
Multidimensional biases, gaps and uncertainties in global
plant occurrence information

Plants are a hyperdiverse clade that plays a key role in maintaining ecological and

evolutionary processes as well as human livelihoods. Glaring biases, gaps, and

uncertainties in plant occurrence information remain a central problem in ecology and

conservation, but these limitations have never been assessed globally. In this synthesis,

we propose a conceptual framework for analyzing information biases, gaps and

uncertainties along taxonomic, geographical, and temporal dimensions and apply it to all

c. 370,000 species of land plants. To this end, we integrated 120 million point-occurrence

records with independent databases on plant taxonomy, distributions, and conservation

status. We find that different data limitations are prevalent in each dimension. Different

information metrics are largely uncorrelated, and filtering out specific limitations would

usually lead to extreme trade-offs for other information metrics. In light of these

multidimensional data limitations, we critically discuss prospects for global plant ecological

and biogeographical research, monitoring and conservation, and outline critical next steps

towards more effective information usage and mobilization. We provide an empirical

baseline for evaluating and improving global floristic knowledge and our conceptual

framework can be applied to the study of other hyperdiverse clades.
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Abstract 

Plants are a hyperdiverse clade that plays a key role in maintaining ecological and 

evolutionary processes as well as human livelihoods. Glaring biases, gaps, and uncertainties in 

plant occurrence information remain a central problem in ecology and conservation, but these 

limitations have never been assessed globally. In this synthesis, we propose a conceptual 

framework for analyzing information biases, gaps and uncertainties along taxonomic, 

geographical, and temporal dimensions and apply it to all c. 370,000 species of land plants. To 

this end, we integrated 120 million point-occurrence records with independent databases on 

plant taxonomy, distributions, and conservation status. We find that different data limitations 

are prevalent in each dimension. Different information metrics are largely uncorrelated, and 

filtering out specific limitations would usually lead to extreme trade-offs for other information 

metrics. In light of these multidimensional data limitations, we critically discuss prospects for 

global plant ecological and biogeographical research, monitoring and conservation, and 

outline critical next steps towards more effective information usage and mobilization. We 

provide an empirical baseline for evaluating and improving global floristic knowledge and our 

conceptual framework can be applied to the study of other hyperdiverse clades. 

 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1326v2 | CC-BY 4.0 Open Access | rec: 26 Aug 2015, publ: 26 Aug 2015

P
re
P
rin

ts

mailto:cmeyer2@uni-goettingen.de
mailto:hkreft@uni-goettingen.de


 

Introduction 

Land plants (subkingdom Embryophyta, hereafter ‘plants’) are a hyperdiverse group of 

organisms and the principal providers of biochemical energy and habitat structure in most 

terrestrial ecosystems. Geographical distributions of plant species determine the spatio-

temporal setting for evolutionary and ecological processes (Wright & Samways 1998; 

Kissling et al. 2008), and of the ecosystem functions and services upon which most other 

species, including humans, rely (Isbell et al. 2011; Gamfeldt et al. 2013). Advances in 

ecological theory and effective management of natural resources thus rest to a great extent on 

detailed information about spatio-temporal occurrences of plant species. For instance, 

improved occurrence information is presupposed by several international policy targets in the 

framework of the UN Convention on Biological Diversity’s Global Strategy for Plant 

Conservation (GSPC; www.cbd.int/gspc/targets.shtml; Paton (2009)). To date, however, 

detailed distribution datasets typically required in ecological research and conservation only 

exist for few plant groups and geographical regions (Riddle et al. 2011). 

Most available datasets on plant distributions, including checklists, atlas data, and range maps, 

are ultimately based on point-occurrence records. Such records represent the primary 

information on the three basic dimensions that characterize species distributions – taxonomy, 

space and time – as they provide direct evidence that a particular species occurred at a 

particular location at a particular point in time (Soberón & Peterson 2004). Over the last two 

decades, millions of digital plant records from herbarium specimens, field observations, and 

other sources have been mobilized via international data-sharing networks, most notably that 

of the Global Biodiversity Information Facility (GBIF; Edwards, 2000). Contrasting un-

mobilized datasets or expert knowledge, these mobilized records represent the largest share of 

information that is both digital and easily accessible in a standard format (hereafter referred to 

as digital accessible information (DAI); originally referred to as DAK by Sousa-Baena et al. 

(2014a)). Recent advances in unifying global plant taxonomic information (The Plant List, 

TPL 2014) now allow integrating thousands of floristic data sources under a common 

taxonomic framework. Potential uses of DAI are manifold (Lavoie 2013), spanning research 

on diversity patterns (Morueta-Holme et al. 2013), biological invasions (O’Donnell et al. 

2012) or phenological changes (Calinger et al. 2013), assessments and monitoring of threats 

(Brummitt et al. 2015), and conservation decision-making (Ferrier 2002; Guisan et al. 2013). 

However, broader application is limited by severe biases in each of the three basic dimensions 

(Nelson et al. 1990; Boakes et al. 2010; Schmidt-Lebuhn et al. 2013).  

At least two aspects of DAI directly influence opportunities for inference and application (Fig. 

1). One aspect closely connected to the quantity of records is the coverage of the three 

dimensions with information. For instance, taxonomic coverage, i.e., how many of the 

existing species in different assemblages are documented, determines how reliably 

biodiversity can be compared across sites in conservation prioritization (Funk et al. 1999). 

Geographical coverage, i.e., how well species’ ranges are documented with records, affects 

the feasibility of species distribution modeling (Feeley & Silman 2011). Finally, high 

temporal coverage, i.e., continuous recording of species through time, is essential for 

monitoring species’ responses to environmental change (Brummitt et al. 2015). A second, 

more qualitative aspect of occurrence information is uncertainty regarding the interpretation 

of information on the three dimensions. For instance, ambiguous scientific names entail 

uncertainty regarding taxonomic identities (Jansen & Dengler 2010), imprecise sampling 

locations regarding the environmental context in which species were found (Rocchini et al. 
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2011), early sampling dates regarding their continuing presence at those locations (Boitani et 

al. 2011). 

Coverage and uncertainty may both be biased in the taxonomic, geographical and temporal 

dimensions (Fig. 1), potentially leading to biased ecological inferences (Prendergast et al. 

1993; Hortal et al. 2008) and inefficient conservation (Grand et al. 2007). For instance, 

taxonomic coverage of plant assemblages may be geographically biased to certain regions 

(Yang et al. 2013; Sousa-Baena et al. 2014a), and geographical uncertainty may be greater in 

older records (Murphey et al. 2004). Other types of ecologically relevant data bias are 

typically closely connected to these basic dimensions, e.g., phylogenetic or functional biases 

(Schmidt-Lebuhn et al. 2013) to taxonomy, environmental bias (Funk et al. 2005) to space, 

and seasonal bias (ter Steege & Persaud 1991) to time. 

