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Estimating and comparing microbial diversity in the presence

of sequencing errors

Chun-Huo Chiu, Anne Chao

Estimating and comparing microbial diversity are statistically challenging due to limited

sampling and possible sequencing errors for low-frequency counts, producing spurious

singletons. The inflated singleton count seriously affects statistical analysis and inferences

about microbial diversity. Previous statistical approaches to tackle the sequencing errors

generally require different parametric assumptions about the sampling model or about the

functional form of frequency counts. Different parametric assumptions may lead to

drastically different diversity estimates. We focus on nonparametric methods which are

universally valid for all parametric assumptions and can be used to compare diversity

across communities. We develop here for the first time a nonparametric estimator of the

true singleton count to replace the spurious singleton count. Our estimator of the true

singleton count is in terms of the frequency counts of doubletons, tripletons and

quadrupletons. To quantify microbial diversity, we adopt the measure of Hill numbers

(effective number of taxa) under a nonparametric framework. Hill numbers, parameterized

by an order q that determines the measures� emphasis on rare or common species,

include taxa richness (q=0), Shannon diversity (q=1), and Simpson diversity (q=2). Based

on the estimated singleton count and the original non-singleton frequency counts, two

statistical approaches are developed to compare microbial diversity for multiple

communities. (1) A non-asymptotic approach based on standardizing sample size or

sample completeness via seamless rarefaction and extrapolation sampling curves of Hill

numbers. (2) An asymptotic approach based on a continuous diversity (Hill number) profile

which depicts the estimated asymptotes of diversities as a function of order q. Replacing

the spurious singleton count by our estimated count, we can greatly remove the positive

biases associated with diversity estimates due to spurious singletons in the two

approaches and make fair comparison across microbial communities, as illustrated in

applying our method to analyze sequencing data from viral metagenomes.
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Abstract 13 

Estimating and comparing microbial diversity are statistically challenging due to limited sampling 14 

and possible sequencing errors for low-frequency counts, producing spurious singletons. The 15 

inflated singleton count seriously affects statistical analysis and inferences about microbial 16 

diversity. Previous statistical approaches to tackle the sequencing errors generally require different 17 

parametric assumptions about the sampling model or about the functional form of frequency 18 

counts. Different parametric assumptions may lead to drastically different diversity estimates. We 19 

focus on nonparametric methods which are universally valid for all parametric assumptions and 20 

can be used to compare diversity across communities. We develop here for the first time a 21 

nonparametric estimator of the true singleton count to replace the spurious singleton count. Our 22 

estimator of the true singleton count is in terms of the frequency counts of doubletons, tripletons 23 

and quadrupletons. To quantify microbial diversity, we adopt the measure of Hill numbers 24 

(effective number of taxa) under a nonparametric framework. Hill numbers, parameterized by an 25 

order q that determines the measures� emphasis on rare or common species, include taxa richness 26 

(q=0), Shannon diversity (q=1), and Simpson diversity (q=2). Based on the estimated singleton 27 

count and the original non-singleton frequency counts, two statistical approaches are developed to 28 

compare microbial diversity for multiple communities. (1) A non-asymptotic approach based on 29 

standardizing sample size or sample completeness via seamless rarefaction and extrapolation 30 

sampling curves of Hill numbers. (2) An asymptotic approach based on a continuous diversity 31 

(Hill number) profile which depicts the estimated asymptotes of diversities as a function of order q. 32 

Replacing the spurious singleton count by our estimated count, we can greatly remove the positive 33 

biases associated with diversity estimates due to spurious singletons in the two approaches and 34 
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make fair comparison across microbial communities, as illustrated in applying our method to 35 

analyze sequencing data from viral metagenomes.  36 

37 
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INTRODUCTION 38 

Advances in high-throughput DNA sequencing have opened a novel way to assess hyper-diverse 39 

microbial communities (Sogin et al., 2006; Roesch et al., 2007; Fierer et al., 2008; Turnbaugh & 40 

Gordon, 2009). However, the measurement and comparison of microbial diversity are challenging 41 

issues due to sampling limitations (Bohannan & Hughes, 2003; Schloss & Handelsman, 2006; 42 

Schloss & Handelsman, 2008; Øvreås, 2011). These issues become more challenging when 43 

sequencing errors generate spurious low frequency counts especially singletons (Quince et al., 44 

2009; Dickie, 2010; Kunin et al., 2010; Quince et al., 2011; Bunge et al. 2012; Bunge et al. 2012). 45 

In this paper, we use �species� to refer to taxa or operational taxonomic units (OTUs) under a 46 

pre-specified percentage of identity of sequences (Schloss & Handelsman, 2005; Schloss & 47 

Handelsman, 2008). We also use �individuals� to refer to sequences or any sampling unit.  48 

In macro-ecology, Hill numbers have been increasingly used to quantify species diversity. An 49 

Ecology Forum led by Ellison (2010) (and papers that followed it) surprisingly achieved a 50 

consensus in the use of Hill numbers as the proper choice of diversity measure, despite intense 51 

debates existing in the older literature regarding this issue. Hill numbers (or the effective number 52 

of species) are a mathematically unified family of diversity indices differing among themselves 53 

only by an exponent q that determines the measure�s sensitivity to species relative abundances. 54 

