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Abstract:  15 

As nearshore ecosystems are increasingly degraded by human activities, active restoration is a 16 

critical strategy in ensuring the continued provision of goods and services by coastal habitats. After 17 

being absent for nearly six decades, over 1800 ha of the foundational species eelgrass (Zostera 18 

marina L.) has been successfully reestablished in the coastal bays of the mid-western Atlantic, USA, 19 

but nothing is known about the recovery of associated animal communities in this region. Here, we 20 

determine the patterns and drivers of functional recovery in epifaunal invertebrates associated 21 

with the restored eelgrass habitat from 2001-2013. After less than a decade, the invertebrate 22 

community in the restored bed was richer, more even, and exhibited greater variation in functional 23 

traits than a nearby reference bed. Analysis of a suite of environmental and physical variables using 24 

random forests revealed these differences were primarily due to the increasing area and density of 25 

eelgrass directly attributable to ongoing restoration efforts. Based on analysis of functional traits, 26 

we propose that the rapid life histories of constituent organisms may have played a key role in their 27 

successful recovery. We also speculate that diverse epifaunal communities may have contributed to 28 

the restoration success through a predefined mutualism with eelgrass. Given that restored eelgrass 29 

now make up 32% of total seagrass cover in the mid-Atlantic coastal bays, this restoration may 30 

conserve regional biodiversity by providing new and pristine habitat, particularly given the general 31 

decline of existing eelgrass in this region. 32 

Keywords: seagrass, restoration, functional traits, grazers   33 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1346v4 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016



3 
 

Introduction 34 

 Coastal habitats are becoming increasingly impacted through anthropogenic forcing 35 

(Halpern et al. 2008), leading to loss of important and valuable services such as food production, 36 

pollution control, shoreline buffering, and carbon storage (Barbier et al. 2011). At the same time, 37 

human impacts are driving the rapid and irreversible loss of marine biological diversity (McCauley 38 

et al. 2015). As biodiversity has been generally shown to promote ecosystem functioning in marine 39 

systems (Gamfeldt et al. 2015), species extinctions may further erode the ability of nearshore 40 

habitats to provide critical goods and services. Thus, there is strong incentive within the 41 

conservation movement to protect and manage for high biodiversity in addition to protecting 42 

habitat itself, particularly for marine realms (Palumbi et al. 2008; Duffy et al. 2016). 43 

More recently, researchers have broadened their definition of biodiversity to incorporate 44 

the functional roles of species within an ecosystem, represented by their functional traits: 45 

measurable characteristics of individual organisms relating to their morphology, physiology, 46 

ecology, behavior, and life history (Díaz et al. 2013). Functional diversity, then, captures the 47 

breadth of variation in functional traits across all species within an assemblage. The application of 48 

functional diversity accounts for the degree of redundancy within an assemblage (Rosenfeld 2002), 49 

and thus can be used to refine conservation priorities by identifying areas of particular 50 

vulnerability (Micheli and Halpern 2005), high productivity (Duffy et al. 2016), or that harbor 51 

unique or functionally varied assemblages (Devictor et al. 2010; Stuart-Smith et al. 2013). By 52 

specifying how organisms perform and interact with one another, traits can be also used to 53 

mechanistically link pattern and process (Díaz and Cabido 2001), generating more accurate and 54 

generalizable predictions for the ecosystem consequences of species losses (Mouillot, Bellwood, et 55 

al. 2013).  56 
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In addition to conserving current coastal habitats and their biological diversity, there have 57 

been increasing efforts to actively restore lost or degraded systems, including seagrasses (Orth et 58 

al. 2006), marshes (Zedler 2000), mangroves (Ellison 2000), and oyster and coral reefs (Mumby 59 

and Steneck 2008; Beck et al. 2011). A recent meta-analysis revealed that aquatic restorations have, 60 

on average, recovered 86% of their biodiversity and 80% of their ecosystem services relative to 61 

unrestored reference systems (Benayas et al. 2009). These values, however, underscore the general 62 

trend that most restored systems have failed to fully recover their pre-disturbance structure and 63 

functioning (Lotze et al. 2011; Duarte et al. 2015). Moreover, many assessments of recovery have 64 

focused on quantifying the cover or abundance of the restored habitat itself (Lotze et al. 2011; 65 

Duarte et al. 2015), and not the abundance or diversity of the organisms that use it (but see 66 

Fonseca, Meyer & Hall 1996; Coen et al. 2007), even though it is these communities that underpin 67 

many of the services provided by coastal ecosystems (Duffy et al. 2014). Finally, only a handful of 68 

studies have integrated functional trait information into their assessment of faunal communities 69 

associated with restored ecosystems, which may better reflect the recovery of the restored systems 70 

by focusing on what constituent organisms are doing, as opposed to replicating some historical – 71 

and potentially presently less relevant – community composition (Tullos et al. 2009; Barnes et al. 72 

2014; Nordström et al. 2015). 73 

One of the most successful examples of coastal restorations has been eelgrass (Zostera 74 

marina L.) in the Delmarva coastal bays (Delaware, Maryland, Virginia) of the mid-western Atlantic, 75 