Understanding magnitude and biases in coverage and uncertainty of DAI with regard to the 

three dimensions is crucial for evaluating prospects for research and other applications, and 

for prioritizing and monitoring activities to improve DAI (Meyer et al. 2015; Peterson et al. 

2015). Identifying botanical information gaps has a long history (Jäger 1976; Prance 1977; 

Kier et al. 2005), while most recent analyses emphasized effects on specific applications 

(Feeley & Silman 2011; Yang et al. 2013; Sousa-Baena et al. 2014b). Despite the need to 

comprehensively evaluate global DAI, a quantitative assessment for the World’s plants is 

lacking. 

Here, we provide such an assessment for all land plants, by integrating 120 million point-

occurrence records facilitated via GBIF with comprehensive taxonomic databases, the World 

Checklist of Selected Plant Families, and the IUCN Global Red List. We examine biases, gaps 

and uncertainties in DAI along taxonomic, geographical and temporal dimensions, investigate 

pairwise and multi-variate relationships between alternative metrics of coverage and 

uncertainty, and characterize geographical regions in terms of their multivariate data 

limitations. In light of these limitations, we critically discuss prospects for using plant DAI in 

global ecological research, conservation and monitoring, with particular emphasis on GSPC 

targets. Finally, we outline critical next steps towards more effective information usage and 

mobilization. Our work provides the first quantitative global synthesis of strengths and 

weaknesses in DAI for a hyperdiverse taxonomic group, and conceptual and empirical 

baselines for studying and addressing data limitations in future research and data mobilization 

efforts. 

Methods 

Point-occurrence information 

We downloaded all data for land plants available via GBIF in January 2014 (c. 120 M). GBIF-

facilitated records represent by far the largest source of DAI, and a substantial part of the 

digitized portion of the estimated 350 million records that exist in the World’s herbaria (New 

York Botanical Garden 2014). Geographical gaps in global coverage in these records may 

represent genuinely under-sampled regions, but also regions whose information is not yet 

digitized or integrated into international data-sharing networks, such as Brazil (Sousa-Baena 

et al. 2014a) or China (Yang et al. 2013). We taxonomically standardized and validated 
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verbatim scientific names, using comprehensive taxonomic information provided via The 

Plant List (TPL 2014) and iPlant’s Taxonomic Name Resolution Service (TNRS 2014). We 

applied taxonomic and geographical filters (see below) and excluded duplicate combinations 

of accepted species, sampling location and year-month combination (see Fig. S1 for an 

overview of our workflow, see Supplementary Information (SI) 1 for details). These steps led 

to a reduction of 119,058,280 raw records with 2,206,831 verbatim name strings to 

55,929,317 unique records for 229,218 accepted species from 3,947,969 unique sampling 

locations and 3,172 year-month combinations (SI.1.1). These records were contributed to the 

GBIF network by 238 data publishers in 48 countries. The majority of these records (78%) 

came from field observations (e.g., from vegetation plot data) and preserved specimens (17%). 

Coverage 

We computed three alternative metrics to estimate the extent to which available records cover 

the taxonomic, geographical and temporal dimensions (Fig. 1). We estimated taxonomic 

coverage of 12,100 km equal area grid cells (110 km x 110 km at the equator) as the ratio 

between recorded vascular plant richness and an environment-richness model for that group 

(Kreft & Jetz, 2007). Spatial patterns of taxonomic coverage may be affected by erroneous or 

non-native species’ records. However, independent information on species’ native ranges to 

geographically validate records does not exist for most plants. We thus additionally validated 

16.8 M records for 105,031 species of seed plants (Spermatophyta; 34% of all) against 

checklists for ‘botanical countries’ (level-3 regions of Biodiversity Information Standards, 

formerly Taxonomic Database Working Group – TDWG; www.tdwg.org/standards/109/), 

derived from the World Checklist of Selected Plant Families (WCSP, 2013) and compared the 

ratio between DAI-recorded and checklist-based richness among botanical countries. To 

estimate geographical coverage of species’ ranges and grid cells, respectively, we used the 

quantity of unique sampling locations per species and per grid cell land area. To measure 

temporal coverage of species and cells, we calculated the negative mean minimum time (in 

years) from all months between 1750 and 2010 to their respective temporally closest records. 

This metric has large negative values if temporal coverage is low, i.e., if the entire time span 

contains large temporal gaps without any records. We analyzed temporal patterns of 

taxonomic and geographical coverage by comparing percentages of species and grid cells 

covered within, and cumulatively up to, five-year periods. 

Uncertainty 

To investigate uncertainty in DAI (Fig. 1), we created three potential uncertainty filters 

(‘basic’, ‘moderate’, ‘strict’) that a user of DAI might consider to ensure data quality. We 

defined three taxonomic uncertainty filters based on criteria and decisions taken during 

taxonomic validation (see SI 1):  

- TaxStrict: Recorded name matches an accepted species in TPL with high expert 

confidence (three ‘stars’; www.theplantlist.org/about), with ≤5% orthographic 

distance (see SI 1), either directly or through an unambiguous synonym (i.e., one that 

only links to one accepted name); 

- TaxModerate: Recorded name matches an accepted species in TPL with high or 

medium expert confidence (two or three ‘stars’) with ≤15% orthographic distance, 

either directly or through an unambiguous or ambiguous synonym;  

- TaxBasic: Recorded name matches an accepted species in TPL or TNRS (no criteria 

for expert confidence in TPL) with ≤25% orthographic distance, either directly or 
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through an unambiguous or ambiguous synonym. This basic filter was always applied 

before other analyses. 

We defined three geographical uncertainty filters, based on precision of coordinates and 

indicated country: 

- GeoStrict: Location reported with a precision of at least 1/1000 of a degree (~100 m at 

the equator);  

- GeoModerate: Location reported with an precision of at least 1/100 of a degree;  

- GeoBasic: Location reported with a precision of at least 1/10 of a degree and falling 

within the indicated country. This filter was always applied before other analyses.  

We defined three temporal uncertainty filters:  

- TempStrict: Records collected after 1990;  

- TempModerate: Records collected after 1970;  

- TempBasic: Records collected after 1950.  

Unless stated otherwise, we hereafter refer to a dataset to which basic taxonomic and 

geographical filters, but no temporal filter, were applied.  

We investigated patterns in taxonomic and geographical uncertainty by comparing across 

species and grid cells the percentages of records that would be additionally excluded when 

applying moderate or strict taxonomic and geographical uncertainty filters, respectively, 

compared to the basic filter. We investigated patterns in temporal uncertainty by comparing 

percentages of species additionally excluded by moderate or strict temporal uncertainty filters. 

Similarly, we investigated patterns in combined uncertainty by comparing percentages of 

additionally excluded species if all three filters were applied. 