This family includes the three most important diversity measures: species richness (q=0), Shannon 55 

diversity (q=1, the exponential of Shannon entropy), and Simpson diversity (q=2, the inverse of 56 

Simpson index). See below for its mathematical formula and interpretation. Hill numbers were 57 

first used in ecology by MacArthur (1965), developed by Hill (1973), and reintroduced to 58 

ecologists by Jost (2006; 2007). Hill numbers have been extended to incorporate evolutionary 59 

history and species traits; see (Chao, Chiu & Jost, 2014) for a recent review.  60 
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Various ecological measures have been applied to quantify the diversity of microbial 61 

communities (Hughes et al., 2001; Curtis & Sloan, 2002). Hill et al. (2003) reviewed and 62 

discussed the suitability of a wide range of ecological diversity measures for use with highly 63 

diverse bacterial communities. Members of Hill numbers are also proposed as promising measures 64 

for quantifying microbial diversity. For examples, Haegeman et al. (2008; 2013; 2014) 65 

recommended the use of Shannon diversity and Simpson diversity to measure and compare 66 

microbial diversity; Doll et al. (2013) suggested using a continuous diversity profile, a plot of Hill 67 

numbers as a continuous function of q≥0. In this paper, we adopt the general framework of Hill 68 

numbers and use continuous profiles to quantify microbial diversity. The diversity profile for q≥0 69 

conveys all information contained in a species relative abundance distribution if community 70 

parameters (species richness and relative abundances) are known. However, in practice, 71 

community parameters are unknown and thus the true diversity (i.e., asymptotic diversity) must be 72 

estimated from sampling data and statistical methods are required. See the asymptotic analysis in 73 

later text.  74 

In this paper, we propose two statistical approaches to make fair comparisons of microbial 75 

diversity across multiple communities. Our first approach is a non-asymptotic approach based on 76 

standardizing sample size or sample completeness (as measured by sample coverage; see below) 77 

via an integrated rarefaction and extrapolation curve. In this approach, the diversities of multiple 78 

communities can be compared for standardized finite sample sizes or standardized sample 79 

overages. Traditional sample-size-based rarefaction for species richness has been widely applied in 80 

ecology as a standardization method and also suggested by Dickie (2010) for molecular surveys. 81 

For species richness, Colwell et al. (2012) proposed an integrated rarefaction and extrapolation 82 

sampling curve for standardizing sample size; Chao & Jost (2012) proposed the corresponding 83 

curve for standardizing sample completeness. Hill numbers calculated from a sample, like species 84 
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richness, are an increasing function of sampling effort and thus tend to increase with sample 85 

completeness. Chao et al. (2014) generalized previous papers (Chao & Jost, 2012; Colwell et al., 86 

2012) on species richness to the family of Hill numbers and developed two types of 87 

standardization methods (sample-size- and sample-coverage-based). The sample-size- and 88 

sample-coverage-based integration of rarefaction and extrapolation together represent a unified 89 

non-asymptotic and non-parametric framework for estimating diversity and for making statistical 90 

inferences based on these estimates. The rarefaction and extrapolation curves for measures of 91 

small value of q (say, 20 ü q ) heavily depend on the low frequency counts especially singletons 92 

(Chao et al., 2014). 93 

Our second approach is an asymptotic approach based on a continuous diversity profile which 94 

depicts the estimated asymptotes of diversities as a function of order q. This profile is typically 95 

generated by substituting species sample proportions into the diversity formula. However, this 96 

empirical approach generally underestimates the true profile, because samples usually miss some 97 

of the community�s species due to under-sampling. Finding an analytic reduced-bias continuous 98 

diversity profile has been a long-standing challenge. Chao and Jost (2015) recently proposed a 99 

resolution to obtain a diversity profile estimator, which infers the asymptotes of diversities, i.e., 100 

the diversity when the sample size tends to infinity or sample completeness tends to unity. The 101 

negative bias associated with the empirical diversity curve due to undetected species can be greatly 102 

reduced. They also used real data sets to demonstrate that the empirical and their estimated 103 

diversity profiles may give qualitatively different answers when comparing biodiversity surveys. 104 

Chao and Jost�s (2015) diversity profile estimator for low value of q ( 20 ü q ) is strongly 105 

affected by the low frequency counts. This is mainly because the observed rare species that 106 
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produce low frequencies carry nearly all information about the undetected species and play an 107 

important role in almost all statistical inferences in diversity estimation.   108 

However, unlike macro-community ecological data, the low frequency counts, especially 109 

singletons from high-throughput DNA sequencing, are subject to various types of sequencing 110 

errors at different stages of processing (Quince et al., 2009; Huse et al., 2010; Quince et al., 2011). 111 

Some sequences may be misclassified as new taxa, and thus are misclassified as singletons. 112 

