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Tolerance-based interaction: A new model targeting opinion

formation and diffusion in social networks

Alexandru Topirceanu, Mihai Udrescu, Mircea Vladutiu, Radu Marculescu

One of the main motivations behind social network analysis is the quest for understanding

opinion formation and diffusion. Previous models have limitations, as they typically assume

opinion interaction mechanisms based on thresholds which are either fixed or evolve

according to a random process that is external to the social agent. Indeed, our empirical

analysis on large real-world datasets such as Twitter, Meme Tracker, and Yelp, uncovers

previously unaccounted for dynamic phenomena at population-level, namely the existence

of distinct opinion formation phases and social balancing. We also reveal that a phase

transition from an erratic behavior to social balancing can be triggered by network

topology and by the ratio of opinion sources. Consequently, in order to build a model that

properly accounts for these phenomena, we propose a new (individual-level) opinion

interaction model based on tolerance. As opposed to the existing opinion interaction

models, the new tolerance model assumes that individual's inner willingness to accept new

opinions evolves over time according to basic human traits. Finally, by employing discrete

event simulation on diverse social network topologies, we validate our opinion interaction

model and show that, although the network size and opinion source ratio are important,

the phase transition to social balancing is mainly fostered by the democratic structure of

the small-world topology.
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Timişoara, 300223, Romania7

2Carnegie Mellon University, Department of Electrical and Computer Engineering,8

Pittsburgh, PA 15213, USA9

*mudrescu@cs.upt.ro10

ABSTRACT11

One of the main motivations behind social network analysis is the quest for understanding opinion

formation and diffusion. Previous models have limitations, as they typically assume opinion interaction

mechanisms based on thresholds which are either fixed or evolve according to a random process that is

external to the social agent. Indeed, our empirical analysis on large real-world datasets such as Twitter,

Meme Tracker, and Yelp, uncovers previously unaccounted for dynamic phenomena at population-level,

namely the existence of distinct opinion formation phases and social balancing. We also reveal that a

phase transition from an erratic behavior to social balancing can be triggered by network topology and by

the ratio of opinion sources. Consequently, in order to build a model that properly accounts for these

phenomena, we propose a new (individual-level) opinion interaction model based on tolerance. As

opposed to the existing opinion interaction models, the new tolerance model assumes that individual’s

inner willingness to accept new opinions evolves over time according to basic human traits. Finally,

by employing discrete event simulation on diverse social network topologies, we validate our opinion

interaction model and show that, although the network size and opinion source ratio are important, the

phase transition to social balancing is mainly fostered by the democratic structure of the small-world

topology.

12
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INTRODUCTION14

Social networks analysis is crucial to better understand our society, as it can help us observe and evaluate15

various social behaviors at population level. In particular, understanding the social opinion dynamics and16

personal opinion fluctuation (Golbeck, 2013; Geven et al., 2013; Valente et al., 2013) play a major part17

in fields like social psychology, philosophy, politics, marketing, finances and even warfare (Easley and18

Kleinberg, 2010; Pastor-Satorras and Vespignani, 2001; Fonseca, 2011). Indeed, the dynamics of opinion19

fluctuation in a community can reflect the distribution of socially influential people across that community20

(Kempe et al., 2003; Hussain et al., 2013; Muchnik et al., 2013); this is because the social influence is the21

ability of individuals (agents) to influence others’ opinion in either one-on-one or group settings(Maxwell,22

1993; Wang and Chen, 2003; McDonald and Wilson, 2011). Without social influence, the society would23

have an erratic behavior which would be hard to predict.24

Existing studies on opinion formation and evolution (Acemoglu et al., 2013; Yildiz et al., 2013;25

Valente et al., 2013; Hussain et al., 2013; Guille et al., 2013; Ruan et al., 2015) rely on the contagion26

principle of opinion propagation. However, such studies offer limited predictability and realism because27

they are generally based on opinion interaction models which use either fixed thresholds (Deffuant et al.,28

2000; Javarone and Squartini, 2014), or thresholds evolving according to simple probabilistic processes29

that are not driven by the internal state of the social agents (Fang et al., 2013; Deng et al., 2013). To30

mitigate these limitations, we reveal new dynamical features of opinion spreading that previous models31

fail to identify. The consistent and recurring real-world observations are then explained by introducing a32
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new social interaction model which takes into account the evolution of individual’s inner state. We finally33

validate the proposed model by analyzing empirical data from Twitter, MemeTracker and Yelp, and by34

using our opinion dynamics simulation framework - SocialSim (Topirceanu and Udrescu, 2014) - which35

includes multiple complex topological models, as well as customizable opinion interaction and influence36

models. Consequently, our main contributions are threefold:37

1. Identification of four distinct phases in opinion formation; this aspect is not captured by existing38

models (Sznajd-Weron and Sznajd, 2000; Li et al., 2012a; Acemoglu et al., 2013; Chen et al., 2014;39