Assessing variation in occurrence information 

To quantify and visualize taxonomic, geographical and temporal variation and biases in 

information coverage and uncertainty, we compared the respective metrics among major plant 

groups (bryophytes, pteridophytes, gymnosperms and angiosperms), geographical units 

(12,100 km grid cells and TDWG level-3 ‘botanical countries’), and five-year periods. 

We investigated relationships between geographical patterns of nine different information 

metrics, including the three dimensions of coverage and uncertainty and combined 

uncertainty (see above; uncertainty measured here as information loss under moderate 

filtering). We also included two further aspects of limitations in DAI: the number of vascular 

plant species that were not recorded but expected to occur in an area based on an 

environment-richness model (Kreft & Jetz 2007), and the time (in years) since the last record 

in a grid cell was recorded. We analyzed pairwise and multivariate relationships between 

these nine metrics using pairwise Spearman rank correlations and principal component 

analysis (PCA) which reduces co-linear metrics to orthogonal principal components. We 

assigned red, green and blue components of the RGB color space to the grid cells according to 

their positions in the three-dimensional space formed by the first three PCA axes (Weigelt et 

al., 2013). We then mapped these colored grid cells to visualize which regions are 

characterized by the different aspects and dimensions of occurrence information. P-values for 

correlations between spatial patterns were adjusted to geographically effective degrees of 
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freedom following Dutilleul (1993). All analyses were carried out in R versions 3.0.2-3.2.1 (R 

Core Team 2014). 

We assessed opportunities for selected research and conservation applications of DAI globally 

and for TDWG level-1 regions, by counting species that would meet minimum data 

requirements of hypothetical distribution estimation methods if all three basic, moderate or 

strict uncertainty filters were applied. We assingned species to regions if >80% of their 

records fell within their respective boundaries. 

Results and Discussion 

The high number of globally mobilized plant records (119 M; Fig. S1A) may misguide 

perceptions of the actual available information on plant occurrences. Our basic validation and 

filtering steps excluded 38.2 M records, including 12.5 M with non-validatable verbatim name 

strings (Fig. S1G, SI 1) and 27.9 M in the sea (Fig. S1C). Note that the latter included records 

with imprecise or erroneous coordinates (Yesson et al. 2007) but also potentially valid records 

of marine species (e.g., sea grasses). Collecting duplicate specimens from the same plant 

individual is common practice in botany, and removing duplicated species-location-month 

combinations excluded a further 25 M records, leaving 56 M unique records for analyses 

(47% of all). Record numbers varied by five orders of magnitude across species, and by six 

orders of magnitude across 12,100 km grid cells (Fig. S1B). For instance, a single cell in the 

Netherlands had 2.8 M records, whereas 21.2% of all cells had no records. 

 

Coverage of the different dimensions 

Taxonomic coverage  

Globally, 229,218 plant species (65% of all 350,697 accepted by TPL as of 2014) were 

represented with ≥1 record that passed our basic filtering. Taxonomic coverage was itself 

taxonomically biased, with only 28.3% of bryophytes but 82.9% of pteridophyte species 

represented (Fig. 2A).  

Recorded species richness in grid cells was an almost perfect function of record number 

(rS=0.94, PDut=0; Fig. S1B/F/K), demonstrating that centers of plant diversity perceived from 

occurrence records often reflect better documentation rather than true diversity patterns 

(Nelson et al. 1990; Yang et al. 2013; Engemann et al. 2015). Accordingly, taxonomic 

coverage of plant assemblages was extremely heterogeneous in space (Fig. 2B). Only 5.4% of 

cells had a ratio between recorded and modeled species richness >0.8 and could thus be 

considered taxonomically well-covered. Regions which high taxonomic coverage were 

Europe, parts of Australia, North America, South Africa, Ecuador, Costa Rica, and scattered 

parts in the rest of the World (Fig. 2B). Conversely, 78.6% of the world was severely under-

inventoried with ratios below 0.25 (Fig. 2B). Large numbers of ‘missing’ species, i.e., that 

portion of modeled richness that was not confirmed by records, were typical for Eastern 

Amazonia and Borneo (Fig. S2A). Surprisingly, our results did not confirm previous 

observations that data gaps are higher in the tropics than in the non-tropics (Collen et al., 

2008; PDut=0.37), nor that they are higher in Neo- than in Palaeotropical areas (Prance, 1977; 
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PDut=0.64). The overall low taxonomic coverage over vast extents seriously impairs 

estimations of plant diversity (Yang et al. 2013) and site-based plant conservation 

prioritization (GSPC target 5; Funk et al. (1999)). 

Taxonomic coverage scores exceeded 1 in 3.6% of cells (Fig. 2B). Scores >1 may stem from 

an underestimation of richness by the environment-richness model, records of non-native 

species, or inaccurate information on sampling locations. For instance, the score of 6.6 around 

Stockholm was mainly due to undated records for non-native species provided by the Bergius 

Herbarium, possibly from collections assembled in the 19
th
 century by the East India 

Company. As another example, peaks in taxonomic coverage often emerged in cells around 

country centroids, likely reflecting erroneous geo-referencing of records lacking precise 

information on sampling locations (e.g., in Bazil; compare Maldonado et al. (2015)). Such 

factors could influence recorded/modeled richness ratios anywhere in the world, therefore 

taxonomic coverage cannot directly be interpreted as completeness of native plant inventories. 

Anyone using DAI to study native biodiversity should carefully consider these potential 

sources of error. 

A more robust measure of taxonomic coverage could be attained for ‘botanical countries’ and 

105,031 species of native seed plants (spermatophytes), based on records that were 

geographically validated against botanical-country checklists (WCSP (2013); Fig. S3A). 

However, these coarser patterns only moderately correlated with mean grid-level coverage 

(rP=0.68, PDut=0), and underestimated local data gaps in botanical countries where coverage 

was achieved by combining scattered species records over vast areas, such as in Argentina or 

the Democratic Republic of the Congo (Fig. 2B, Fig. S3A). Due to their higher spatial 

resolution, grid-level metrics therefore better indicate global data gaps, and provide an 

important first step in identifying priority regions for improving botanical baseline 

information (GSPC target 3; Sousa-Baena et al. (2014a)). 

10.1% (1.7 M) of records for WCSP-listed species were collected outside the species’ 

currently recognized native ranges, but even these records could play an important role for 

progress towards GSPC targets. 45% of these were collected immediately adjacent to 

recognized native ranges, and potentially represent valid additions to those regions’ native 

floras, notably in the Neotropics (Fig. S3B). This highlights the importance of DAI for target 

1, the completion of an online flora of all plants (Paton 2013). The 0.9 M records collected 

well beyond native ranges possibly represent non-native plants (Fig. S3C) and this 

information could support target 10 by facilitating study and effective management of plant 

invasions (Broennimann et al. 2007; van Kleunen et al. 2015). 

