exported into various formats for further evaluation: The spreadsheet format xls (compatible with293

gnumeric and EXCEL), coma separated values (csv) text files, html (for opening the results in an294

internet browser) and in mzid (mzIdentML), a standard format for reporting Proteomics results. The295

used tools were adopted from the TPP, the OpenMS/TOPPAS framework and from the Linux system296

programs, which underlines the flexibility of the taverna WMS.297

Text Extraction In the last module, protein hits, which contain the defined search pattern for proteins of298

interest, are written into a separate summary file in csv format. This simple Text Mining step allows the299

rapid screening for relevant identification results.300

An illustration of the complete workflow is given in Figure 3.301

For running the workflow (/usr/local/massypup64-taverna-workflows/m64-comet-val-export.t2flow),302

only the data path ’/usr/local/massypup64-examples/Maize-Proteomics-PODs’ needs303

to be given (as a value), and a string for the protein(s) of interest. In this example, “eroxidase” was defined304

as search string (omitting the initial letter P/p to avoid possible case problems).305

A version of the workflow without the extraction module is stored in the workflow examples directory.306

This workflow can be used for a batch-wise protein identification similar to the Trans-Proteomic-Pipeline.307

The short workflow only requires the mzML data/ comet.params directory as input value.308
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Workflow output ports

Workflow input ports

pepproph_outcomet_out protproph_out excel_outhtml_out mzid_out csv_out summary_csv

dir_of_mzML_files

comet_peptide_search

PeptideProphet

ProteinProphet

create_excel_filecreate_html_file create_mzIdentML_file

create_csv_files

create_summary

protein_of_interest

Figure 3. Proteomics workflow with validation of hits by PeptideProphet/ ProteinProphet and final

extraction of hits for proteins of potential interest.

Workflow Results309

Running the workflow delivers the expected output files, as well as sensitivity vs. error plots for the310

individual samples (see 4). Table 1 corresponds to the exported hits of putative peroxidades.311

Considering a minimum of two unique peptides and a probability of at least 0.95 as acceptance criteria,312

no peroxidase (POD) related protein was identified in the 2D spot, five POD candidates in the purified313

fraction from the 1D gel, and two PODs from the 1D gel after recombinant production of the putative314

POD B6T173 in Escherichia coli.315

Thus, the workflow allows a rapid screening for proteins of interest. Indeed, further biochemical316

experiments confirmed protein B6T173 as the responsible one for the POD activity in the maize kernel.317
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Figure 4. Plot of estimated sensitivity vs. error for sample 1DM, as delivered by the taverna workflow.

Sample Accession Protein Prob. coverage Unique peps Description

2DM B4FBY8 0.6181 5.9 1 Peroxidase

1DM B4FK72 1.0000 2.7 2 Peroxidase

1DM B6T173 1.0000 12.7 7 Peroxidase

1DM K7TID5 1.0000 39.5 24 Peroxidase

1DM K7TID0 0.9937 9.5 1 Peroxidase

1DM B4FY83 0.9890 3.7 2 Peroxidase

1DM B4FNL8 0.0000 0 Peroxidase

1DM B6SI04 0.0000 0 Peroxidase

1DM K7VNV5 0.0000 0 Peroxidase

1DR K7TID5 1.0000 17.7 7 Peroxidase

1DR B6T173 0.9995 7.1 2 Peroxidase

1DR B4FSW5 0.9990 2.9 1 Peroxidase

1DR B4FY83 0.9990 3.7 1 Peroxidase

1DR K7TMB4 0.9990 3.3 1 Peroxidase

1DR Q6JAH6 0.6603 7.1 1 Glutathione peroxidase

1DR K7V8K5 0.5743 3.0 1 Peroxidase

1DR B4FNI0 0.3475 5.4 1 Peroxidase

1DR A0A0B4J371 0.0000 0 Peroxidase

1DR B4FBC8 0.0000 0 Peroxidase

1DR B4G0X5 0.0000 0 Peroxidase

1DR B6TWB1 0.0000 0 Peroxidase

1DR C0PKS1 0.0000 0 Peroxidase

1DR Q9ZTS6 0.0000 0 Peroxidase K (Fragment)

Table 1. Identified putative peroxidases, after PeptideProphet/ ProteinProphet validation.
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Association Analysis318