Consequently, the observed singletons are greatly inflated and can comprise more than 60% of 113 

taxa in a sample (Buee et al., 2009). Since singletons play crucial roles in both asymptotic and 114 

non-asymptotic analyses described above, our suggested approaches will be seriously affected if 115 

the inflated singleton count is not corrected. A wide range of methods have been developed to 116 

reduce or correct sequencing errors (Buee et al., 2009; Quince et al., 2011) at the 117 

bioinformatics-processing stage. Without knowledge of the sources of measurement errors, 118 

statistical sampling-based methods were also recently proposed to correct the number of spurious 119 

singletons and estimate diversity. Bunge et al. (2012; 2014) proposed a parametric mixture model 120 

and a method using �left-censored� data; Willis and Bunge (2014) proposed an approach using the 121 

ratio of two successive frequency counts. These pioneering statistical approaches generally require 122 

different parametric assumptions about the sampling models or about the functional form of the 123 

ratio of frequency counts. Some of these parametric assumptions may not be reliably tested due to 124 

limited microbial data, and different communities may not be compared due to different 125 

parametric assumptions.  126 

In this paper, we propose for the first time a novel nonparametric approach to estimate the 127 

true number of singletons in the presence of sequencing errors. We derive here a relationship 128 

between the expected frequency of singletons and the expected frequencies of doubletons, 129 

tripletons and quadrupletons, based on a modified Good�Turing frequency formula originally 130 
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developed by the founder of modern computer science Alan Turing, and I. J. Good (1953; 2000). 131 

Our estimator of singleton count is thus in terms of the observed frequency counts of doubletons, 132 

tripletons and quadrupletons, provided these three frequency counts are reliable. Simulation results 133 

are reported to demonstrate an important finding about our proposed singleton count estimator. 134 

That is, when there are no sequencing errors and sample sizes are reasonably large, our estimator 135 

differs from the true singleton count only to a limited extent; when there are sequencing errors, our 136 

estimator is substantially lower than the observed singleton count. Therefore, the discrepancy 137 

between the estimated and the observed singleton counts can also be used to assess whether 138 

sequencing errors were present or not in the observed data. 139 

Throughout the paper, �adjusted data/estimators� refer to those with the observed singleton 140 

count being replaced by the estimated count (the observed singleton count is discarded), whereas 141 

�original or observed data� refer to the observed data with possibly spurious singletons. To 142 

quantify and compare microbial diversity, here we propose applying both non-asymptotic and 143 

asymptotic analyses to the adjusted data whenever the singleton count is uncertain in measurement. 144 

That is, for adjusted data, we present seamless sample-size- and coverage-based rarefaction and 145 

extrapolation sampling curves of Hill numbers (focusing on measures of q=0, 1, and 2) and a 146 

continuous diversity profile estimator. Sequencing data from viral metagenomes (Allen et al., 2011; 147 

Allen et al., 2013) are used for illustration. The generalization of our methods to phylogenetic 148 

diversity is discussed. 149 

 150 

METHODS 151 

Model framework based on Hill numbers 152 

Assume in a community that there are S species indexed by S...,,2,1 , where S is an 153 
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unknown parameter. Let pi be the unknown species relative abundance of the ith species or 154 

detection probability of the ith species in any randomly observed individual, Si ...,,2,1ý , 155 

õ ý ýS

i ip
1

1, and iX be the number of individual of ith species detected in the sample of size n. 156 

Let kf  (abundance frequency counts), nk ...,,2,1ý , be the number of species that are observed 157 

exactly k times or with k individuals in the sample. Here, the unobservable 0f  denotes the 158 

number of undetected species in the sample; 
1f  denotes the number of singletons and 

2f  159 

denotes the number of doubletons observed in the sample.  160 

Given a species relative abundance set }...,,,{ 21 Sppp , the Hill number of order q is defined 161 

as:  162 

.0,

)1/(1

1

ó÷
ø
ö

÷
ø
öý



ý
õ qpD

q
S

i

q

i

q

  

(1) 163 

The measure for q=0 counts species equally without regard to their relative abundances. The 164 

measure for q=1 counts individuals equally and thus counts species in proportional to their 165 

abundances; the measure 
1
D can be interpreted as the effective number of common species in the 166 

community. The measure for q=2 discounts all but the dominant species and can be interpreted as 167 

the effective number of dominant species in the community. Hill (1973), Tóthmérész (1995), 168 

Gotelli and Chao (2013), Doll et al. (2013), and others suggested that biologists should use all the 169 

information contained in their data, by plotting the diversity as a continuous function of q≥0. If 170 

profiles of two communities do not cross, then one of the assemblages is unambiguously more 171 

diverse than the other. If they cross, only statements conditional on q can be made about their 172 

ranking. In most applications, the diversity profiles are plotted for all values (including 173 

non-integers) of q from 0 to q=3 or 4, beyond which it generally does not change much. Thus, our 174 

diversity profile is mainly focused on the range of 30  q .  175 
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 176 

Modified Good–Turing frequency formula 177 

The original Good�Turing frequency formula was developed during World War II 178 

cryptographic analyses by Alan Turing and I. J. Good. Turing never published the theory but gave 179 

permission to Good to publish it; see (Good, 1953; Good & Toulmin, 1956; Good, 2000). The 180 

Good�Turing frequency theory can be formulated as follows: For those species that appeared r 181 

times, ...,1,0ýr , in a sample of size n, how one can estimate the true mean relative abundance αr 182 

of those species. Good and Turing focused on the case of small r, i.e., rare species (or rare code 183 

elements, in Turing�s case). Mathematically, r

S

i iir frXIp /)(
1õ ý ýý , where I(A) is the indicator 184 

function, i.e., I(A) = 1 if the event A occurs, and 0 otherwise. Ecologists have been using the 185 

sample fraction r/n to infer αr, but the Good�Turing frequency formula states that αr should be 186 

estimated by r
*
/n, where ./)1( 1

*

rr ffrr ý  That is, their estimator is   187 

,...1,0,
)1(~

*

1 ýú


ý  r
n

r

f

f

n

r

r

r
r , (2a) 188 

Chiu et al. (2014) modified the Good�Turing estimator to obtain a more accurate formula: 189 