Geographical coverage  

If a species has been recorded at a sufficient number of sampling locations, records may be 

used to estimate the extent of occurrence (Gaston & Fuller 2009; Rivers et al. 2011) or to 

model probabilities of occurrence at finer scales (Guisan et al. 2007; Feeley & Silman 2011). 

However, mobilized records for a given species were typically collected from only 7 unique 

sampling locations (median across species with ≥1 record; Fig. 2D), hampering meaningful 

estimations for the majority of plant species. 

Estimates of geographical coverage of regions may aid in pinpointing under-collected areas 

where new species might be found (Bebber et al. 2010), and in controlling for uneven survey 

effort in biodiversity analyses (Schulman et al. 2007; Lobo 2008). As expected, geographical 
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coverage was generally high in traditionally well-studied North America, Western Europe and 

Australia (Fig. 2E). Outside those regions, high geographical coverage often appeared 

associated with specific botanical interest and major research and data mobilization programs. 

For instance, Madagascar has exceptional plant diversity and endemism (>11,000 species, 

82% endemic, (Callmander 2011)). Missouri Botanical Garden has long focused on the 

botanical exploration of Madagascar (Raven & Axelrod 1974), was one of the first institutions 

to engage in data mobilization (Crosby & Magill 1988), and as a consequence now contributes 

66% of Madagascan records. 

Temporal variation in taxonomic and geographical coverage  

Globally, percentages of covered species and grid cells mostly increased through time, apart 

from dips during the World Wars (Fig. 2C/F). Geographical coverage appears to have leveled 

off since the 1970s and taxonomic coverage since the 1980s, while cumulative coverage 

continued to increase at lower rates (Fig. 3E-F). The steep drops in global coverage since the 

mid-1990s may partly reflect time lags between field collection and mobilization of records 

(Gaiji et al. 2013), but also decreasing survey effort (Prather et al. 2004). The latter would be 

alarming, as new, up-to-date records are crucial both for studying recent environmental 

change and for securing the data foundations of botanical research in coming decades 

(Johnson et al. 2011). 

While covered species and areas mostly increased through time globally, there was strong 

spatio-temporal variation in certain regions (Fig. S4). For instance, since the 1950s, sampling 

activity decreased in the Afrotropics and Middle East, while it increased in the Neotropics and 

circum-Tibetan mountain ranges (Fig. S4D-F). Accordingly, regional percentages of covered 

species also changed over recent decades (Fig. S4K-M). In many parts of the world, 

taxonomic coverage during a given time period was always well below cumulative coverage, 

demonstrating that regionally high coverage is often reached only by aggregating information 

over very long time spans.  

Temporal coverage  

Continuous temporal coverage of species and regions is important to monitor changes in 

biodiversity (Boakes et al. 2010) and to provide historical baselines (Willis et al. 2007). Given 

the general paucity of long-term datasets in ecology, identifying continuouities in existing 

DAI may uncover vantage points for future monitoring activities (Johnson et al. 2011). Most 

species had extremely low temporal coverage since 1750, with a given point in time typically 

decades away from the nearest record (median: 77.3 years; Fig. 2G). Temporal coverage of 

grid cells was very high across non-eastern Europe. For instance, less than two months 

typically lay between a given point in time and the closest sampling date in the best-covered 

cell in eastern England. Large temporally well-covered areas also spanned North America, 

Central America, the Caribbean, the northern Andes, south-eastern Brazil, South Africa, 

Madagascar, the Kashmir region, south-western Australia, and New Zealand (Fig. 2H). In 

contrast, most of Amazonia and Asia showed extremely poor temporal coverage (median: 

73.1 years; Fig. 2H). 

For many global change questions such as the monitoring of poleward range expansions or 

land-use driven range contractions, temporal coverage specifically of recent decades may be 

more relevant, and coverage since 1950 was indeed higher (Fig. S2B-C). Worryingly 

however, several tropical and high arctic regions undergoing rapid land cover or climate 
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change (Burrows et al. 2011; Hansen et al. 2013) were characterized both by poor temporal 

coverage and aging records, notably in Canada, central Africa and Asia (Fig. S2C-D). For 

instance, the last record in a given Angolan grid cell was typically collected 36 years ago 

(median, measured from 2010). 

 

Uncertainty regarding the interpretation of information 

Compared to coverage–related aspects of species occurrence information (Yang et al. 2013; 

Sousa-Baena et al. 2014a; Meyer et al. 2015), patterns in more qualitative aspects like 

information uncertainty have received little attention. 

Taxonomic uncertainty  

Taxonomic uncertainty regarding interpretations of scientific names can arise from missing 

clarity on whether names are accepted or synonyms, from ambiguous synonyms linked to 

several accepted names, or from orthographic variations and spelling mistakes (Jansen & 

Dengler, 2010; see SI 1). We found that applying our moderate filter to reduce taxonomic 

uncertainty lead to a minor loss of only 8.4% of DAI (see Methods). However, applying a 

very strict taxonomic filter lead to a loss of the majority of available information (66.5% of 

records; 62.7% of species). Pteridophytes disproportionately lost records under moderate 

filtering, compared to other groups (Fig. 3I), possibly due to the continuing major changes in 

fern taxonomy (Christenhusz & Chase 2014). Bryophytes and pteridophytes would altogether 

be excluded by our strict taxonomic filter (Fig. 3I), because The Plant List only assigns 

highest confidence levels to names sourced from taxonomically comprehensive and peer-

reviewed databases, which do not exist for these groups (www.theplantlist.org/1.1/about). 

Depending on the rigor of taxonomic filtering, geographical peaks in lost information 

appeared in insular South-East Asia (moderate filter, Fig. 3A) or in the North American 

Midwest and the Caribbean (strict filter, Fig. 3B). Contrasting these strong taxonomic and 

geographical patterns, taxonomic uncertainty varied very little through time, with usually 

around 10% and 70% of records in a given five-year period falling above our moderate and 

strict taxonomic uncertainty threshold, respectively (Fig. 3J). 