Association Analysis investigates the probability of the co-occurrence of items. It is mainly known319

from Market Basket studies and social networks. For instance, if a person buys a telescope, most likely320

(s)he also might be interestd in a star map. Or if Henry knows Peter and Paul, (s)he probably knows321

Mary as well. Importantly, the Association Analysis does not query the causality, but the likelihood of a322

relationship. Although the occurrence of an association might be low - lets say the mentioned group of323

Henry, Peter, Paul and Mary represents a fraction of 0.0001 % of a social network - the confidence might324

be high, e. g. 0.9, and therefore be highly informative.325

To search out co-occurring peptides, which could lead to possibly associated proteins and suitable326

peptides for targeted proteomics, we carried out an Association Analysis with Rattle. In total, more327

than 700 peptides with a probability above 0.9 were considered. A minimal support of 0.6, a minimal328

confidence of 0.9 and a path of seven rules were chosen as parameters. Figure 5 represents the associations329

between seven peptides, which are related.330

Graph for 7 rules

AFVHGDGDLFSR

DSACSAGGLEYEVPSGRR

GSGGGGGGGGGQGQSR

LFLNLQKEMNSVMVTRK

TDPSVDPAYAGHLK

TVSCADVLAFAAR

VQVLTGDEGEIR

size: support (0.667 − 0.667)
color: lift (1 − 1.5)

Figure 5. Associated peptides across the samples.

Table 2 lists the associated peptides together with their identifications. DSACSAGGLEYEVPS-331

GRR, TDPSVDPAYAGHLK, VQVLTGDEGEIR are genuine peptides of B6T173. The peptide TVS-332

CADVLAFAAR is not present in the amio acid sequence of B6T173, but the similar peptide TVS-333

CADIVAFAAR. Since B6T173 was recombinately produced in E. coli (sample 1DR), the identification of334

Peptide 2DM 1DM 1DR Acession Description

DSACSAGGLEYEVPSGRR o x x K7TID5 Peroxidase

TDPSVDPAYAGHLK o x x B6T173 Peroxidase

TVSCADVLAFAAR o x x B4FY83 Peroxidase

VQVLTGDEGEIR o x x K7TID5 Peroxidase

AFVHGDGDLFSR x x x B6SRJ2 Senescence-

inducible chloroplast

stay-green protein

LFLNLQKEMNSVMVTRK o x x A0A096PYN5 30S ribosomal pro-

tein S2, chloroplastic

GSGGGGGGGGGQGQSR x x x A0A096RDU5 Uncharacterized pro-

tein

Table 2. Association Analysis of peptides across three samples.
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this peptide indicates an unexpected phenomenon during the MS measurement. However, the respective335

transitions might be useful for the quantification of the protein.336

The appearance of chloroplast protein might be feasible for the maize derived samples, but are unlikely337

to reflect reality in the bacterial preparation of B6T173. The glycine-rich peptide can be found in many338

organisms and therefore does not contribute information.339

Resuming, a set of 3+1 peptides was found, which are highly indicative for the protein B6T173. Since340

the protein is related to post-harvest insect resistance, those peptide MS transitions could serve for the341

screening of seeds. The PeptidePicker workflow delivers theoretical peptides for targeted proteomics342

(Mohammed et al., 2014). However, if experimental data are available, the Association Analysis includes343

all possible variables which affect the peptide/ protein identification from sample extraction to final344

evaluation, and thus should suggest more reliable candidates.345

Ideally, an Association Analysis is carried out with numerous individual samples, which allows to346

reduce the support limit and to bring to light non-obvious correlations between variables or observations.347

Apart from finding reliable peptides for protein quantification, Association Analyses can be employed348

to discover alternative biomarkers, e. g. if the genuine biomarker is difficult to detect, or to search for349

protein-protein interactions.350

Targeted Metabolomics: Cluster Analyses, Linear Model Analysis and Model Building351

using Data Mining352

Data Set and Analytical Question353

We re-processed a data set, which was described by Ernest et al. (2012). To study the adipose tissue354

metabolism, three groups of chicken where analyzed, which underwent different treatments: A control355

group (“Control”, sample 1-7) which were fed ad libitum, chicken fasted for 5 hours (“Fast”, sample356