USA (Orth and McGlathery 2012). Eelgrass is a foundational marine angiosperm distributed across 76 

the northern hemisphere and provides a number of valuable ecosystem services, including nursery 77 

habitat, shoreline protection, and carbon storage (Barbier et al. 2011). Eelgrass habitat supports a 78 

variety of epifaunal invertebrates, including amphipods, isopods, decapods, and gastropods, which 79 

have a high secondary production (Fredette et al. 1990) but are an important link between primary 80 

producers and secondary consumers (Sobocinski and Latour 2015). The presence and diversity of 81 
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these epifauna has been implicated in the functioning of temperate seagrass ecosystems, with 82 

greater abundance and species richness generally leading to increased grazing of fouling epiphytes 83 

in numerous experimental mesocosms and field exclusions (Neckles et al. 1993; Duffy et al. 2003; 84 

Duffy et al. 2005; Whalen et al. 2013; Reynolds et al. 2014), and more recently, in a synthesis across 85 

15 field sites in the northern hemisphere (Duffy et al. 2015). Emerging evidence has also shown 86 

that variation in the functional traits of these organisms better predict epifaunal biomass, algal 87 

consumption, and transfer to higher trophic levels than species richness alone (Best et al. 2013; 88 

Lefcheck and Duffy 2015), suggesting that the functioning of eelgrass systems can, in theory, be 89 

more accurately inferred through the functional trait diversity of the grazer community. 90 

 Here, we present long-term data from two periods spanning 2001-2013 on the recovery of 91 

associated epifaunal invertebrate communities alongside the successful restoration of eelgrass 92 

habitat in the southern Delmarva coastal bays. Many of these bays had been unvegetated since the 93 

early 1930s, after the pandemic decline of eelgrass due to hurricanes and disease (Orth et al. 2010). 94 

In the late 1990s, seed-based restoration efforts began to reestablish eelgrass to the region, which 95 

at present now supports over 1800 hectares of restored meadows, with more than half occurring in 96 

a single area, South Bay (Orth et al. 2013). Despite the rapid and successful reestablishment of this 97 

foundational habitat, it remains unclear whether the epifaunal community, which plays a critical 98 

role in the maintenance and functioning of these systems, has experienced similar recovery.  99 

To address this question, we compared temporal trends in abundance, species, and 100 

functional diversity of the epifaunal community in South Bay to a nearby bed in Chincoteague Bay. 101 

The Chincoteague bed persisted through the disturbances of the 1930s to the present day, and at 102 

the time of the initial restoration, constituted the largest natural bed in the region. It thus served as 103 

a useful baseline for assessing restoration success. Drift macroalgae was also collected at each site 104 

to understand potential sources of animal recruitment to the newly restored bed. We coupled these 105 

survey data with trait, environmental, and water quality data to explore the drivers of various 106 
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aspects of community structure in both beds through time. We hypothesized that the epifauna in 107 

South Bay would initially reflect macroalgal assemblages, representing the assumed recruitment 108 

vector, and over time become more like the reference bed as the community matured. 109 

Methods 110 

Survey Sites 111 

 Two coastal lagoons were chosen for comparison: a restored bed in South Bay (37.26 N, 112 

75.84 W), and a reference bed in Chincoteague Bay (38.04 N, 75.31 W). Eelgrass had been absent in 113 

South Bay since 1933 until seed based restoration efforts began in 1997, leading to recovery of 114 

almost 1,500 hectares on what was until only recently unvegetated bottom (Fig. 1a). While eelgrass 115 

has since spread to neighboring bays through both additional seed based restoration and passive 116 

recruitment, South Bay remains the focus of that initial, successful restoration effort, and has the 117 

largest, densest, and most contiguous restored bed by a large margin (Orth et al. 2013). Because of 118 

the widespread establishment of eelgrass in South Bay, it was the ideal candidate for assessing the 119 

status of animal communities associated with the successful restoration of their habitat. In contrast, 120 

eelgrass in Chincoteague Bay recovered naturally after the pandemic decline of the 1930s, and by 121 

the late 1990s was dense and extensive. By the early 2000s, when we initiated our sampling 122 

program, Chincoteague represented the largest natural eelgrass bed in this region by a factor of 10 123 

(Orth et al. 2013), making it the de facto candidate for comparison to the restored site. At the time, 124 

Chincoteague Bay also appeared to be on a 15-year upswing in terms of total area1, implying that 125 

faunal communities present there would have had time to reach a climax state, and further 126 

solidifying its potential as a representative baseline.  127 

                                                                 
1 http://web.vims.edu/bio/sav/SegmentAreaChart.htm 
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While both South and Chincoteague Bays share generally similar environmental conditions, 128 

over the course of the survey, Chincoteague Bay has experienced declining water quality relative to 129 

South Bay (Wazniak et al. 2007), and consequently lost a considerable amount of eelgrass by 2013 130 

(Fig. 1b). However, this occurred after the initial monitoring period, and thus to maintain 131 

consistency through time, we chose to continue sampling in Chincoteague Bay and will continue to 132 

refer to it as the reference site. We note that, despite a decrease in aerial extent, remaining eelgrass 133 

in Chincoteague Bay remained dense and contiguous (Fig. 1a). More importantly for this work, the 134 

two bays are expected to harbor identical fauna based on their geographic proximity (<100 km) 135 

and known ranges of target invertebrates (Pollock 1998). 136 

Survey Methods 137 

Faunal sampling occurred in two distinct periods: 2001-2003, when eelgrass was initially 138 

colonizing South Bay and covered ~15 ha of bottom; and 2010 -2013, after the restored bed had 139 

increased to nearly 1500 ha. Sampling was conducted quarterly from May to November each year. 140 

In each bay, random samples were collected using suction sampling (Orth and van Montfrans 141 