Geographical uncertainty  

Imprecisely geo-referenced sampling locations lead to uncertainty regarding the geographical 

and environmental context of species’ occurrences. This uncertainty hampers applications 

built on linking occurrences with high-resolution environmental data in species distribution 

models (Feeley & Silman 2010; Rocchini et al. 2011). Applying our basic geographical filter 

already lead to a 38% loss in accepted species (from 367,703 to 229,218), confirming a strong 

trade-off between geographical precision and taxonomic coverage of occurrence information 

(Feeley & Silman 2010). Compared to our pre-filtered dataset, further applying moderate and 

strict geographical filters would lead to an additional reduction of, respectively, 1.9% and 

13.9% in records and 5.5% and 25.3% in species. The relatively low percentages of globally 

excluded records were mainly due to high numbers of precisely geo-referenced records in 

North-Western Europe (Fig. S1J). However, such global statistics of data uncertainty can 

tremendously underestimate local uncertainty, as demonstrated by substantially higher mean 

percentages of excluded records across grid cells (moderate filter: 22.3% (sd: 26.0); strict 

filter: 58.6% (sd: 35.7); Fig. 3C-D).  
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Large areas of relatively low geographical uncertainty were in Europe, the western United 

States, Southern Africa, Japan, New Zealand and parts of Australia (Fig. 3C-D). Records not 

fulfilling the strictest geographical uncertainty criteria were common in tropical regions, but 

also in remote non-tropical regions, including Alaska, temperate Asia, and Western Australia 

(Fig. 3D). Imprecise sampling locations for those regions may be related to a lack of high-

quality maps and more sparsely distributed settlements, which often serve as geographical 

reference points, particularly in older records. However, geographical uncertainty may also be 

created at the time of data mobilization. For instance, in Australia, differences in geographical 

uncertainty closely mirrored administrative boundaries, reflecting different mobilization 

policies of Australian state departments, which contributed 53.8% of Australian records (Fig. 

3C). At the time of downloading our records (Jan 2014), certain Australian datasets were 

mobilized into the GBIF network via intermediaries that deliberately generalized location 

coordinates of any potentially sensitive information. Mobilization pathways have since 

changed and generalizations are now restricted to much lower percentages of Australian 

records (e.g., for species threatened by illegal collecting; Klazenga & Vaughan (2014)). 

Geographical uncertainty of records appeared similar across major plant groups (Fig. 3I), but 

there were several notable changes through time. Older sampling locations were not generally 

reported with lower precision (Murphey et al. 2004), although such patterns could be 

observed in several regions, like Spain or south-eastern Australia (Fig. S4O-T). Instead, there 

were two major periods during which global geographical uncertainty increased, in both cases 

likely reflecting increased explorations of tropical and remote regions, one between 1860 and 

1910, coinciding with the second wave of European colonial expansion, and one between 

1940 and 1965 (Fig. 3J; Fig. S4B-D; Fig. 3C-D). The steady decrease in geographical 

uncertainty since 1965 may reflect increasing availability of high-quality maps, and later of 

GPS technology. 

Temporal uncertainty 

Early-collected records represent vital information about past biota. However, if this is the 

only available information, they also inherit greater temporal uncertainty regarding species’ 

continuing presences near sampling locations, as distributions may respond to environmental 

change (Thuiller et al. 2008) and biological processes (Schurr et al. 2012). Therefore, many 

applications like conservation planning or SDMs that link DAI with modern habitat data 

usually require modern occurrence information (Boitani et al. 2011).  

86.3% of globally represented species had at least one record collected after 1970 and 72.4% 

had records collected after 1990. Using these dates as filters for excluding records would 

cause an average loss of, respectively, 32.0 and 61.8% of species per grid cell (Fig. 3E-F). 

Regions where most species had records collected after 1990 include continuously well-

sampled north-western Europe, but also areas where most species were only recorded during 

recent surveys, such as Benin, the circum-Tibetan mountain ranges, or Indochina (Fig. 3F, 

Fig. S4F). In contrast, much of Arctic Canada, central Africa, Iraq, eastern India, Myanmar 

and Java were characterized by very old information, as most recorded species did not even 

have records collected after 1970 (Fig. 3E). Local reasons for spatio-temporal changes in 

sampling activity may include shifting funding priorities (Ahrends et al. 2011a), arising 

security concerns (Brito et al. 2013), or lowered botanical appeal of environmentally degraded 

regions (Boakes et al. 2010). Whatever the reasons, it is important to detect and account for 

such spatio-temporal biases and uncertainties. Mean percentages of excluded species also 
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varied three-fold across major plant groups (5.4%-15.10%; moderate filter; Fig. 3I), 

showcasing potential taxonomic biases introduced by temporal filters. 

Combined uncertainty 

Combining filters to minimize uncertainty in all three dimensions lead to substantial trade-offs 

for coverage (compare Feeley & Silman (2010); Boitani et al. ( 2011)). 78.9% of all species in 

our dataset had no record that passed all strict filters; 52.2% of species had no record passing 

all moderate filters. Uncertainty was even more apparent in geographical patterns: North-

western Europe was the only larger regions where typically ≥80% of species in a grid cell had 

at least one record that passed moderate combined filters (Fig. 3G). No region retained much 

of available information under strict combined filtering; even regions where 20% of recorded 

species would withstand such filters were confined to parts of Europe, Benin, Indochina, and 

central and south-eastern Australia (Fig. 3H).  

Given such pervasive levels of data uncertainty, it is very likely that species identities and 

their environmental associations are frequently misinterpreted (Feeley & Silman 2010; Jansen 

& Dengler 2010; Naimi et al. 2014). Furthermore, our documented patterns of uncertainty 

demonstrate that the likelihood of such misinterpretations is biased to particular taxonomic 

groups, geographical regions, and time periods. Overall, these issues seriously hamper 

opportunities for ecological inference and application, and need to be carefully accounted for 

whenever records of variable or unknown quality are used in biodiversity analyses (Rocchini 

et al. 2011). 

 

Relationships between different aspects of occurrence information 

Pairwise Spearman rank correlations across 9 variables of occurrence information mostly 

yielded weak to moderate associations in space (ǀrSǀ=0.00-0.86, median=0.23; Fig. S5). 

Different coverage aspects correlated moderately to highly (rS=0.63-0.86), which was 

expected as coverage of any dimension is numerically constrained by the number of available 

records (correlations with record number: 0.65-0.92; compare Yang et al. (2013)). Taxonomic 

and geographical coverage were also moderately and negatively correlated with time since 

the last recording activities (rS: -0.67 to -0.70). In contrast, most uncertainty aspects showed 

no or only weak correlations, the only high correlation being that between temporal and 

combined uncertainty (rS=0.75). Most metrics correlated poorly with quantities of mobilized 

raw records (Fig. S5), providing evidence that such simplistic indicators cannot reliably 

inform about different quantitative and qualitative aspects of occurrence information. 

The first three axes of the PCA of the 9 variables accounted for 69.8% of the variance (Fig. 4; 

note percentages accounted for by each axis in A-C). Plotting ordination site scores on a world 

map characterized regions in terms of their multidimensional data limitations (Fig. 4D; 

Weigelt et al. (2013)). The most important axis (38%) mainly separated regions of high 

taxonomic and geographical coverage, e.g., in Europe (rS=0.86/0.85; Fig. 4A-B/D), from 

regions where a long time has passed since the last recording activities, e.g., in Central Africa 

and South Asia (rS=-0.85; Fig. 4A-B/D). The second axis (20% of variance) mainly correlated 

with combined and temporal uncertainty (rS= 0.74/0.75; Fig. 4A/C/D), highlighting, e.g., 

Arctic Canada. Combined uncertainty also characterized much of Asia, such as the Altai or 

the mountain ranges between Eastern Tibet and Sichuan (Fig. 4D). Taxonomic and 
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geographical uncertainty varied mainly along the third axis (11.8% of variance; rS: 0.69/0.47; 

Fig. 4B-C), characterizing, e.g., Borneo.  