8-14) and a group treated with an insulin inhibitor (“InsNeut”, sample 15-21). For more details about the357

biological experiments, we refer to the original paper Ernest et al. (2012). From the targeted Metabolomics358

data, a statistical analysis yielding fold-changes and p-values should be carried out. Further, a classification359

of the three groups, based to their metabolic profile, should be intended.360

Statistical Evaluation with MetabR361

Using MetabR, the fold-differences and the Tukey’s Honest Significant Difference (HSD) was calculated,362

applying a fixed linear model for the variables “Quantity” and “Internal Standard” (Table 3). The script363

also performs an Hierarchical Cluster Analysis (HCA, Figure 6).364

Fast-Control InsNeut-Control InsNeut-Fast

fold p-value fold p-value fold p-value

ATP 1.27 0.38 1.06 0.93 0.83 0.59

Citraconate 1.08 0.25 1.05 0.56 0.97 0.81

Citrate 1.22 0.08 1.00 0.96 0.82 0.13

Dihexose 0.08 <0.01 0.59 0.93 7.22 <0.01

Inosine 0.74 0.33 0.91 0.58 1.24 0.89

Lactate 0.87 0.14 0.99 0.97 1.14 0.20

Pyruvate 1.20 0.19 0.97 0.95 0.81 0.11

2-Oxoglutarate 0.93 0.75 1.51 <0.01 1.63 <0.01

1-Methyladenosine 1.20 0.99 1.13 0.96 0.95 0.99

Glutamine 0.68 0.03 2.51 <0.01 3.71 <0.01

Guanosine 0.76 0.22 0.83 0.26 1.09 0.99

O-Acetyl-L-serine 0.59 0.30 2.13 0.11 3.62 <0.01

Glucosamine 1.36 0.22 2.98 <0.01 2.20 <0.01

Thiamine 0.54 0.14 0.89 1.00 1.66 0.14

Table 3. Statistical Analysis of Targeted Metabolomics Data with MetabR. Bold values are significant

with p-values < 0.01 (Tukey HSD).

For Dihexose, 2-Oxoglutarate, Glutamine, O-Acetyl-L-serine and Glucosamine significant differences365

of the metabolite concentrations were stated. In the Hierarchical Cluster Analysis (HCA), the fasting366

chicken and the chicken treated with insulin inhibitor are separated (Figure 6). The control chicken367
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Figure 6. Hierarchical Cluster Analysis (HCA) of targeted metabolomics from chicken groups.

samples are found in both branches of the dendrogram, which indicates that a) the clustering method368

is not selective enough to clearly separate the samples based on their metabolic identity or b) that the369

metabolic profiles of the control group is to divers to be classified correctly.370

The results of the statistical analyses are in agreement with the original publication by Ernest et al.371

(2012). However, to improve the classification of the three groups we probed alternative approaches for372

Clustering and Model Building.373

Clustering Approaches and their Limitatations374

Clustering helps to identify similar groups in a data set. Estimating the adequate number of clus-375

ters is not trivial and various algorithms have been described for this task. We tested several of376

them, which are available within R (http://stackoverflow.com/questions/15376075/377

cluster-analysis-in-r-determine-the-optimal-number-of-clusters/15376462#378

15376462). The different plots can be reproduced with the cluster-chicken.R script located in379

the /usr/local/massypup64-examples/Chicken-Data-Mining directory.380

K-Means Clustering and Sum of Squared Error (SSE) Plot The K-Means Clustering method of381

Hartigan and Wong (1979) is implemented in the R function kmeans and minimizes the sum of squared382

errors between data points. Since three clusters are expected from the biological context, we performed a383

K-Means cluster analysis with a starting value of ’3’. As shown in Figure 7 A), no clear separation of the384

three chicken groups was achieved.385

The corresponding SSE plot is lacking a local minimum (’elbow’), which would indicate the optimum386

number of clusters in the data set (Figure 7 B)). The SSE plot indicates that K-Means Clustering based on387

the minimization of the Sum-of-Square-Error is not suitable for classifying the three chicken groups.388

Silhouette Plot and Silhouette Plot Based Clusters Silhouettes help in the graphical evaluation of389

clustering solutions and in the choice of an adequate number of clusters (Rousseeuw, 1987). The resulting390

graphs in Figure 8 are also based on a K-Means Clustering and suggest two clusters.391
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Figure 7. A) K-Means clustering of the normalized chicken data set, considering three clusters, B) SSE

plot for estimating the cluster number.
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Figure 8. A) Silhouette plot and B) Silhouette plot based clusters.