1987). At low tide, a weighted 0.33-m2 metal cylinder was placed over a continuous stand of 142 

eelgrass. The suction head was then inserted into the top of the sampling frame and the contents in 143 

the cylinder were suctioned into a 0.8-mm mesh bag. Sampling continued for two minutes after 144 

which collection bags were sealed, returned to the laboratory, and frozen. In the laboratory, mobile 145 

epifauna were enumerated, identified to lowest possible taxon, and preserved in 90% ethyl alcohol. 146 

While the number of samples taken on any given date was dictated by the area of eelgrass available 147 

for sampling, replication was equivalent for a sampling period. 148 

Additionally, we sampled epifauna of drift macroalgae to investigate potential vectors of 149 

recruitment. Macroalgal samples were taken by gently enclosing drift algae in the general vicinity of 150 

the sampling location in fine mesh bags, and storing and processing the samples identically to the 151 

suction samples. The number of algal samples taken during each sampling date varied, with the 152 
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exact number dependent on the availability of drift macroalgae within a reasonable vicinity of the 153 

suction samples, which declined in beds that were denser and more continuous.  154 

Functional Traits 155 

 We identified nine functional traits based on their relevance to colonization potential, 156 

competitive interactions, and effects on ecosystem functioning (Table S1). Traits included 157 

indicators of defense and morphology (exoskeleton material and body plan), trophic ecology 158 

(trophic group and specific diet), body size (maximum length), habitat use (mobility and position in 159 

the water column), and life history (egg retention and development mode). These traits have been 160 

shown to discriminate among epifaunal invertebrates, and to describe and predict benthic 161 

community structure and function (Bremner et al. 2003; Bremner et al. 2006; Best et al. 2013; 162 

Lefcheck and Duffy 2015). The trait data were collected directly from peer-reviewed literature and 163 

verified using expert knowledge of the organisms. The raw trait data and a bibliography of 164 

references are found in Supplement 1. 165 

Environmental Covariates 166 

 Water quality data from 2001-2003 for South Bay was sampled monthly by the Virginia 167 

Coastal Long-Term Ecological Reserve, and from 2010-2013 by the Virginia Estuarine and Coastal 168 

Monitoring System program at the Virginia Institute of Marine Science. Physical variables were 169 

measured using a YSI 6600 EDS sensor array (YSI Inc., Yellow Springs, Ohio). Additional water 170 

samples were taken at eight separate sampling stations to quantify total suspended solids, 171 

chlorophyll-a, and phosphate concentrations. Further details can be found in (Orth et al. 2012; 172 

McGlathery and Christian 2014). Water quality data from 2001-2013 for Chincoteague Bay was 173 

collected by the National Park Service at Assateague Island National Seashore (NPS) and the 174 

Maryland Department of Natural Resources (DNR) Water Quality Monitoring Programs. Both 175 

programs recorded on-site water quality parameters, and collected samples to send to laboratories 176 

for nutrient and chlorophyll-a analyses. Further details can be found in (Wazniak et al. 2007). 177 
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Eelgrass bed extent and density in both bays were derived from aerial photography 178 

acquired annually from 2001 through 2013, except for 2005, when weather conditions prohibited 179 

photography. Black and white photography was acquired at a scale of 1:24,000 along two flight 180 

lines covering all shorelines and adjacent shoal areas of the two bays.  Aerial photography was 181 

scanned from negatives, and Z. marina bed boundaries were then directly photo-interpreted on-182 

screen while maintaining a fixed scale using ESRI ArcMap GIS software (ESRI, Redlands CA). Z. 183 

marina beds were categorized as very sparse (1-10% cover), sparse (11-40% cover), moderate (41-184 

70% cover), or dense (70-100% cover) based on a visual estimate of the percent cover. Ground 185 

surveys were conducted in the bays each year to corroborate the occurrence of Z. marina identified 186 

in the photography outside the boundaries of the seeded plots. Further details can be found in (Orth 187 

et al. 2010). 188 

Statistical Analysis 189 

 To adjust for varying sampling effort through time, we averaged all observations for a 190 

particular quarterly sampling period so that each period constituted a single replicate (e.g., 191 

Dornelas et al. 2014). This choice reduces the power of our analysis, but provides three advantages: 192 

it circumvents any potential for pseudoreplication, permits fitting of various correlation structures 193 

to address temporal autocorrelation, and allows the number of samples taken to be included as a 194 

covariate in subsequent analyses. It is well known that sampling effort increases estimates of both 195 

abundance and richness (Azovsky 2011), so including sample size as a covariate in any modeling 196 

exercise should yield less biased estimates of the predictors of interest. 197 

For each replicate, we calculated a number of community metrics. First, we averaged the 198 

number of individuals observed in each replicate to yield a measure of mean total abundance. Next, 199 

we calculated species richness (S) as the mean number of species observed, and Simpson diversity 200 

(D), which further incorporates information on species’ (mean) relative abundances. For Simpson 201 
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diversity, we converted the resulting probability values to ‘effective numbers’ of species using the 202 

transformation from (Jost 2006): 203 

 𝐷𝑒𝑓𝑓 =
1

(1 − 𝐷)
 (1) 

which obey the doubling property, and scales the values comparably with species richness. We used 204 

these two indices to construct an index of relative evenness (J), which is calculated as: 205 

 𝐽 =  
ln (𝐷)

ln (𝑆)
 (2) 