The above patterns and analyses highlight the differences, rather than the similarities, between 

geographical patterns of different aspects and dimensions of occurrence information. Different 

limitations predominate in different regions. Similar differences can be expected among 

taxonomic and temporal patterns of the different information metrics. For instance, 

pteridophytes stand out for their high taxonomic coverage but also show the highest levels of 

taxonomic uncertainty. This multidimensionality of limitations in occurrence information 

should be considered in research and conservation applications, as well as in future 

assessments of data limitations.  

 

Prospects for using DAI in global plant research, conservation and monitoring 

Despite the showcased limitations in DAI, there is an urgent need to use this information in 

plant research and conservation. For instance, DAI-based distribution estimates could play a 

vital role in conservation assessments (GSPC target 2; Schatz (2009); Rivers et al. (2011)), 

threatened species management (GSPC target 7; McLane & Aitken (2012)) and monitoring 

(Brummitt et al. 2015). As shown below, the potential for such applications largely depends 

on the ability of distribution estimation methods to deal with low record numbers and high 

data uncertainty.  

Assuming species distributions could be estimated from 10 sampling locations (Rivers et al. 

2011) and methods were robust towards relatively high data uncertainty, DAI could currently 

facilitate distribution estimates and thus preliminary conservation assessments for 85,787 non-

red-listed or ‘Data-Deficient’ species globally (c. 25% of all plants; Fig. 5). This represents a 

potential seven-fold increase compared to the IUCN Red List (i.e., ignoring national red lists; 

as of Aug 2014). However, this number would drop to only 1,921 or 0.5% for uncertainty-

sensitive methods requiring ≥200 locations (Feeley & Silman 2011). Similarly, depending on 

methods’ data requirements, distribution estimates might be feasible for 0.1-15.7% of 

‘Threatened’ plants, and for 0.1-6.6% of all plants for each of three twenty-year periods since 

1950. While these figures demonstrate considerable potential for DAI applications, this 

potential is geographically highly biased (Fig. 5). For instance, DAI-based monitoring of 

distributional changes since 1950 might be feasible for 386-3,682 European but only 0-26 

Pacific plant species (Fig. 5). 

Most distribution modeling methods are highly sensitive to both number and quality of 

records (Guisan et al. 2007), yet few and uncertain records are the reality for the vast majority 

of plant species. While restricting analyses to highest-quality records is often recommended 

(Feeley & Silman 2010), cutoffs are usually arbitrary, and strict filters wipe out most available 

information (Fig. 4H, Fig. 5). Moreover, different filters may introduce different biases to 

already-biased datasets (Fig. 4). More effective usage of DAI would be to explicitly 

incorporate biases and uncertainties into analyses. Methods for doing so are increasingly 

available (McInerny & Purves 2011; Beale & Lennon 2012; Dorazio 2014; Velásquez-Tibatá 

et al. 2015), and further developing such methods holds great potential for advancing global 

plant research and conservation. Hierarchical Bayesian methods might be particularly well-

suited (Beale & Lennon 2012; Iknayan et al. 2014). Theoretically, uncertainty of each record 

could be accounted for individually, e.g., by sampling possible interpretations of ambiguous 
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synonyms from distributions of candidate accepted species, and by sampling possible 

interpretations of imprecise coordinates from distributions of potentially true locations around 

the indicated coordinates. 

Taxonomic standardization and basic geographical plausibility checks, as carried out in this 

study, are an essential part of any analysis using DAI (Chapman 2005). However, even 

thorough post-processing cannot fully eliminate information inaccuracies such as taxonomic 

misidentifications or incorrectly recorded sampling locations (Soberón & Peterson 2004), as 

these usually cannot be detected in DAI. Sampled taxonomic re-assessments of original 

material (Scott & Hallam 2002; Ahrends et al. 2011b) and sampled ground-truthing of 

occurrences (Miller et al. 2007) could provide vital information on typical rates of such errors 

for different taxa, regions and data sources, which could additionally be accounted for in 

analyses.  

Our analyses demonstrate that after decades of intensive data mobilization, options for using 

plant DAI in global research and conservation are still severely compromised by different data 

limitations. Even under our most optimistic scenario regarding methods’ data requirements 

and robustness to uncertainty, DAI-based distribution estimations would be unfeasible for 

three quarters of all plants. Better integration of regional data sources into global DAI could 

provide some remedy, but these sources exhibit similar limitations (Yang et al. 2013; Sousa-

Baena et al. 2014a). The multidimensionality of data limitations also implies flaws in the 

accuracy of distribution datasets that are derived from primary biodiversity records, such as 

checklists, range maps, and atlas data. This is exemplified by the many WSCP-listed species 

that are recorded in regions adjacent to their supposedly correct native ranges. Botanical 

inventorying will never be complete and severe data gaps will likely persist for decades to 

come, as evident in slow progress towards regional floras (Paton 2013). Meeting GSPC 

targets on plant conservation seems unlikely without substantial increases in funding and 

personnel allocated to data collection, curation and mobilization. Given difficulties in securing 

adequate and sustained financing for such activities (Vollmar et al. 2010; Bradley et al. 2014; 

Costello et al. 2014), efforts to improve DAI should be globally coordinated and prioritized 

(Meyer et al. 2015). 

 

Towards more effective improvement of DAI 

Our analyses provide an important first step towards prioritizing efforts to enhance global 

DAI on plant occurrences. Distinguishing between information coverage and uncertainty in 

taxonomic, geographical and temporal dimensions allows narrowing down critical 

improvements. For instance, high taxonomic uncertainty in South-East Asian and 

pteridophyte floras may be addressed by targeted taxonomic revisions and better integration of 

taxonomic resources into The Plant List. New surveys to update information seem most 

urgently needed for Central Africa, Mozambique, tropical Asia and Arctic Canada. In general, 

Asian and bryophyte floras are woefully under-represented in DAI, and mobilizing respective 

occurrence datasets seems like an obvious priority. To maximize leverage for applicability in 

research and conservation, such preliminary priorities could be further refined, by considering, 

e.g., current or projected threats (Pyke & Ehrlich 2010) environmental dissimilarity to well-

sampled regions (Sousa-Baena et al. 2014a), and opportunities for continuing or closing gaps 

in long time series (Johnson et al. 2011). Relevant collections for such targeted data 

mobilization may be identified through metadata digitization (Berendsohn & Seltmann 2010), 
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while identifying socio-economic drivers of information gaps can help prioritize key activities 

likely to have a large impact (Yang et al. 2014; Meyer et al. 2015). Specialized biodiversity 

informatics infrastructures (e.g., Jetz et al. (2012); Atlas of Living Australia (2015)) could 

play an important role in highlighting and tracking the various data limitations. Our 

conceptual framework for analyzing quantitative and qualitative data limitations along 

different dimensions may serve as a model for future assessments for plants as well as for 

other hyperdiverse clades. 