Caliński-Harabasz Index The Caliński-Harabasz Index (Caliński and Harabasz, 1974) demonstrated392

excellent recovery and consistent performance in a comparative study of Milligan and Cooper (1985).393

Therefore, the cascadeKM function of the R package vegan was used for a Caliński-Harabasz analysis.394

The resulting graphs (Figure 9) indicate indeed a minimum for three clusters. But the number of395

objects in each group is not congruent with the individual chicken in each group.396
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Figure 9. Estimation of the number of clusters using the Caliński-Harabasz index.

Affinity Propagation (AP) Clustering Frey and Dueck (2007) proposed the Affinity Propagation (AP)397

Clustering algorithm, in which information is exchanged between data points until an optimal solution is398

reached. The algorithm is computationally efficient and more accurate compared to other strategies. We399

applied the R function apcluster to the data matrix and the transformed data matrix.400
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Figure 10. A) Affinity propagation (AP) clustering and B) AP clustering with transformed data matrix.

AP clustering yields four clusters for the chicken groups (Figure 10, A)). The insulin inhibitor treated401

chicken (objects 15-21) cluster together. However, there is also another sample from the control group402

in the same branch. The clustering of the transformed data matrix suggests correlations between three403

groups of metabolites (Figure 10, B)), which could lead to related metabolic pathways.404

MClust Algorithm The R package mclust tries different probability models and plots the number of405

cluster elements versus the Bayesian Information Criterion (BIC) (Fraley and Raftery, 2002).406

The model labeled as ’EVV’, which stands for ’multivariate mixture model with ellipsoidal, equal407

volume’ displays the highest BIC values (Figure 11). However, no maximum is reached for three cluster408

groups, which indicates that no tested model is suitable for a correct clustering.409
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Summary of Clustering Approaches Table 4 summarizes the number of clusters, which was estimated410

by different algorithms. The Caliński-Harabasz index guesses the correct number of groups in the dataset,411

but no evaluated clustering method is specific enough to accurately separate the three chicken groups.412

Therefore, we continued with a Data Mining based model building.413

Method No. of clusters

K-Means/ SSE n. a.

Silhouette Plot 2

Caliński-Harabasz 3

Affinity Propagation clustering 4

MClust algorithm n. a.

Table 4. Comparison of methods for estimating the number of clusters in the targeted Metabolomics

dataset of three chicken groups

Data Mining based Model Building414

Conveniently, the normalized data from the statistical evaluation with MetabR can be loaded directly into415

Rattle for Data Mining. For the supervised building of models, we split the data in a ratio of 70:20:10416

for Training, Validation and Testing. As target value, the experimental group of the chicken with the417

categorical values “Control”, “Fast” and “InsNeut” was set. Following, the results for different models are418

presented. The performance of the models in the three stages of development is summarized in Table 5.419

The models and supporting data are included in the MASSyPup64 examples; The Rattle sessions are420

stored in files with the extension .rattle.421

Decision Tree Decision Tree models result in simple representations, which are easy to understand422

and easy to put into practice. The Decision Tree model for classification was built using the R package423

rpart with 14 samples and yielded the following rule set:424

425

n= 14426

427

node ) , s p l i t , n , l o s s , yva l , ( yprob )428

∗ d e n o t e s t e r m i n a l node429

430

1) r o o t 14 9 C o n t r o l ( 0 . 3 5 7 1 4 2 9 0 .3571429 0 . 2 8 5 7 1 4 3 )431

2) Dihexose >=9.851921 9 4 C o n t r o l ( 0 . 5 5 5 5 5 5 6 0 .0000000 0 . 4 4 4 4 4 4 4 )432

4) X2 . O x o g l u t a r a t e< 14 .84659 5 0 C o n t r o l ( 1 . 0 0 0 0 0 0 0 0 .0000000 0 . 0 0 0 0 0 0 0 ) ∗433

5) X2 . O x o g l u t a r a t e >=14.84659 4 0 I n s N e u t ( 0 . 0 0 0 0 0 0 0 0 .0000000 1 . 0 0 0 0 0 0 0 ) ∗434

3) Dihexose< 9 .851921 5 0 F a s t ( 0 . 0 0 0 0 0 0 0 1 .0000000 0 . 0 0 0 0 0 0 0 ) ∗435
436

16/26

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1359v1 | CC-BY 4.0 Open Access | rec: 9 Sep 2015, publ: 9 Sep 2015

P
re
P
ri
n
ts



Those rules can be used in their plain form or implemented into a simple computer program. The437

graphical representation is given in Figure 12.438

Figure 12. Decision tree model for the classification of chicken samples.