Unlike other indices of evenness, this index of evenness has been shown to independent of both 206 

richness and Simpson diversity (Jost 2010), and is bound (0, 1).  207 

For functional diversity (FD) we used the index of Rao’s quadratic entropy (Rao 1982). This 208 

index has been shown to be independent of species richness (Botta-Dukát 2005), and is calculated 209 

using the following equation: 210 

 𝑄 =  ∑ ∑ 𝑑𝑖𝑗𝑝𝑖𝑝𝑗

𝑆

𝑗=𝑖+1

𝑆−1

𝑖=1

 (3) 

where 𝑑𝑖𝑗 is the difference between species i and j based on their functional traits, 𝑝𝑖 is the relative 211 

abundance of species i, and 𝑝𝑗  is the relative abundance of species j. The differences 𝑑𝑖𝑗 are derived 212 

from any combination of functional traits using Gower’s dissimilarity measure (Gower 1971), which 213 

allows both continuous and categorical trait data to be collapsed into a single continuous distance 214 

measure. Because Rao’s Q can be maximized when fewer than all functional types are present when 215 

Gower’s distances are not ultrametric (Pavoine et al. 2005), we generated ultrametric distances 216 

using the procedure described in (Mouchet et al. 2008; Mérigot et al. 2010). In the event where 217 

species are either the same or different, 𝑑𝑖𝑗 collapses to 0 or 1 and Q = D, or Simpson diversity. 218 

Thus, Rao’s Q can also be transformed using Equation (1) to yield units that are on the same scale as 219 

Simpson diversity. We calculated two separate indices of FD: one weighted by relative abundances, 220 
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which we interpret as the functional analogue to Simpson diversity, and one based on presence-221 

absence, or the functional analogue to species richness. 222 

 Finally, to further account for variable effort, we generated rarefied estimates of species 223 

richness and Simpson Diversity using fixed-coverage subsampling (Chao and Jost 2012). This 224 

method generates a value of sample coverage (i.e., how complete the sample is) based on the 225 

number of observed singletons (species for which only 1 individual was observed), and estimates of 226 

diversity are then rarefied down to a fixed level of coverage, as opposed to a number of individuals 227 

or samples. This method results in less data loss than traditional rarefaction, and more efficiently 228 

ranks communities based on their true diversities (Chao and Jost 2012). Unfortunately, this method 229 

has not yet been extended to indices of functional diversity. Rarefied estimates were calculated 230 

using the iNEXT package in R (Hsieh et al. 2014). 231 

 Differences among the community metrics for each bay and sampling period were assessed 232 

using general linear mixed effects models with an autoregressive 1 (AR1) correlation structure 233 

corresponding to each sampling period. We additionally modeled the random variance associated 234 

with being in a particular sampling period. As mentioned previously, the number of samples 235 

collected on each date was included as a covariate to account for influence of variable effort on the 236 

community response. Both the response and sample size were log10-transformed, as the species-237 

sampling effort relationship is known to follow a power law (Azovsky 2011). Assumptions of 238 

normality of errors and homogeneity of variance were assessed visually. Pseudo-R2 values were 239 

calculated using the variance of both the fixed and random effects (conditional R2, sensu Nakagawa 240 

& Schielzeth 2012). Models were constructing using the nlme package in R (Pinheiro et al. 2015), 241 

and evaluated using the piecewiseSEM package (Lefcheck 2016).  242 

The role of environmental covariates in driving the observed patterns was then estimated 243 

using random forests (Breiman 2001). We built an ensemble of 50 trees, after which we observed 244 

no appreciable decrease in mean squared error, with ‘out-of-bag’ (OOB) permutation to estimate 245 
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importance partitioned based on Pearson correlation threshold ≥ 0.5. Each community metric 246 

(abundance, richness, etc.) was regressed against the following variables that had near complete 247 

coverage across all sampling locations and periods: year, bed location, area, and density, 248 

temperature, salinity, dissolved oxygen, pH, and water column chl-a and phosphates (as a proxy for 249 

suspended organic material). We then evaluated the importance of each predictor by quantifying 250 

the mean percent decrease in accuracy, derived from the increase in mean error across all trees in 251 

the ensemble when a given variable is randomly permuted and then challenged with the OOB data. 252 

Model parameters were optimized using the caret package (Kuhn 2015), and RFs were constructed 253 

using the randomForest package in R (Liaw and Wiener 2002). For the top predictors, we plotted 254 

bivariate correlations and tested whether the observed correlation was significantly different from 255 

zero by comparing values to a t-distribution with n – 2 degrees of freedom. 256 

We used non-metric multidimensional scaling (NMDS) to visualize differences in 257 

multivariate community structure across bays, algal vs. eelgrass samples, and through time. 258 

Because algal samples were collected differently than eelgrass samples, we used a sample-by-259 

species incidence matrix to downplay the influence of the amount of habitat or area sampled. We 260 

also ran a separate NMDS for each habitat type using relative abundances, applying a Wisconsin 261 

square-root transformation to reduce the impact of highly abundant species. To statistically test for 262 

differences among species composition through time, we conducted PERMANOVA, which 263 

partitioned variance in the community dissimilarity matrix as a function of sampling period, and 264 

used random permutations of the data to assess significance (McArdle and Anderson 2001). 265 

Separate PERMANOVAs were conducted for each bay. We performed all multivariate analyses using 266 

the vegan package (Oksanen et al. 2013).  267 

All statistical analyses were conducted in R version 3.1.2 (R Development Core Team 2015), 268 

and we held a study-wide α = 0.05 for assessing statistical significance. All data and R scripts used 269 

to conduct the analyses are provided in Supplement 1. 270 
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Results 271 