The multidimensional and largely un-correlated limitations in DAI also raise the question of 

how to effectively monitor progress towards international targets on improving and sharing 

biodiversity knowledge (GSPC target 3, Aichi target 19). Simplistic indicators like global or 

per-country record quantities (e.g., Tittensor et al. (2014)) cannot inform about data 

uncertainties or fine-scale biases in coverage. To monitor improvements in the usefulness of 

DAI, rather than mere increases in data volume, we recommend evaluating a suite of 

indicators that inform about both quantitative and qualitative aspects of DAI at relevant scales. 

 

Conclusions 

As demonstrated, severe multidimensional biases, gaps and uncertainties are prevalent in 

global DAI on plant occurrences, hampering opportunities for using this information in global 

biodiversity research and for achieving international targets on plant conservation. Either goal 

would require both substantial up-scaling and prioritization of efforts to collect and mobilize 

additional, and enhance the quality of available, occurrence information. Progress in 

improving DAI should be monitored using meaningful indicators. However, it should be 

stressed that severe data limitations will remain the norm for most species and regions. 

Greater effort should therefore be made to make best-possible use of limited information. This 

includes developing easy-to-use routines for explicitly incorporating data limitations into 

analyses, more widely adopting such methods, and clearly articulating remaining 

uncertainties. 
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Figures 

 

 
 

Figure 1. Framework for analyzing limitations in occurrence information along taxonomic, 

geographical and temporal dimensions. Occurrence records cover different species (sp1, sp2, …), 

different locations (xy1, xy2, …) and different points in time (t1, t2, …). Planes of cells illustrate spread 

of information between pairs of dimensions, information from anywhere along the third dimension is 

vertically projected onto the plane. Applicability of occurrence information depends on: i) coverage of 

the three dimensions with information (grey cells), and ii) uncertainty regarding the interpretation of 

information on the three dimensions (shade of cells). Integrating across cells in one dimension 

summarizes information per unit of the other dimension (e.g., bottom right: highest geographical 

coverage at time t5 because four out of six locations covered). Coverage and uncertainty may be biased 

in each dimension (curly brackets; e.g., center left: temporal coverage taxonomically biased because 

species of taxon4,5,6 have systematically higher coverage, compared to taxon1,2,3). 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1326v2 | CC-BY 4.0 Open Access | rec: 26 Aug 2015, publ: 26 Aug 2015

P
re
P
rin

ts



 

 

Figure 2. Global variation in occurrence information coverage. A) Taxonomic coverage of major plant groups (accepted (TPL 2014) vs. recorded species; B – bryophytes, P – 

pteridophytes, G – gymnosperms, A - angiosperms); B) Geographical variation across 12,100 km grid cells of taxonomic coverage for vascular plants (recorded/modeled 

richness; Kreft & Jetz, (2007)); values >1 indicate higher recorded than modeled richness; C) Percentages of species covered within, and up to, five-year periods since 1750; 

Geographical coverage of D) species (N sampling locations) and E) cells (N locations / 104 km² land area); F) Percentages of cells covered within, and up to, five-year periods. G) 

Temporal coverage 1750-2010 of G) species and H) cells; small negative values denote high coverage. Red bars in D/G: medians for major plant groups. In C/F, note dips during 

the World Wars and drop since the 1990s (possibly a time lag between record collection and mobilization).  
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Figure 3. Global variation in occurrence 

information uncertainty. Geographical 

patterns across 12,100 km grid cells of 

percentages of records excluded by A) 

moderate and B) strict taxonomic 

uncertainty filtering, by C) moderate and 

D) strict geographical uncertainty 

filtering; geographical patterns of 

percentages of species excluded by E) 

moderate and F) strict temporal 

uncertainty filtering; by applying all 

three G) moderate and H) strict filters. I) 

Taxonomic patterns across major plant 

groups of mean percentages of records 

per species excluded by taxonomic and 

geographical filters, and of species 

entirely excluded by temporal and 

combined filters; J) Temporal patterns 

across five-year periods between 1750 

and 2010 of percentages of records 

excluded by taxonomic, geographical 

and the two combined filters. 
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Figure 4. Principal component analysis (PCA) of 9 metrics of plant occurrence information across 

12,100 km grid cells with ≥1 record. A-C) Biplots of the first three PCA axes. D) Global map of 

ordination site scores; similar colors denote regions characterized by similar information metrics. 

Colors refer to a red–green–blue (RGB) color space (legend) projected onto the E) 3D PCA space 

(Weigelt et al. 2013). TaxCov: taxonomic coverage (recorded/modeled richness; Kreft & Jetz (2007)); 

GeoCov: geographical coverage (N sampling locations / 104 km² land area); TempCov: temporal 

coverage 1750-2010, estimated as mean minimum time between all months since 1750 and their 

respective closests recording date; TaxUnc: % records lost under moderate taxonomic filtering; 

GeoUnc: % records lost under moderate geographical filtering; TempUnc: % species lost under 

moderate temporal filtering; CombUnc: % species lost under combined filtering. MissSpp: N species 

modelled, but not recorded; SinceLast: Years since last recording activity.  
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Figure 5. Global trade-offs between plant occurrence information coverage and uncertainty. Shown 

are numbers of species whose distributions could be estimated with hypothetical methods, depending 

on those methods’ minimum requirements (10 to 200 sampling locations; Rivers et al. (2011); Feeley 

& Silman (2011a)) and robustness towards different levels of data uncertainty. A) Northern America, 

B) Southern America, C) Pacific, D) Europe, E) Africa, F) Temperate Asia, G) Tropical Asia, H) 

Australasia. Blue colors: species that are either un-assessed or ‘Data Deficient’ on the International 

Union for the Conservation of Nature’s Red List (2014). Violet colors: species with Red List 

categories ‘Vulnerable’, ’Endangered’ or ’Critically Endangered’. Green colors: species for which the 

indicated number of sampling locations exists in each of three twenty-year periods since 1950. Color 

shadings indicate filters (basic, moderate, strict) used to reduce taxonomic, geographical and temporal 

uncertainty. World regions are level-1 regions of Biodiversity Information Standards (TDWG). 
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Supplementary information 

Multidimensional biases, gaps and uncertainties in global plant occurrence 

information 

Carsten Meyer, Patrick Weigelt and Holger Kreft 

 

SI 1. Treatment of taxonomic information.  