Both, the equation form and the graphical Decision Tree models are straight-forward to understand439

and deploy, e. g. for diagnostics applications. The evaluation of the model using an Error Matrix (Table 5)440

returns one error (33 %) for the validation and one error (25 %) for the testing data. All samples of the441

training set were identified correctly, resulting in an overall error rate of 9.5 %.442

For certain uses, such as models supporting medical decisions, a very low false-positive or false-443

negative rate is needed. If needed, the model can be optimized towards a certain direction, such as444

avoiding false-negatives (for details see Williams (2011)). Another option is the building of more complex445

models like Random Forest Tree or Support Vector Machine models.446

Random Forest Tree Model For building a Random Forest Tree model, multiple Decision Trees are447

created and combined into a single model Williams (1988, 1987). Random Forest Models are characterized448

by robustness to noise, outliers and overfitting. Williams (2011). An important aspect is also the selection449

of variables: Only a part of the available variables - by default the square root of all variables - is used for450

each individual Decision Tree. In this ’bagging’ strategy the same variable may occur more than once.451

For building the Random Forest Tree, we defined the construction of 5,000 trees and three variables for452

each split. The ’out-of-bag’ (OOB) error estimate is based on the observations, which are not considered453

in the training set and was calculated as 14.29 %.454

Strikingly, the Random Forest Tree Model classified all samples without error in any stage of455

development (Table 5).456

Another result of the model building is highly informative: The Variable Importance (Figure 13).457
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Figure 13. Variable importance from the Random Forest Tree modeling for the classification of chicken

samples.

The left plot in Figure 13 refers to influence of the variables on the predictive accuracy of the Decision458

Tree, the right plot expresses the impact on the Gini index (a measure of statistical dispersion (Gini,459

1912)) when splitting on a variable. The first eight variables are equal in both measures, and indicate460

a high importance of the concentrations of Dihexose, Glutamine, X2.Oxoglutarate and Glucosamine.461

Those metabolites also show significant changes in the statistical analysis with MetabR (Table 3), but462

the Random Forest Tree analysis now allows for the correct classification of the samples and suggests an463

order for the importance of variables.464

Support Vector Machine (SVM) and Linear Model Several more model builders are available in Rattle,465

such as Neuronal Networks and the Boost algorithm. Because of their popularity in the community, we466

also tested the Support Vector Machine (SVM) and the Linear Model for the chicken dataset. The results467

are collected in Table 5.468

The SVM model performed equally well as the Random Forest Tree model, i. e. in no stage of the469

development a sample was classified wrongly. In contrast, the Linear Model presented one error during470

the validation and one error in the testing.471

Comparison of Model Builders and Cluster Analyses472

The Support Vector Machine (SVM) and the Random Forest Tree strategy generated error-free models473

for the classification of the three chicken groups. This classification was not possible with Cluster474

Analyses, which suggests the use of Data Mining models for data sets with only subtle differences475

between experimental groups.476

The Random Forest Tree model additionally delivers quantitative measures for the variable importance,477

which facilitates the discovery of biologically relevant factors.478
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TRAINING VALIDATION TESTING

Decision

Tree
Error

Predicted

Actual Control Fast InsNeut Control Fast InsNeut Control Fast InsNeut 0.25

Control 5 0 0 0 0 1 1 0 0 0.0

Fast 0 5 0 0 0 0 1 1 0 0.5

InsNeut 0 0 4 0 0 2 0 0 1 0.0

Random

Forest
Predicted

Actual Control Fast InsNeut Control Fast InsNeut Control Fast InsNeut 0.0

Control 5 0 0 1 0 0 1 0 0 0.0

Fast 0 5 0 0 0 0 0 2 0 0.0

InsNeut 0 0 4 0 0 2 0 0 1 0.0

Support

Vector

Machine
Predicted

Actual Control Fast InsNeut Control Fast InsNeut Control Fast InsNeut 0.0

Control 5 0 0 1 0 0 1 0 0 0.0

Fast 0 5 0 0 0 0 0 2 0 0.0

InsNeut 0 0 4 0 0 2 0 0 1 0.0

Linear

Model
Predicted

Actual Control Fast InsNeut Control Fast InsNeut Control Fast InsNeut 0.25

Control 5 0 0 1 0 0 0 0 1 1.0

Fast 0 5 0 0 0 0 0 2 0 0.0

InsNeut 0 0 4 1 0 1 0 0 1 0.0

Table 5. Error Matrix for predictive models, which were developed for the classification of chicken