 In contrast to our expectations that the restored bed would appear more like the reference 272 

bed through time, the two were not significantly different in terms of most community metrics after 273 

only one year (Fig. 2, P > 0.05 based on output from general linear mixed effects models). The two 274 

exceptions were average abundance, which was significantly lower in South Bay during the period 275 

from 2001-2003 (Fig. 2a, P = 0.017), and functional diversity based on presence-absence, which 276 

was, on average, significantly higher (Fig. 2f, P = 0.034). The number of samples taken did not 277 

significantly influence any response during this time (P > 0.05 in all cases). Conditional R2 values 278 

ranged from 0.21–0.62, implying relatively high accuracy of these predictions, particularly for 279 

ecological data. 280 

By the early 2010s, most community metrics were actually significantly higher in the 281 

restored bed, particularly functional diversity (Fig. 2b, P = 0.031; Fig. 2c, P = 0.032; Fig. 2e-f, P < 282 

0.001). Average abundance was still significantly lower in South Bay during the later period (P = 283 

0.045), although we note the expected difference between the two was approximately 50% less 284 

than in the earlier period based on coefficients from the mixed models (β = 0.54 cf. β = 1.10). 285 

Evenness was the only index that was not significantly different between the two bays (Fig. 2d, P = 286 

0.132). Instead, this was the only variable that was more strongly predicted by sample size (P = 287 

0.007). Conditional R2 values ranged from 0.23–0.71, reinforcing once again that these models 288 

explained a substantial proportion of variance in the responses. 289 

 Random forests consistently identified bed location (restored vs. unrestored), total area and 290 

mean eelgrass density to be the top three most important predictors across all community metrics 291 

(Fig. S1). Bivariate plots revealed strong and highly significant positive correlations between area 292 

and density for almost all metrics of diversity in South Bay (Fig. 3), particularly estimated richness 293 

and Simpson diversity (Fig. 3b, c) and functional diversity weighted by relative abundance (Fig. 3f). 294 
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Chincoteague Bay showed generally weaker or sometimes opposite trends in these bivariate 295 

correlations. However, it is important to recall that random forests account for collinearity and 296 

interactions among variables, and thus the ranking reflects the importance independent of other 297 

confounding factors, while the bivariate plots in Figure 3 do not. 298 

Exploration of individual trait values revealed that assemblages in the South Bay bed 299 

generally exhibited greater variation in traits related to habitat use, life history, and morphology, 300 

particularly during the later stages of restoration (Fig. S2). Specifically, South Bay had 301 

proportionally more benthic-dwelling crawlers, with calcium carbonate exoskeletons, and external 302 

release of eggs with subsequent planktonic dispersal (Figs. S3-7). Thus, it appears that gastropods 303 

are responsible for a large proportion of the difference in functional diversity between the restored 304 

and reference beds. Even within this taxonomic group, however, richness, Simpson, and functional 305 

diversity weighted by relative abundance were all higher in South Bay during the late period (Fig. 306 

S8).  307 

Analysis of multivariate community data using non-metric multidimensional scaling and 308 

PERMANOVA revealed that the composition of the restored bed changed significantly from the 309 

early period of restoration to the late period (Fig. 4), particularly when factoring in relative 310 

abundances and re-analyzing the community data separately by habitat type (P < 0.001 based on 311 

9,999 random permutations of the data, Fig. S9b). Shifts in community composition were 312 

principally driven by declines in the relative abundances of the amphipod Batea catharinensis, the 313 

snail Astyris lunata, and the shrimp Hippolyte pleuracanthus, and by the appearance of the snail 314 

Costoanachis avara. In contrast, there were no significant changes in community structure across 315 

years in Chincoteague Bay based on relative abundances (P > 0.05, Fig. 4, Fig. S9b). Further, the 316 

changes in community structure through time did not appear to be a consequence of recruitment 317 

via drift macroalgae, with the macroalgal communities in each bay being significantly distinct from 318 

the corresponding grass beds (P < 0.001, Fig. 4, Fig. S9a).  319 
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While the full NMDS had a borderline acceptable value of stress, implying somewhat poor 320 

reproducibility of the multivariate data in two dimensions (0.26, Fig. 4), identical patterns emerged 321 

after repeated runs using different start values, and separate analyses by habitat type using relative 322 

abundances returned more acceptable values of stress (0.17 for eelgrass, Fig. S9b). Thus, the trends 323 

in Figure 4 appear to be robust to further explorations of these data, despite the higher stress value, 324 

and reinforce conclusions from independent analyses using PERMANOVA. 325 

Of the 42 species captured over the entire survey, five were found exclusively in South Bay, 326 

including three gastropod species in the genus Costoanachis, as well as the grazing snail 327 

Marshallora nigrocincta, and the detritivorous amphipod Photis macrocoxa (although this species 328 

was found only on drift macroalgae). All five of these species occupied unique parts of functional 329 

trait space, based on principal coordinates analysis of their trait values (Fig. S10). Only two species 330 