                                ,...1,0,
)1()(

)1(
�

1

1 ý



ý



 r
frfrn

fr

rr

r
r . (2b) 190 

This modified formula will be used below in deriving our estimator of the true singleton count.  191 

 192 

Singleton count estimation 193 

In the Chao1 lower bound of species richness (1984), the zero-frequency count is estimated 194 

by the frequencies of singletons and doubletons. Applying a similar concept and derivation, we 195 

propose below an estimator of singleton count. Given },...,,{ 21 Sppp , a general expectation 196 
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formula for the k-th frequency count is: 197 
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1
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Based on this formula, the Cauchy-Schwarz inequality 199 

2

1
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leads to 201 

 

2
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which implies 203 

)()1(3

)]()[2(2
)(

3

2

2
1

fEn

fEn
fE




ó .   (4a) 204 

Replacing the expectation terms by observed data, we obtain a preliminary lower bound for the 205 

true singleton frequency count:   206 

3

2

2
1

)1(3

))(2(2~

fn

fn
f




ý .  (4b) 207 

To obtain a more accurate estimator, we evaluate the magnitude of the bias of the preliminary 208 

lower bound in Equation (4b) as 209 

)()1(3

)]()[2(2
)()

~
(bias

3

2

2
11

fEn

fEn
fEf




û .                                210 

Using the definition of αr in the Good�Turing frequency formula, we obtain the following two 211 

approximation formulas: 212 
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Substituting the above two approximations into the bias formula, we obtain the magnitude of bias:   215 

)(
11

1

2
)

~
(bias 2

3

3

2

2
1 fE

n
f ÷÷

ø

ö
÷÷
ø

ö 
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
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. 216 

The right hand side of the above formula will be positive for reasonably large sample size, because 217 

species that are observed three times in a sample should have a larger mean abundance than that of 218 

doubletons (i.e., 3 is larger than α2). Applying the modified Good�Turing estimates in (2b) for α3 219 

and α2, we then obtain an estimator of the true number of singletons in terms of ),,( 432 fff for 220 

large sample size n:  221 

÷÷
ø

ö
÷÷
ø

ö
ý

4

3

3

2
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3

2

2
1

43
2

3

2�
f

f

f

f
f

f

f
f .  (5) 222 

When there are spurious singletons, we can adjust the Chao1 estimator (Chao, 1984) by 223 

replacing the observed singleton count f1 with the estimated singleton count 1
�f . Then we have the 224 

Chao1 estimator of species richness based on the adjusted data:  225 

2

2

1
11adjChao1

2

�)1(��
f

f

n

n
ffSS obs


ý ,              (6a) 226 

where Sobs denotes the number of species in the original data. When f2 = 0, a bias-corrected 227 

estimator is suggested:  228 

)1(2

)1�(�
��

2

11
11

*

adjChao1 


ý
f

ff
ffSS obs . (6b) 229 

The variance of the adjusted Chao1 estimator and the corresponding 95% confidence intervals via 230 

a log normal transformation can be obtained using similar derivations as those for the classic 231 

Chao1 estimator (Chao, 1987). 232 
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 233 

Non-asymptotic approach: rarefaction and extrapolation based on 234 

adjusted data 235 

It is well known that species richness based on sampling data is highly dependent on sample size 236 

and sample completeness (Colwell & Coddington, 1994). Chao et al. (2014) showed that empirical 237 

Shannon diversity is moderately dependent and that Simpson diversity is weakly dependent on 238 

sample size and inventory completeness. They proposed two standardization methods for Hill 239 

numbers as described below to compare non-asymptotic diversities across multiple assemblages. 240 

For each type of standardization, we here mainly focus on the three measures of q=0, 1 and 2 241 

based on the adjusted data.  242 

(1) Sample-size-based rarefaction and extrapolation up to a maximum size. For each diversity 243 

measure, we standardize all samples by estimating diversity for a standard sample size, which can 244 

be smaller than an observed sample (traditional rarefaction) or larger than an observed sample 245 

(extrapolation). Then we construct for each sample an integrated rarefaction and extrapolation 246 

sampling curve as a function of sample size. For species richness, the size can be extrapolated at 247 

most to double or triple the minimum observed sample size. For Shannon diversity and Simpson 248 

diversity, if data are not too sparse, the extrapolation can be reliably extended to infinity to attain 249 

the estimated asymptote given in Equation (7).  250 

(2) Coverage-based rarefaction and extrapolation up to a maximum coverage. Chao and Jost 251 

(2012) proposed standardizing samples by matching their sample completeness, which is measured 252 

by sample coverage, an objective measure of sample completeness due to Turing and Good (1953; 253 

2000). The sample coverage of a given sample is defined as the fraction of the individuals in an 254 

assemblage that belong to the species observed in the sample. Contrary to intuition, sample 255 
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coverage for the observed sample, rarified samples, and extrapolated samples can be accurately 256 

estimated by the observed data themselves. The coverage-based rarefaction and extrapolation 257 

curve plots the diversity estimates as a function of sample coverage up to a maximum coverage. 258 