groups, based on targeted Metabolomics data.
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Untargeted Metabolomics: Discovery of Important Variables by Data Mining and Identifi-479

cation of Putative Metabolites480

Data Set and Bioanalytical Question481

The data analysis for untargeted Metabolomics experiments is highly complicated, since unknown482

metabolic features need to be detected and aligned between samples. To gain biological knowledge, these483

features need to be identified and integrated into metabolic pathways. Recently we reported the metabolic484

fingerprinting of the Arabidopsis thaliana accessions (’ecotypes’) Columbia (“Col-0”) and Wassilewskija485

(“Ws-3”), based on extracts of leaves and inflorescence (Sotelo-Silveira et al., 2015). In this example, we486

re-process the reduced datasets of the inflorescence samples and try to identify possibly distinct pathways487

between the inflorescence samples of the two accessions.488

Date Pre-Processing and TOPPAS Pipeline for Feature Detection and Alignment489

The original mzML data were processed with msconvert to reduce noise signals and to reduce the size490

of the data files. Figure 14 represents the workflow for the data processing, which was implemented in491

TOPPAS. First, the MS features are detected in all data files. Following, the features of all samples are492

aligned and the results exported into a text file for further statistical analyses. The complete pipeline and493

(.toppas) the mzML raw data files are available in the example directory.494

o
u
t

o
u
t

in
out

in
out

in
out

12 input files

.mzML

1

FeatureFinderMetabo

2

12 / 12

Collect

1 / 1

3

FeatureLinker-
UnlabeledQT

4

1 / 1

TextExporter

5

1 / 1

1/1 output file

.csv ...

6

12/12 output files

.featureXML ...

7

1/1 output file

.consensusXML ...

8

Figure 14. TOPPAS pipeline for MS feature detection and alignment, with output of the consensus

features in a text file.
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Statistical Analyses and Building of a Random Forest Tree Model495

The 1,005 high-quality features, which were detected in all twelve samples, were normalized with MetabR496

and loaded into Rattle (as described before in the targeted Metabolomics example). A Random Forest497

Tree model was built for the classifications of the accessions with default parameters, calculating 5,000498

trees. The classification was correct (0 % error rate) in all steps of the model development. This finding499

demonstrates again the high robustness and selectivity of the Random Forest Modeling for Metabolomics500

data, which are usually characterized by many variables and few repetitions.501

Important Variables and Identification of Putative Metabolites and Pathways502

The m/z values of features were matched with an Arabidopsis meta-database using SpiderMass (Winkler,503

2015). Putatively identified metabolites were sorted by their Variable Importance (accuracy criterion),504

manually revised and assigned with their pathway or function (Table 6).505

The results of affected metabolic pathways are congruent with the previously reported statistical anal-506

yses (Sotelo-Silveira et al., 2015). But taking into account the Variable Importance for the classification507

of the inflorescence profiles according to their accession, now allows a statistically supported ranking of508

putatively involved pathways. The biosynthesis of (thio)glucosinolate appears to be the most significant509

variable, followed by the biosynthesis of abscisic acid biosynthesis, an aroma compound, and amino acids.510

Most of the compounds down the list are related to plant hormones, flavonoid glycosides and cofactors.511

Thus, the Data Mining method is not only a tool for the reliable classification of sample groups, but512

also supports the discovery and ordering of biologically relevant variables.513
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m/z Variable

Impor-

tance

Ionization

Mode

Name Function/ Pathway Mass

Error

[mDa]

463.105 2.65 [M+H]+ 7-Methylthioheptyl glucosinolate Glucosinolate biosynthesis 4.6