Guille et al., 2013; Fang et al., 2013) although previous research (Hołyst et al., 2000) has noticed40

that there exist a few stages in opinion evolution. We argue that the succession of opinion formation41

phases is critical to the social balancing phenomenon (i.e. the general opinion becomes stable42

despite constant local oscillations). We also identify a phase transition from an unstable opinion to43

social balancing which is related to the dynamics of opinion formation phases.44

2. Modeling opinion dynamics: we propose a new graph and threshold based interaction model with45

stubborn agents (Acemoglu and Ozdaglar, 2011) which is able to reproduce the phenomena that46

we observe in real-world datasets. Inspired by social psychology, our new model assumes that47

individual’s willingness to accept new opinions (i.e. tolerance) changes over time according to48

his/her inner state.49

3. Validation of the newly proposed tolerance model via our discrete-event simulator SocialSim50

(Topirceanu and Udrescu, 2014). The analysis we provide reveals the deep connection between51

social balancing and the relevant parameters of social networks such as network size, topology, and52

opinion source ratio (i.e. stubborn agents distribution)(Acemoglu et al., 2013); this correlates well53

with our empirical observations on large social networks.54

Taken together, these new contributions show that opinion dynamics in social networks exhibit specific55

patterns that depend on network size and ratio of stubborn agents (which we consider to be opinion56

sources), as well as underlying network topology. Consequently, our findings can be used to improve57

our understanding of opinion formation and diffusion in social networks, and predictability of social58

dynamics.59

RESULTS60

Opinion formation phases and social balancing61

By analyzing data on opinion evolution using Twitter and MemeTracker hashtags, as well as user reviews62

and votes for local businesses from Yelp, we identify unique temporal patterns in all these datasets.63

Figure 1 displays the popularity of six hashtags on MemeTracker and Twitter, expressed as posts/time64

evolution (posts are replies and tweets). Based on the observed fluctuations, we identify the following65

phases in opinion formation: an initiation phase (I) when new opinions are injected into the social network66

and the number of replies starts to increase rapidly; a fusion phase (F) when the opinion dynamics reaches67

a maximum and different opinions start to collide; a tolerance phase (T ) which represents a fluctuating yet68

convergent behavior; and, occasionally, an intolerance phase (T ) when the fluctuations of opinion decrease69

and converge towards zero. Based on network topology and/or ratio of opinion sources, the diffusion70

process may reach the fourth phase of intolerance. Opinion sources, or stubborn agents (Acemoglu et al.,71

2011, 2013), are agents within the social network (i.e. Twitter or Yelp users) who try to instill a certain72

opinion by influencing their peers; they are represented by those people within the network who hold73

strong opinions that do not change over time. The concentration of opinion sources is expressed as their74

ratio relative to the entire population.75

Additionally, the analysis of Twitter results in Figure 1b shows that tags 1-3 all exhibit a clear F76

phase (first spike), then they enter a balanced oscillation (T phase). This evidence supports the empirical77

observation of a phenomenon that we call social balancing, i.e., oscillations at microscopic scale of78

individuals opinion become stable and predictable at the macroscopic scale of the society. As such, social79

balancing is defined as the succession of I −F −T phases, whereas social imbalance occurs if either the80

society does not reach T or, after reaching T , it decays into a T phase. For example, tag 4 (#Iran) in81

Figure 1b has a shorter, more abrupt oscillation. In this case, we consider that the number of opinion82

sources is not high enough (i.e. above a critical threshold) for social balancing to happen. Tag 5 (#Haiti)83
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has a longer F phase because of the (probably) very high concentration of opinion sources. Indeed, the84

2010 Haiti earthquake was breaking news so there were many outbreaks of opinion, scattered across the85

globe, resembling a random network topology of sources of opinion; nonetheless, for tag 5 the society86

reaches social balance. Tag 6 is an example of social imbalance with a decisive crystallization of just one87

opinion, as there is no T phase.88

Phase transition89

Apart from the quantitative measure of posts/time, we also consider the qualitative information from Yelp90

submitted by votes to local businesses (Figure 2a-c). With data from Yelp, we show the effects of a phase91

transition from social instability to social balancing which can occur when a critical concentration of92

opinion sources is reached in a social network. Figures 2a-c highlight the fact that opinion (i.e. the stars93

given by users to a particular business) stabilizes only after reaching a critical ratio of opinion sources (i.e.94

votes representing strong opinions). This can be viewed in Figure 2a at time point OX = 35, in Figure 2b95

at time point OX = 32, and in Figure 2c at time point OX = 28 and again at OX = 58, where the total96

number of reviews and votes rises dramatically (see the vertical red line). We interpret this phenomenon97

as a rise beyond a σ threshold for the concentration of opinion sources, which determines the social98

balancing, i.e. the average opinion stabilizes despite of opinion oscillations at local level. As such, in99

Figure 2b, we observe a stabilization of the average score given by users at time point OX = 35. The100

same type of stabilization occurs in Figure 2b at time point OX = 32. Moreover, in Figure 2b, we identify101

two stabilization points: OX = 28 and OX = 58.102

Corroborating all these empirical observations, we can state that Twitter and MemeTracker illustrate a103

responsive type of behavior, i.e. an immediate evolution towards the F phase, so a high opinion change104

is quickly reached for a relatively small ratio σ of opinion sources. This behavior, in turn, correlates105

well with another study which shows that Twitter online networks have a strong random and small-world106

component (Duma and Topirceanu, 2014).107

In contrast, the Yelp dataset can be associated with a saturated type of behavior, as the ratio σ (relative108

to the maximum number of votes) needed to trigger the phase transition towards social balancing is high109

in all three cases. Balancing does not occur until a high concentration of opinion sources (we interpret110

them as similar to opinion-influencing ”stubborn agents” (Acemoglu et al., 2013) or ”blocked nodes”111