For species richness, the maximum coverage is selected as the coverage of the maximum size used 259 

in the sample-size-based sampling curve. For Shannon diversity and Simpson diversity, if data are 260 

not sparse, the extrapolation can often be extended to the coverage of unity to attain the estimated 261 

asymptote given in Equation (7).  262 

Chao et al. (2014) introduced a bootstrap method to construct 95% confidence intervals 263 

associated with each estimated diversity measure. Generally, for any fixed sample size or any 264 

degree of completeness in the comparison, if the 95% confidence intervals do not overlap, then 265 

significant differences at a level of 5% among the expected diversities (whether interpolated or 266 

extrapolated) are guaranteed. However, overlapped intervals do not guarantee non-significance 267 

(Colwell et al., 2012); in this case, data are inconclusive.  268 

The sample-size-based approach plots the estimated diversity as a function of sample size, 269 

whereas the corresponding coverage-based approach plots the same diversity with respect to 270 

sample coverage. Therefore, the two types of sampling curves can be bridged by a sample 271 

completeness curve, which shows how the sample coverage varies with sample size and also 272 

provides an estimate of the sample size needed to achieve a fixed degree of completeness. This 273 

curve and all the rarefaction and extrapolation estimators along with their confidence intervals can 274 

be obtained using R package �iNEXT� which can be also downloaded from Anne Chao�s website 275 

http://chao.stat.nthu.edu.tw/blog/software-download/.  276 

 277 
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Asymptotic approach: diversity profile estimation based on adjusted 278 

data 279 

The Chao and Jost (2015) diversity profile estimator based on the adjusted singleton count 1
�f  280 

and the original non-singleton frequency counts can be expressed as  281 
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 288 

The estimator of order q in each profile represents the asymptote in the rarefaction and 289 

extrapolation curves described above. To obtain the profile estimator and the corresponding 95% 290 

bootstrap confidence interval, we provide R code (Supplemental Text S1) which is a modified 291 

version from the script provided in Chao & Jost (2015). We consider the three special cases of q=0, 292 

1 and 2 below. 293 

For q=0, the estimator in Equation (7) reduces to the adjusted Chao1 estimator given in 294 

Equation (6a). Thus, it is generally a minimum number of species and thus cannot be used for 295 

ranking or comparing multiple communities. For q=1, the estimation of the Shannon diversity 296 
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from incomplete samples is surprisingly nontrivial and has been extensively discussed in many 297 

research fields; see (Chao, Wang & Jost, 2013) for a review and a low-bias estimator. The 298 

estimator (7) for q=1 reduces to their Shannon diversity estimator (given below), which can be 299 

compared across communities.  300 
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This estimator greatly reduces the negative bias associated with the empirical Shannon diversity.  302 

For q=2, the Simpson diversity only counts dominant ones, and dominant species always appear in 303 

samples and undetected classes are discounted. Thus the Simpson diversity can often be accurately 304 

measured and compared across multiple communities. The estimator (7) for q=2 becomes the 305 

nearly unbiased estimator of Simpson diversity (Gotelli & Chao, 2013):  306 
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Notice that singleton count is not involved in the above formula, but the sample size n is affected 308 

by the adjusted number of singleton count. Consequently, the effect is much less pronounced than 309 

that for measures of q=0 and 1.  310 

 311 

SIMULATION RESULTS  312 

Since both non-asymptotic and asymptotic analyses depend on the quality of the estimated 313 

singleton count, it is essential to investigate the performance of the proposed estimator in Equation 314 

(5). We conducted a simulation by generating data from six species abundance distributions with 315 

various degrees of heterogeneity in species relative abundances (details are provided in 316 

Supplemental Text S2). In each model, we fixed the number of species at S=2000 to mimic 317 

microbial communities. Then for each given model, we considered a range of sample sizes (n = 318 
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2000 to 10000 in an increment of 2000).  319 

For each combination of abundance model and sample size, we generated two types of data: 320 

(i) true data without sequencing errors, and (ii) spurious data with a sequencing error rate of 10%, 321 

i.e., there was 10% chance that a sampled individual was misclassified to a new species and thus 322 

became a spurious singleton. In Fig. 1, we show the plots of the average values (over 1000 323 

simulation trials) of three singleton counts as a function of sample size. The three singleton counts 324 

include those obtained from the true data, spurious data, and our proposed estimation method. The 325 

pattern revealed by these plots is summarized below.  326 

Fig. 1 reveals that the number of singletons for the true data (dotted curve in each panel) 327 

generally declines with sample size when sample size becomes sufficiently large, whereas the 328 

number of singletons for spurious data (dashed curve in each panel) always increases with sample 329 

size, revealing a drastically different pattern; see Dickie (2010) for a similar finding. This pattern 330 

can be used to detect whether sequencing error exists in the original data when an empirical 331 

accumulation curve for the singleton count can be recorded in the data-collecting procedures. 332 

Simulation results also show that our estimator of singleton count generally matches closely 333 

the true number of singletons (solid line in each panel), although it exhibits negative bias when 334 

sample size is relatively small especially when species abundances are highly heterogeneous. 335 

These simulation results thus imply (i) when there are no sequencing errors (so that the dotted 336 

curves represent the singleton counts for data), our estimator differs only to a limited extent from 337 

the true data, yielding almost the same diversity inference; (ii) when there are sequencing errors 338 