249.149 2.45 [M+H]+ Abscisic acid aldehyde Abscisic acid biosynthesis 0.1

249.149 2.45 [M+Na]+ Methyl Dihydrojasmonate Aroma compound 2.5

227.070 2.45 [M+Na]+ Tryptophan Amino acid -9.3

202.090 2.00 [M+Na]+ L-Phenylalanine Amino acid 5.8

647.159 2.00 [M+Na]+ Isorhamnetin-3-O-rutinoside Flavonoid glycoside 0.8

245.099 2.00 [M+H]+ Biotin Vitamin 4.0

631.162 2.00 [M+Na]+ Diosmin Flavonoid glycoside -1.3

387.025 2.00 [M+Na]+ Xanthosine 5’-phosphate Purine metabolism -6.0

329.068 2.00 [M+Na]+ Leucocyanidin Flavonoid 4.8

221.031 2.00 [M+H]+ Imidazole acetol phosphate Amino acid biosynthesis -0.9

633.141 1.73 [M+Na]+ Rutin Flavonoid glycoside -2.0

223.169 1.73 [M+Na]+ Lauric acid Fatty acid 2.4

595.160 1.73 [M+H]+ Flavonoide glycoside (isobars) Flavonoid glycoside -5.4

579.163 1.73 [M+H]+ Flavonoide glycoside (isobars) Flavonoid glycoside -7.7

263.090 1.73 [M+H]+ 2-(6’-Methylthio)hexylmalic acid Glucosinolate biosynthesis -6.2

271.132 1.73 [M+Na]+ Abscisic acid aldehyde Abscisic acid biosynthesis 1.3

195.065 1.73 [M+H]+ Ferulic acid Cell wall formation -0.4

251.021 1.73 [M+Na]+ Mevalonate 5-phosphate Terpene biosynthesis -7.9

403.064 1.73 [M+Na]+ O-Acetylserine Amino acid biosynthesis -6.1

331.158 1.73 [M+H]+ Gibberellin A5 Plant hormone 4.0

457.044 1.73 [M+Na]+ 5-Methylthiopentylglucosinolate Glucosinolate biosynthesis -7.1

317.175 1.73 [M+H]+ Gibberellin A9 Plant hormone 0.1

333.209 1.73 [M+H]+ Gibberellin A12 Plant hormone 2.6

333.209 1.73 [M+Na]+ 6,9-Octadecadienedioic acid Fatty acid 5.0

479.099 1.73 [M+H]+ Hyryl Coenzyme (Riboflavin,

FMN, FAD)

5.1

479.099 1.73 [M+Na]+ Flavin mononucleotide (FMN) Coenzyme 5.1

625.174 1.41 [M+H]+ Narcisin Flavonoid glycoside -1.8

245.042 1.41 [M+H]+ 1,3,7-Trihydroxyxanthone Xanthones -2.7

611.157 1.41 [M+H]+ Rutin Flavonoid glycoside -3.9

601.147 1.41 [M+Na]+ Flavonoide glycoside (isobars) Flavonoid glycoside -5.5

369.123 1.41 [M+Na]+ Gibberellin (isobars) Plant hormone -8.2

349.058 1.41 [M+H]+ Inosinic acid Ribonucleotid biosynthesis 3.6

328.941 1.41 [M+Na]+ D-Ribulose 1,5-bisphosphate Phothosynthesis -4.9

365.128 1.41 [M+Na]+ Abietin Terpene 7.5

369.124 1.41 [M+Na]+ Gibberellin (isobars) Plant hormone -7.3

311.187 1.41 [M+H]+ Botrydial Terpene 1.3

385.014 1.41 [M+Na]+ Xanthosine 5’-monophosphate Purine metabolism -2.3

433.118 1.41 [M+H]+ Apigenin glucoside Flavonoid glycoside 4.7

349.057 1.41 [M+H]+ Inosinic acid Ribonucleotid biosynthesis 2.5

221.042 1.41 [M+H]+ Imidazole acetol phosphate Amino acid biosynthesis 9.6

221.042 1.41 [M+H]+ 2-(3’-Methylthio)propylmalic acid Glucosinolate biosynthesis -7.0

221.042 1.41 [M+Na]+ Syringic Acid Aminobenzoate degradation -0.2

625.170 1.41 [M+H]+ Narcisin Flavonoid glycoside -6.1

349.200 1.41 [M+H]+ Gibberellin (isobars) Plant hormone -0.8

363.039 1.41 [M+H]+ Xanthosine 5’-monophosphate Purine metabolism 4.4

211.057 1.41 [M+H]+ 5-Hydroxyferulic acid Phenylpropanoid biosynthe-

sis

-3.0

Table 6. Putative identifications for important variables for the classification of Arabidopsis, based on

untargeted Metabolomics profiles.
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CONCLUSIONS514