The datasets downloaded via GBIF contained 119,058,280 raw records (Fig. S1A). We first 

cleaned verbatim scientific names strings (Fig. S1B), by excluding name strings that would 

not be reliably linkable to accepted species names. For instance, we excluded records that 

were not identified to species level (e.g. ‘sp. nov.’ or ‘Sorbus sp.’, ‘ined.’, etc.) or where it 

was implied that the species identification was doubtful (e.g. ‘cf.’, ’aff.’, ‘à confirmer’, 

‘Sorbus ?arnoldiana’, ‘Oxyanthus sp. possibly unilocular’, etc.). We further excluded hybrids 

and cultivated forms (e.g. ‘x’, ‘<->’, ‘hybr.’, ‘hort.’, ‘cult.’, ‘var. "Ballerina"’, etc.). We 

corrected wrong capitalizations of letters, and removed random punctuations and signs. These 

steps reduced 2,206,831 verbatim name strings to 1,552,901 interpretable names, including 

accepted species and subspecies names, synonyms, and spelling variants with or without 

author information.  

We then performed the taxonomic standardization and validation. The basis for our taxonomic 

treatment was the comprehensive taxonomic information provided via The Plant List (TPL 

2014) and iPlant’s Taxonomic Name Resolution Service (TNRS 2014). In cases of conflicting 

information, we gave TPL priority. First, we compared genus names against genus names 

listed in TPL or TNRS. Then, we corrected misspelled genus names where we were confident 

regarding the true genus (doubtful cases were excluded). We then compared each name string 

to all possible scientific names listed under that genus in TPL. For each resulting pair of 

verbatim name and TPL-listed scientific name, we calculated the orthographic distance 

between species epithets and between the entire name strings (e.g. including author 

information), using an approximate string matching algorithm (generalized Levenshtein 

distance; using the adist function in R). This algorithm counts the total number of changes that 

have to be applied to one string in order to match another, and related that number to the 

entire length of the string. We then linked verbatim names via the best-matching TPL-listed 

name to the respective accepted species. For names that could not be matched to TPL-listed 

names or were not resolved to accepted species, we repeated these steps using taxonomic 

information from TNRS. We excluded all verbatim names that did not match names treated by 

TPL or TNRS as accepted names with no more than 25% orthographic distance, either 

directly or through a synonym. Overall, cleaning and validation led to an exclusion of 242,043 

verbatim names strings (Fig. S1E); All remaining 1,964,788 verbatim name strings (89%) 

converged to 367,703 accepted species. These were further reduced to 229,218 accepted 

species (Fig. S1I) by applying our basic geographical filter (see Methods).  

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1326v2 | CC-BY 4.0 Open Access | rec: 26 Aug 2015, publ: 26 Aug 2015

P
re
P
rin

ts



 

 

 

 

Figure S1. Workflow from raw mobilized data to usable occurrence records. Maps show spread of 

occurrence information for land plants, as mobilized via the Global Biodiversity Information Facility 

(GBIF), across 12,100 km grid cells. We retrieved (A) 119,058,280 raw records via GBIF, including 

(B) 2,206,831 verbatim name strings and (C) 4,314,752 verbatim coordinate combinations. Data 

cleaning, taxonomic standardization and taxonomic and geographical validation led to the exclusion of 

(D) 38,228,372 raw records, including (E) 242,043 unvalidatable name strings and (F) 252,550 invalid 

or imprecise coordinate combinations. Remaining validated records were reduced to unique records, 

which led to the exclusion of (G) 24,899,514 duplicated species-location-year-month-combinations and 

left (H) 55,929,317 unique validated records including (I) 229,218 accepted species. Depending on 

research question, further filtering might be necessary; e.g., applying our strict taxonomic, geographical 

and temporal filters (see Methods) would leave (J) 9,295,847 strictly filtered records. For details, see 

Methods and SI 1. 
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Figure S2. Non-covered species, temporal coverage of recent decades and record age in global DAI of 

plant occurrences. A) Geographical variation across 12,100 km grid cells in that portion of modeled 

vascular plant richness (Kreft & Jetz 2007) that was missing from mobilized occurrence information. 

B) Frequency distribution across land plant species in scores of temporal coverage since 1950, 

calculated as the mean minimum Euclidean distance between all possible months between 1950 and 

2010 to their respective closest months with records. C) Geographical variation in temporal coverage 

since 1950. D) Geographical variation in the time (in years) since the last mobilized record has been 

collected. 
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Figure S3. Taxonomic coverage of native and non-native species for selected families of seed plants. 

Species records for a subset of the global seed plant flora (105,031 species, c. 34% of all) were 

geographically validated against ‘botanical country’ checklists sourced from the World Checklist of 

Selected Plant Families (WCSP, 2013)). A) Taxonomic coverage of native seed plant species of 

selected families, based on geographically validated records. B-C) Number of species represented by 

occurrence records outside their known native ranges: B) Species recorded immediately adjacent to 

their native ranges; C) Species recorded far off their native ranges. Botanical countries are level-3 

regions of the Biodiversity Information Standards (TDWG). Color scales are the same in B-C. 
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Figure S4. Spatio-temporal patterns in digital accessible occurrence information. Maps show 

geographical patterns of three exemplary aspects of vascular plant occurrence information across five 

time periods between 1750 and 2010 in, and for the entire time span. (A-G) Record number; (H-N) 

Taxonomic coverage for vascular plants (recorded richness (GBIF) / modeled richness (Kreft & Jetz, 

2007)); values >1 mean larger recorded than modeled richness; note that mobilized records include 

non-native species whereas the model predicts native species richness; (O-U) Percentages of records 

excluded by moderate geographical uncertainty filtering (see Methods). Color scales are the same in 

(A-F), (G-L), (M-R). 
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Figure S5. Relationships between 9 metrics of occurrence information and the number of raw data. 

Pairwise Spearman-rank correlations between geographical patterns of different occurrence information 

metrics at the level of 12,100 km grid cells. TaxCov: taxonomic coverage, calculated as the ratio 

between recorded richness and richness modeled by (Kreft & Jetz 2007); GeoCov: geographical 

coverage, estimated as the number of sampling locations per 104 km² land area; TempCov: temporal 

coverage since 1750, estimated as the mean minimum Euclidean distance between all possible months 

between 1750 and 2010 to their respective closests month with records; TaxUnc: percentage of records 

lost under moderate taxonomic filtering; GeoUnc: percentage of records lost under moderate 

geographical filtering; TempUnc: percentage of species lost under moderate temporal filtering; 

CombUnc: percentage of species lost with all three moderate filters applied (see Methods for 

information on filters). MissSpp: number of species that are not recorded but expected based on the 

environment-richness; SinceLast: Time (in years) since the last mobilized record was recorded. NRaw: 

number of raw data mobilized via GBIF, included to test whether this simple surrogate is a good 

indicator of different occurrence information metrics. All correlations based on z-transformed variables. 
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