– the grazing isopod Paracerceis caudata and the detritivorous amphipod Lysianopsis alba – were 331 

found exclusively in Chincoteague Bay, and they were nearly functionally equivalent with other 332 

species (Fig. S10).  333 

Discussion 334 

 In this study, we found that the diversity of epifaunal invertebrates and their functional 335 

traits in a newly restored eelgrass bed matched, and then exceeded, values exhibited by a nearby 336 

reference bed in less than a decade (Fig. 1). Further, the rapid recovery of the epifaunal community 337 

was shown to be a direct consequence of restoration actions that encouraged the growth and 338 

expansion of the restored bed, represented by bed area and density (Fig. 3). These findings may be 339 

of particular consequence as eelgrass cover has generally declined in the region over the past two 340 

decades (Orth et al. 2013), and is likely to continue this downward trajectory without further 341 

restorative measures. The area of the reference bed, for example, declined 49% over the 12 years of 342 

the survey (Fig. 1a), as a consequence of decreasing water quality and thermal stress known to 343 
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drive eelgrass decline in the nearby Chesapeake Bay (Wazniak et al. 2007; Moore et al. 2012). In 344 

contrast, the area of the restored bed increased by 910% over the same time period (Fig. 1b), owing 345 

to better water quality, persistent restoration, and natural recruitment from the restored beds. 346 

Thus, assuming these trends continue, restored beds in an environment not challenged by poor 347 

water quality may play an increasingly vital role in providing habitat for a variety of taxa and 348 

functional forms present in the region. Indeed, restored beds now make up roughly one-third of 349 

total seagrass cover in the Delmarva coastal bays (Orth et al. 2013), They may one day even set 350 

targets for both restoration efforts in South Bay and elsewhere, and, in an ironic reversal, natural 351 

sites experiencing eelgrass loss due to declining water quality, such as Chincoteague Bay.  352 

 If many aquatic restorations fail to achieve pre-disturbance levels of diversity (Benayas et 353 

al. 2009), then why has this particular effort been so successful? Low human impacts in this region 354 

are undoubtedly a major factor. Long-term monitoring by the Virginia Coastal LTER has shown that 355 

nutrient loading and water column chlorophyll-a have been low and relatively stable across all of 356 

Virginia’s coastal bays over the past two decades (Orth and McGlathery 2012) but, as noted earlier, 357 

not in Maryland’s Chincoteague Bay (Wazniak et al. 2007). South Bay also experiences regular 358 

flushing with cooler ocean water, alleviating temperature stress that is a major driver of eelgrass 359 

die-backs in nearby regions, such as the Chesapeake Bay (Moore et al. 2012). Moreover, as the 360 

restored bed has increased in size and density, it has more effectively captured particulates, leading 361 

to increased water clarity and greater light availability for photosynthesis (Moore et al. 2012; Orth 362 

et al. 2012). This self-facilitation has been identified as a key predictor of the persistence of 363 

restored seagrass ecosystems (van Katwijk et al. 2009). 364 

 Altogether, the factors that promote the growth and expansion of the restored bed should, 365 

in theory, facilitate the recruitment and survival of epifaunal invertebrates, principally by 366 

increasing the availability of habitat and substrate for algal resources. While the positive 367 

relationship between habitat and area sampled and species richness has been established generally, 368 
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there are few examples from seagrass systems (Boström, Jackson & Simenstad 2006). Our study is 369 

also unique in the sense that increasing area does not simply represent a shift in geographic focus, 370 

but a product of ongoing efforts to actively increase the total habitat in the same location, 371 

supplemented by the natural spread of eelgrass from the initial effort to restore this habitat. Indeed, 372 

it is the recurring annual restoration efforts combined with natural recruitment from these 373 

restored beds over the past two decades that has led to the impressive recovery of eelgrass in the 374 

region, and undoubtedly this reliable influx of habitat-forming seeds has played a key role in 375 

promoting the diverse epifaunal assemblage observed in our study, and may distinguish this 376 

success from other restoration attempts. 377 

There is also potential for an interesting and hitherto unrecognized positive feedback 378 

involving epifauna and eelgrass contributing to restoration success. Numerous mesocosm and 379 

caging studies have demonstrated that the presence and diversity of these grazers has been shown 380 

to promote the growth and productivity of eelgrass through the removal of fouling epiphytes 381 

(Neckles et al. 1993; Duffy et al. 2003; Duffy et al. 2005; Douglass et al. 2007; Whalen et al. 2013; 382 

Reynolds et al. 2014; Duffy et al. 2015). This action releases eelgrass blades from competition for 383 

light and nutrients, which in turn increases productivity and ultimately the amount of habitat. We 384 

show here that habitat directly enhances diversity (Fig. 4), leading to more habitat, more animals, 385 

and so on. While this link is tenuous in the absence of robust data on epiphyte fouling, it is a 386 

foundational concept in temperate seagrass ecology (van Montfrans et al. 1984; Duffy et al. 2014), 387 

and in light of considerable empirical verification in other systems, it is likely to play a role in the 388 

persistence and rapid expansion of the bed in South Bay. The degree to which animals and their 389 

diversity promote eelgrass versus the annual sowing of seeds and natural expansion is probably 390 

small, but parsing these effects is certainly deserving of further attention.  391 

The reproductive biology and dispersal abilities of the focal organisms may have also played 392 

a pivotal role in the rapid recovery of the epifaunal community in the restored bed. Recent reviews 393 
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have suggested that ‘successful restorations’ – those that have achieved similar levels of 394 

biodiversity as before a disturbance – have concerned communities of fast-reproducing organisms 395 

with high dispersal ability (Jones and Schmitz 2009; Duarte et al. 2015). While there did not appear 396 

to be a change in the proportion of individuals belonging to high vs. low dispersal species 397 

throughout the course of restoration – those that brooded or released their eggs, and those with 398 

planktonic vs. non-planktonic larval forms (Figs. S6-7) – most of the organisms in this system have 399 

generation times on the scale of weeks to months. The amphipod Gammarus mucronatus, for 400 

instance, can reach reproductive maturity in as few as three weeks during summer months 401 