(so that the dashed curves represent the singleton counts for data), our estimator can greatly reduce 339 

the raw singleton count and make proper correction. Therefore, the discrepancy between our 340 

proposed estimator of singleton count and the singleton count from the observed data can be used 341 

to assess whether sequencing errors were present in data processing. Moreover, this implies that 342 
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whenever the singletons are uncertain or in doubt, it is worth applying our proposed estimator of 343 

singleton count. More simulation results on the effect of spurious singletons on the estimated 344 

asymptotes of diversities are provided in Supplemental Text S2.  345 

 346 

APPLICATION RESULTS 347 

We next present the application results. A number of data sets on frequency counts of contig 348 

(contiguous groups of sequences) spectra of viral phage metagenomes from similar or different 349 

environments were analyzed in Allen et al. (2013). We select two samples with different 350 

environments to illustrate the use of our methods: one sample includes the pooled contig spectra 351 

from seven non-medicated swine feces, and the other sample includes the pooled contig spectra 352 

from four reclaimed fresh water samples. For simplicity, these two samples/viromes are 353 

respectively referred to as �swine feces� sample/virome and �reclaimed water� sample/virome in 354 

the following analysis. The frequency counts for the two samples originally provided in the 355 

additional file of Allen et al. (2013) are reproduced in Table 1. The empirical and estimated 356 

diversities are shown in Table 2.  357 

358 
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 359 

Table 1. Frequency counts on contig spectra of phage metagenomic data (Allen et al., 2011; Allen 360 

et al., 2013).  361 

Swine feces sample = pooled data from seven swine non-medicated feces; 362 

Reclaimed water sample = pooled data from four reclaimed water samples; 363 

fk = number of taxa with k sequences in the original data; 364 

1
�f = estimated number of singletons based on Equation (5); 365 

Adj. n = sample size based on the adjusted data (i.e., the original data with the observed singleton 366 

count being replaced by the estimated value).  367 

 368 

 369 

Sample 

Original 

n 

Adj. 

n 

f1 1
�f f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

Swine 

feces 

9988 4974 8025 2831 605 129 41 16 8 4 2 1 1 1 0 0

Reclaimed 

water 

9973 4092 7986 2105 518 129 50 24 12 7 5 3 2 1 1 1

 370 

 371 

372 
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 373 

Table 2. Empirical diversities and the estimated asymptotes of diversities for the phage 374 

metagenomic data given in Table 1. CI = confidence interval. The estimated asymptotes are 375 

computed from the adjusted data (i.e., the original data with the observed singleton count 376 

being replaced by the estimated value given in Table 1) 377 

 378 

Sample Diversity 

Original

empirical

diversity

Adjusted

empirical 

diversity

Estimated 

asymptote 

of diversity

SE 

95%  

lower 

CI 

95% 

upper 

CI 

Swine 

feces 

 

Species 

richness 

(q = 0) 

8833 3639 10261 376 9565 11039

Shannon 

diversity 

(q = 1) 

8289 3250 9081 203 8684 9479 

Simpson 

diversity 

(q = 2) 

7348 2742 6404 180 6051 6757 

        

Reclaimed 

water  

 

Species 

richness 

(q = 0) 

8739 2858 7134 273 6632 7703 

Shannon 

diversity 

(q = 1) 

8066 2440 5849 130 5595 6104 

Simpson 

diversity 

(q = 2) 

6817 1922 3625 116 3398 3852 

 379 
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In the swine feces original data, there were 8833 taxa among 9988 individuals (sequences); 380 

the number of singletons was f1 =8025, and the number of doubletons was f2 =605. In the 381 

reclaimed water data, there were 8739 taxa among 9973 individuals, and the first two frequency 382 

counts are f1 =7986 and f2 =518. In these two original samples, most of the frequencies are 383 

concentrated on singletons. Using Equation (5), we obtain an estimated singleton count 2831 for 384 

swine feces sample, and 2105 for reclaimed water sample. Thus, the adjusted sample sizes are 385 

declined to 4974 and 4092 respectively. For each sample, the estimated singleton count is 386 

substantially less than the observed singleton count, revealing sequencing errors were present. 387 

Consequently, the Chao1 lower bounds 62057 and 70299 respectively for the original data are 388 

greatly inflated due to spurious singletons. All the following analyses are based on the adjusted 389 

data, unless otherwise stated.  390 

In Fig. 2, we plot the sample completeness curve as a function of sample size. The sample 391 

completeness of the adjusted swine feces sample is 41%, which is lower than that for the adjusted 392 

reclaimed water sample, 48.6%. When the sample size is extrapolated to a size of 10000 393 