The presented examples from Proteomics and Metabolomics demonstrate the high potential of integrating515

Workflow Management Systems with Data Mining tools and helper programs into a single data analysis516

platform. The ready-to-use combination of software packages and the availability of data on the live517

system facilitates the repetition of the experiments and prevents workflow decay.518

Data Mining strategies enhance the knowledge generation from biological mass spectrometry data.519

Predictive models can be readily deployed for future decision making, e. g. in clinical diagnostics. The520

Graphical User Interfaces (GUIs) of MetabR and Rattle enable the easy application of advanced Statistics521

and Data Mining for biological mass spectrometry data.522

Association Analyses reveal relations between variables and can be used to search for interactions,523

which are present in low frequency, but with high confidentiality, e. g. in the search for co-occurring524

peptides or related proteins.525

The Random Forest Tree models demonstrate high robustness and accuracy for the classification526

between experimental groups from Metabolomics data. The variable importance supports the discovery527

and ranking of significant metabolites and pathways.528

Data Mining paves the way for a deeper understanding of biological phenomena by a more profound529

analysis of mass spectrometry data. MASSyPup64 provides a stable and evolving platform for this530

challenging task.531
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Caliński, T. and Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics,546

3(1):1–27.547

Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., Gatto, L., Fischer,548

B., Pratt, B., Egertson, J., Hoff, K., Kessner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T. A.,549

Brusniak, M.-Y., Paulse, C., Creasy, D., Flashner, L., Kani, K., Moulding, C., Seymour, S. L., Nuwaysir,550

L. M., Lefebvre, B., Kuhlmann, F., Roark, J., Rainer, P., Detlev, S., Hemenway, T., Huhmer, A.,551

Langridge, J., Connolly, B., Chadick, T., Holly, K., Eckels, J., Deutsch, E. W., Moritz, R. L., Katz,552

J. E., Agus, D. B., MacCoss, M., Tabb, D. L., and Mallick, P. (2012). A cross-platform toolkit for mass553

spectrometry and proteomics. Nat. Biotechnol., 30(10):918–920.554

Craig, R. and Beavis, R. C. (2004). TANDEM: matching proteins with tandem mass spectra. Bioinfor-555

matics, 20(9):1466–1467.556
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Kapp, E., Schütz, F., Connolly, L., Chakel, J., Meza, J., Miller, C., Fenyo, D., Eng, J., Adkins, J., Omenn,615

G., and Simpson, R. (2005). An evaluation, comparison, and accurate benchmarking of several publicly616

available MS/MS search algorithms: Sensitivity and specificity analysis. Proteomics, 5(13):3475–3490.617

Keller, A., Eng, J., Zhang, N., Li, X.-j., and Aebersold, R. (2005). A uniform proteomics MS/MS analysis618

platform utilizing open XML file formats. Mol Syst Biol, 1:2005.0017.619

Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002). Empirical statistical model to620

estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem.,621

24/26

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1359v1 | CC-BY 4.0 Open Access | rec: 9 Sep 2015, publ: 9 Sep 2015

P
re
P
ri
n
ts



74(20):5383–5392.622

Kessner, D., Chambers, M., Burke, R., Agus, D., and Mallick, P. (2008). ProteoWizard: open source623

software for rapid proteomics tools development. Bioinformatics, 24(21):2534–2536.624

Killcoyne, S., W. Deutsch, E., and Boyle, J. (2012). Mining PeptideAtlas for Biomarkers and Therapeutics625

in Human Disease. Current Pharmaceutical Design, 18(6):748–754.626

Kind, T. and Fiehn, O. (2006). Metabolomic database annotations via query of elemental compositions:627

Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics, 7(1):234.628

Kind, T. and Fiehn, O. (2007). Seven Golden Rules for heuristic filtering of molecular formulas obtained629

by accurate mass spectrometry. BMC Bioinformatics, 8:105.630

Luca Belmonte, R. S. and Nicolini, C. (2013). SpADS: An R Script for Mass Spectrometry Data631

Preprocessing before Data Mining. Journal of Computer Science & Systems Biology, 6(5):298–304.632
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