(Fredette and Diaz 1986). The quick generation and turnover of populations certainly contributed 402 

to the ability of these small invertebrates to reach and exploit this new habitat. 403 

A complementary hypothesis is that, as the bed expanded, it also recruited mesopredators 404 

of epifauna, including various fishes and crabs, which also utilize the eelgrass as habitat. Predator 405 

trawls conducted in South Bay the early 2010s revealed a diverse and abundant predator 406 

community (Schmitt et al. 2016). A recent meta-analysis produced strong evidence supporting the 407 

long-standing hypothesis that predation enhances prey diversity by relieving competition among 408 

prey species (Katano et al. 2015), a trend which has been seen in mesocosm experiments using 409 

several of the species observed in our surveys (Duffy et al. 2005; Douglass et al. 2008). Consistent 410 

with an active and increasingly abundant predator community, epifaunal abundance actually had 411 

an inverse relationship with bed area and density in South Bay (Fig. 3a). An alternative explanation 412 

is that epifauna are resource-limited, as suggested by their remarkably invariant mean abundances 413 

observed in the later stages of restored bed (Fig. 1a). Thus, increasing the density of habitat but not 414 

resources could have diluted the average abundance per unit sampling area. 415 

 One of the more striking differences between the restored and reference beds was the 416 

higher functional diversity in South Bay compared to Chincoteague Bay (Fig. 1e-f). Habitat 417 

complexity and resource availability – proxied by mean density and total phosphates in our random 418 
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forest analysis – may have played a role here as well (Fig. 3e-f, Fig. S1). Increasing both should 419 

theoretically open niche space and facilitate coexistence, leading to a wider variety of observed 420 

functional morphologies, behaviors, and life histories. Classical successional theory would predict 421 

that this would be especially true during the later stages of restoration, as biotic as opposed to 422 

abiotic filters play an increasingly larger role and functionally similar species are weeded out as 423 

consequence of competitive interactions (Connell and Slatyer 1977). Given these predictions, it is 424 

surprising that we observed significantly higher functional diversity in the restored bed compared 425 

to the reference bed even in the early stages of restoration. Once again, the relatively fast 426 

recruitment and generation times of the organisms may provide explanation, allowing such 427 

interactions to play out on much shorter time scales than might be expected in other systems in 428 

which this phenomenon has been investigated, such as terrestrial plants (Purschke et al. 2013).  429 

A recent publication also suggested that it is not competitive interactions, but continued 430 

colonization, that drives the functional trait structure of successional communities (Li et al. 2015). 431 

We observed significant differences in community composition through time, particularly in the 432 

restored bed (Fig. 4), which was a consequence of the arrival of new species or shifts in dominance. 433 

Along similar lines, the demography of these epifaunal invertebrates is notoriously unpredictable. 434 

In nearby systems in the Chesapeake Bay, which have been well studied for decades, species appear 435 

and then disappear regularly, generally in response to loss of habitat (Douglass et al. 2010). Similar 436 

stochastic processes may also be at play here, with high trait diversity in the early years simply an 437 

outcome of chance processes that favored recruitment of functionally varied individuals to the 438 

sudden appearance of uncolonized habitat. Interestingly, our analysis showed little role of rafting 439 

macroalgae in providing a recruitment vector for new species (Fig. 4). Where these animals are 440 

coming from, and how they are arriving at the bed, remains a frontier in seagrass ecology. 441 

Finally, we must acknowledge the possibility that we are still observing some transitional 442 

state, and that the restored bed is still progressing towards the stable state exhibited by the 443 
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reference bed (Fig. 4). Several lines of evidence suggest this is not the case. First, inter- and intra-444 

annual variability was similar between both bays (Fig. 1), suggesting that the reference bed had not 445 

achieved a more stable, and potentially more mature, state than the restored bed. In fact, the errors 446 

around most means of community properties in the restored bed are actually lower than in the 447 

reference bed (Fig. 1). Second, we observed significant compositional differences between the beds, 448 

suggesting potentially different avenues for colonization (Fig. 4). Finally, given the contrasting 449 

trajectories of the two beds (Fig. 1), it may be unreasonable to suspect these two communities to 450 

ever converge. 451 

Aggregating at broad temporal scales emphasizes overall trajectories of these beds, but 452 

ignores some of the finer scale variation. One particularly notable instance occurred in June 2012, 453 

with the recruitment of juvenile pinfish (Lagodon rhomboides) to these coastal bays. During early 454 

life history stages, pinfish are known to be voracious predators of epifaunal invertebrates 455 

(Luczkovich and Stellwag 1993), and were indisputably responsible for the steep declines in 456 

epifaunal abundance and diversity during this month (Fig. S11). Generally, pinfish do not range this 457 

far north, but with increasing temperatures, we may be witness to a northward range expansion. 458 