(approximately double the adjusted sample size for swine feces), the coverage of the swine feces 394 

sample is increased from 41.0% to 62.9%, whereas the coverage of the reclaimed water sample is 395 

increased from 48.6% to 74.7%. For any standardized sample size, Fig. 2 shows that the sample 396 

completeness of the swine feces sample is lower than that for the reclaimed water sample of the 397 

same size. 398 

For non-asymptotic analysis, we present in Fig. 3 the sample-size- and coverage-based 399 

rarefaction and extrapolation curves along with 95% confidence intervals in Fig. 3 for three 400 

measures: q=0, 1 and 2. The sample-size-based sampling curve is extrapolated up to a maximum 401 

size of 10000, whereas the coverage-based sampling curve is extended up to the coverage of the 402 
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size 10000, i.e., the maximum coverage is up to 62.9 % for the swine feces sample and 74.7% for 403 

the reclaimed water sample.  404 

All plots in Fig. 3 exhibit a consistent pattern, with the diversity curve for the swine feces 405 

samples lying above the curve of the reclaimed water sample. In all plots, the 95% confidence 406 

intervals for the two samples in any rarefaction/extrapolation curve are disjoint, signifying 407 

significant difference. As stated earlier, the extrapolation for Shannon and Simpson diversity, but 408 

rarely species richness, can often be reliably extended to infinity or complete coverage to reach the 409 

asymptotic diversity estimate. Therefore, for Shannon diversity (common taxa richness) and 410 

Simpson diversity (dominant taxa richness), data conclude that the swine feces virome is 411 

significantly more diverse than the reclaimed water virome. This is valid not only for the 412 

standardized sample size and sample coverage values plotted in Fig. 3, but also for entire viromes. 413 

(This is also supported by the asymptotic analysis below.) For taxa richness, data support the 414 

conclusion up to a standardized 62.9% fraction of each virome (the upper right panel in Fig. 3). 415 

Beyond that, data do not provide sufficient information for comparison. This is because the 416 

asymptotic species richness estimator is only a lower bound (as opposed to point estimates for the 417 

other two asymptotic diversities).  418 

For the asymptotic analysis, we plot the empirical and estimated asymptotic diversity profiles 419 

along with 95% confidence intervals in Fig. 4 when q is between 0 and 3. The estimated 420 

asymptotes of diversities for the special cases of q= 0, 1 and 2 are shown in Table 2 and also 421 

shown next to an arrow at the right-hand end of each rarefaction/extrapolation plot in Fig. 3. The 422 

empirical diversities based on the original spurious data and for the adjusted data (Table 2 and Fig. 423 

4) imply that the two viromes have limited difference in each of the three measures. In contrast, 424 

the plots in Fig. 4 reveal that for the asymptotic Shannon diversity the swine feces virome is 425 

substantially more diverse than the reclaimed water virome. A similar conclusion is also valid for 426 
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the Simpson diversity, confirming our earlier statement in the preceding paragraph. Table 2 and 427 

Fig. 4 show that the adjusted Chao1 estimator in Equation (6a) gives an estimate of 10261 taxa for 428 

swine feces and 7134 taxa for reclaimed water virome. Each is five times that obtained from 429 

CatchAll (Allen et al., 2013). As discussed earlier, since the adjusted Chao1 estimate represents 430 

only minimum richness, it cannot be used to rank the taxa richness of the two entire viromes. 431 

Similarly, for any value q close to zero, our estimated asymptotes also represent lower bounds 432 

only. So we generally cannot compare the estimated low-order asymptotes of diversities including 433 

taxa richness across multiple communities; see the next section for more discussions. In 434 

Supplemental Table S1, we also give all the estimated asymptotes of diversities for other data sets 435 

provided in Allen et al. (2013).  436 

437 
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 438 

 439 

Fig 1. Plots of the average values of three singleton counts as a function of sample size.  440 

The three singleton counts include those obtained from the true data, spurious data, and the 441 

estimated method based on Equation (5). All values are averaged over 1000 simulation trials 442 

under six species abundance models with various degrees of heterogeneity of the species 443 

abundances, as reflected by the CV value (the ratio of the standard deviation over the mean); see 444 

Supplemental Text S2 for details.   445 

446 
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 447 

 448 

Fig 2. The sample completeness curve based on the adjusted data.  449 

Plots of sample coverage for rarefied samples (solid line) and extrapolated samples (dashed line) 450 

as a function of sample size based on the sample frequency counts of contig spectra from seven 451 

swine fecal viromes and the sample from four reclaimed fresh water viromes (Allen et al., 2013). 452 

Data are given in Table 1. The original singleton count is replaced by the estimated count given 453 

in Table 1. The adjusted samples are denoted by solid dots. The 95% confidence intervals 454 

(shaded areas) were obtained by a bootstrap method based on 200 replications. Each of the two 455 

curves was extrapolated up to 10000, approximately double the adjusted size of the swine feces 456 

sample. The numbers are the sample coverage estimates for the adjusted sample and for the 457 

sample of size 10000. 458 
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 459 

Fig 3. Non-asymptotic analysis: the rarefaction and extrapolation sampling curves based on 460 

the adjusted data. Comparison of sample-size-based (left panels) and sample-coverage-based 461 

(right panels) rarefaction and extrapolation for species richness (upper panels), Shannon 462 

diversity (middle panels) and Simpson diversity (lower panels) based on the sample frequency 463 

counts of contig spectra from seven swine fecal viromes and the sample from four reclaimed 464 

fresh water viromes (Allen et al., 2013). Data are given in Table 1. The original singleton count 465 

is replaced by the estimated count given in Table 1. The adjusted samples are denoted by solid 466 
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dots. Rarefied segments are denoted by solid curves and extrapolated segments are denoted by 467 

broken curves. Extrapolation is extended up to a maximum size of 10000. 468 

Sample-coverage-based extrapolation is extended to the coverage value of the corresponding 469 

maximum sample size (i.e., 62.9% for swine feces viromes, and 74.7% for reclaimed water 470 

viromes; see Fig. 2). The 95% confidence intervals (shaded areas) are obtained by a bootstrap 471 

method based on 200 replications. The estimated asymptotic diversity for each curve is shown 472 

next to the arrow at the right-hand end of each curve. 473 

474 
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 475 

 476 

Fig 4: Asymptotic analysis: the asymptotic diversity profile as a function of order q based on 477 

the adjusted data. The empirical (dashed lines) and estimated (solid lines) diversity profiles for 478 

q between 0 and 3 based on the sample frequency counts of contig spectra from seven swine 479 

fecal viromes and the sample from four reclaimed fresh water viromes (Allen et al., 2013). Data 480 

are given in Table 1. The original singleton count is replaced by the estimated count given in 481 

Table 1. The plots for the swine feces sample are in black; the plots for the reclaimed water 482 

sample are in red. The 95% confidence intervals (shaded areas) are obtained by a bootstrap 483 

method based on 200 replications. The numbers (black for swine feces sample, and red for 484 

reclaimed water sample) show the empirical and estimated diversities for q=0, 1 and 2.  485 

 486 

487 
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CONCLUSION AND DISCUSSION 488 

Whenever the singletons are uncertain or in doubt in sequencing data, it is worth applying our 489 

proposed estimator of the true singleton count; see Equation (5). The discrepancy between our 490 

estimated singleton count and the observed count can be used to infer whether sequencing errors 491 

were present in data processing. Using the estimated number of singleton count and the original 492 

non-singleton frequency counts, we can quantify and compare microbial diversity by 493 

non-asymptotic analysis (based on the plots of the sample-size- and coverage-based rarefaction 494 

and extrapolation sampling curves) and asymptotic analysis (based on the plot of a continuous 495 

asymptotic diversity profile estimator). Illustrative plots for sequencing data from viral 496 

metagenomes are shown in Fig. 3 (the non-asymptotic analysis) and Fig. 4 (the asymptotic 497 

analysis).  498 

In hyper-diverse microbial communities, unless strong assumptions or parametric models are 499 

made, sampling data often do not provide sufficient information to accurately infer the number of 500 

undetected taxa in the sample. Thus it is statistically infeasible to provide reliable estimates of taxa 501 

richness in the entire community. Our estimated species richness (q= 0 measure in our asymptotic 502 

analysis) theoretically is a lower bound. This implies that fair comparison of species richness 503 

among multiple communities is not statistically feasible. In this case, fair comparison of taxa 504 

richness across multiple assemblages can only be made by standardizing sample completeness (i.e., 505 

comparing taxa richness for a standardized fraction of population) based on coverage-based 506 

rarefaction and extrapolation sampling curves. However, when the diversity order q is away from 507 

0 (say, q ≥ 1), rare species have less impact on these diversities, and we generally can infer these 508 

diversities up to asymptotes and compare them across communities; see our illustrative example 509 

for interpretations. Thus, in the inferences of hyper-diverse microbial diversity, a perspective from 510 
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Shannon diversity and Simpson diversity, instead of taxa richness, is more promising and more 511 

practical because accurate estimation of taxa richness is almost unattainable.    512 

Our proposed estimator of singleton count is in terms of f2, f3 and f4 provided these counts are 513 

reliable. A slight generalization of our method can be applied to estimate any frequency count.    514 

For example, suppose singletons and doubletons are both uncertain, we can similarly derive an 515 

estimator of doubleton count based on f3, f4 and f5 following exactly the same approach proposed 516 

in this paper. Subsequently, Equation (5) then gives an estimate of singleton count based on the 517 

estimated doubleton count, f3 and f4. Consequently, our proposed non-asymptotic and asymptotic 518 

analyses can be similarly applied to data with the first two frequency counts being replaced by the 519 

estimated values. However, the sampling variance of the estimated diversity would be unavoidably 520 

increased.  521 

 Finally, we briefly discuss the phylogenetic diversity (PD) because of its broad interest and 522 

applications (Mattin, 2002; Lozupone & Knight, 2005) in microbial studies. In this paper, all taxa 523 

are treated as if they were equally distinct and thus differences among sequences are not 524 

considered. Faith�s PD (1992) is the most widely used PD metric to take into account phylogenetic 525 

differences among taxa. Faith�s PD is defined as total sum of branch lengths of a phylogenetic tree 526 

connecting all focal species. Based on sampling data, Chao et al. (2015) recently proposed a 527 

non-parametric estimator of the true PD (PD of the entire community, i.e., the observed PD in the 528 

sample plus the un-detected PD). When sequencing error is present, the inflated singleton count 529 

will also seriously affect the estimation. More investigation is needed to tackle sequencing error 530 

and to adjust the PD estimator. Since Faith�s PD does not incorporate taxa abundances, Chao, Chiu 531 

and Jost (2010) developed a class of abundance-sensitive PD measures which generalize Faith�s 532 

PD to incorporate taxa abundances, and also extend Hill numbers to take into account 533 

phylogenetic relationships among taxa. How to extend the proposed analyses presented in this 534 
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paper (the asymptotic and non-asymptotic analyses) to the class of abundance-sensitive PD is a 535 

worthwhile topic of future research.   536 
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