Such a shift may have drastic consequence for the eelgrass: first, by removing the critical top-down 459 

control provided by epifaunal grazers, and second, by directly consuming eelgrass, particularly 460 

later during their ontogeny (Luczkovich and Stellwag 1993). Thus, while local conditions over the 461 

last decade have favored the growth and expansion of eelgrass in Virginia’s coastal bays, climate 462 

change may introduce a new variable in the form of pinfish with uncertain consequences for the 463 

maintenance of eelgrass diversity and function in South Bay. 464 

Within the larger context of restoration ecology, our study stands out in that it documents 465 

the transition from a near complete lack of vegetation to dense, contiguous beds (Fig. 1, Orth & 466 

McGlathery 2012). This state-shift stands in contrast to many other restoration projects, which 467 

have focused on recovery of degraded, but not totally absent, systems. The drastic transition from 468 
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an unvegetated to a vegetated state may explain some of our results by widening the scope for 469 

detectable effects. We note, however, that the greatest differences occurred during the later stages 470 

of restoration, when the restored and reference beds were comparable in terms of their total 471 

coverage (Fig. 1). Further, even in degraded eelgrass beds, remediation of environmental stressors 472 

has been show to enhance the functional trait diversity of epifaunal invertebrates (Dolbeth et al. 473 

2013). As with our results (Fig. 1e), functional recovery was partly a consequence of the 474 

redistribution of biomass among different functional types (Dolbeth et al. 2013). Similarly rapid 475 

recovery of functional diversity has been observed in other invertebrate communities, such as 476 

beetles in restored wetlands (Watts and Mason 2015). These studies, along with ours, suggest that 477 

functional traits can be a powerful tool for assessing the response and subsequent recovery of 478 

communities to disturbance (Mouillot, Graham, et al. 2013). 479 

It is worth noting the limitations of this study. First, we are comparing two bays, even 480 

though these bays combined account for 88% of the submersed aquatic vegetation in the Delmarva 481 

coastal bays. While our results may not be representative of eelgrass systems in general, we do 482 

demonstrate that restored ecosystems on a comparatively large scale at least have the potential to 483 

greatly exceed the diversity of reference or pre-disturbance systems, which is a rare outcome in 484 

restoration ecology (Benayas et al. 2009). Second, we had variable sampling effort through time, 485 

largely as a consequence of available habitat to sample, which could have biased our summary 486 

statistics. However, incorporation of sample size as a covariate in our analyses revealed that it has 487 

no significant effect in the vast majority of cases (with the sole exception of evenness in the latter 488 

period, Fig. 1d). Finally, we did not have robust and consistent estimates of the local density of the 489 

habitat to use in our analysis. Future monitoring efforts should focus on a method that is not only 490 

standard to the area of bottom sampled, but also yields some value of habitat availability (biomass, 491 

etc.). 492 
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In this study, we show that epifaunal community diversity in a restored eelgrass bed was 493 

significantly higher than an unrestored bed in the region, particularly when considering the 494 

breadth of organismal functional traits. Given the wealth of evidence linking both epifaunal species 495 

and trait diversity to enhanced ecosystem functioning (Best et al. 2013; Duffy et al. 2015; Lefcheck 496 

and Duffy 2015), it is reasonable to infer that the restored bed may also experience higher levels 497 

and greater stability in ecosystem functioning than unrestored beds. Indeed, sediment organic 498 

content and ammonium exchange have been shown to be higher during the later stages of 499 

restoration (McGlathery et al. 2012). While these functions were attributed to the recovery of the 500 

eelgrass itself, previous mesocosm experiments have shown that epifaunal richness also impacts 501 

these properties as well, irrespective of eelgrass biomass (Duffy et al. 2003; Spivak et al. 2007). 502 

Future work, however, will have to directly quantify processes related to these grazers, such as 503 

secondary production or biogeochemical processes, to demonstrate their independent 504 

contributions to the eelgrass ecosystem function. In the interim, the restored systems in Virginia’s 505 

coastal bays may serve an important role in conserving regional biological diversity in the face of 506 

large-scale declines in existing beds. 507 
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Figure Captions 777 

Figure 1: Total area (in hectares) of eelgrass beds in (a) Chincoteague Bay and (b) South Bay 778 

through time. Bars are divided into estimated density bins (% cover) based on comparison of aerial 779 

footage to a crown density scale. Note: aerial photography could not be conducted in 2005 due to 780 

poor weather conditions. 781 

Figure 2: Time series plotting the annual mean ± 1 SE for various faunal community properties. 782 

Light grey circles represent the mature bed in Chincoteague Bay. Black triangles represent the 783 

restored bed in South Bay. FD = functional diversity, calculated as Rao’s quadratic entropy from all 784 

nine functional traits.  785 

Figure 3: Plots of total bed area (in hectares, left column) and mean density (as the average density 786 

bin based on comparison of aerial footage against a crown density scale, ranging from 0 for no 787 

cover to 1 for full cover) for South Bay. Points represent each year and month of the survey. The 788 

black line represents a simple linear regression between the two variables. The Pearson correlation 789 

(r) from this regression is given in the bottom of each panel along with the following indicator of 790 

statistical significance: * P = 0.05, ** P = 0.01, *** P = 0.001. 791 

Figure 4: Non-metric multidimensional scaling conducted on relative abundance data for both 792 

eelgrass (green) and drift macroalgal (brown) communities. Small open points represent each year 793 

and month of the survey. Large points represent the centroid for each year, graded from early years 794 

(dark grey) to later years (light grey). Arrows represent the trajectories from one year to the next. 795 

Stress – a measure of concordance between the multivariate data and this two-dimensional 796 

representation – is given in the lower right.  797 
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