(Ruan et al., 2015)) are inserted into the social network.112

New tolerance-based opinion model113

This section analyzes the characteristics of a new opinion model that can reproduce this kind of real-world114

phenomena, i.e. the four opinion formation phases and phase transition towards social balancing.115

In terms of network structure, our analysis includes the basic topologies such as mesh, random (Erdös116

and Rényi, 1960), small-world (Watts and Strogatz, 1998), and scale-free networks (Barabási and Albert,117

1999). Also, based on the last decade of research on realistic social network topology generation which118

either adds the small-world property to scale-free models (Holme and Kim, 2002; Fu and Liao, 2006;119

Li et al., 2012b), or adds a power-law degree distribution to the small-worlds (Jian-Guo et al., 2006;120

Chen et al., 2007; Wang and Rong, 2008; Zaidi, 2013), we also consider the Watts-Strogatz with degree121

distribution (WSDD) (Chen et al., 2007).122

In terms of opinion dynamics, we rely on a predictive opinion interaction model that can be classified123

as being graph- and threshold-based (Guille et al., 2013). Generally speaking, previous models use124

fixed thresholds (Javarone and Squartini, 2014; Biswas et al., 2011; Li et al., 2012a; Das et al., 2014; Li125

et al., 2013) or thresholds extracted from real-world examples (Galuba et al., 2010; Saito et al., 2011).126

However, there are a few models which use dynamic thresholds (Fang et al., 2013; Deng et al., 2013;127

Li et al., 2011), but their evolution is not driven by the internal states of the social agents. On the other128

hand, our empirical references (i.e Twitter, MemeTracker and Yelp) indicate that opinion does not cease129

to oscillate and consensus is a rare case in real world. Therefore, we propose an opinion interaction130

model based on stubborn agents, because it assumes that the society does not reach consensus. Based on131

recent research on stubborn agents which use a discrete (Yildiz et al., 2013) or continuous (Acemoglu132

et al., 2013) representation of opinion, we integrate the following opinion models: one-to-one (simple133

contagion) versus one-to-many diffusion (complex contagion) (Centola and Macy, 2007), and discrete134

(0 or 1) versus continuous (0 to 1) opinion representation. By combining opinion representation and135

opinion diffusion, we obtain 4 distinct models; they are defined in Figure 3a and exemplified in Figures 3b136
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and 3c. We build our tolerance-based opinion interaction model by using the SD (1) and SC (2) opinion137

representations as defined in Figure 3a.138

Given a social network G = {V, E} composed of agents V = {1, 2, ..., N} and edges E, we define the139

neighborhood of agent i ∈ V as Ni = { j | (i, j) ∈ E}. The disjoint sets of stubborn agents V0,V1 ∈ V140

never change their opinion, while all other (regular) agents V \{V0 ∪V1} update their opinion based on141

the opinion of one or all of their direct neighbors.142

We use xi(t) to represent the real-time opinion of agent i at time t. Normal (regular) agents can start143

with a predefined random opinion value xi(0) ∈ [0,1]. The process of changing the opinion of regular144

agents is triggered according to a Poisson distribution and consists of either adopting the opinion of a145

randomly chosen direct neighbor, or an averaged opinion of all direct neighbors.146

We represent with si(t) the discrete opinion of an agent i at moment t having continuous opinion xi(t).147

In case of the discrete opinion representation SD (1) (Figure 3a), xi(t) = si(t); in case of the continuous148

opinion representation SC (2) (Figure 3a), si(t) is given by equation 1.149

si(t) =

{

0 i f 0 ≤ xi(t)< 0.5

1 i f 0.5 ≤ xi(t)≤ 1
(1)

Furthermore, s(t) denotes the average state of the population at a certain time t by averaging the150

opinion of all individual agents i ∈ V .151

s(t) =
1

|V | ∑
i∈V

si(t) (2)

The previous social interaction models (Deffuant et al., 2000; Javarone and Squartini, 2014; Li et al.,152

2012a; Chau et al., 2014; Das et al., 2014; Fang et al., 2013; Li et al., 2011) do not assign nodes (i.e.153

individuals or social agents) the basic properties of humans, i.e. humans evolve, learn, react, and adapt154

in time. The reason for the simplicity behind the existing models is twofold: first, the state-of-the-art155

models are only suited for theoretical contexts so bringing additional complexity to the interaction model156

would significantly increase the difficulty of mathematical analysis; second, involving measures of human157

personality (e.g. quantifying an individuals trust, credibility, or emotional state) is a complicated endeavor,158

in general; this was not the main goal of previous work.159

Individual tolerance: interpretation and formalism160

In order to improve the existing opinion interaction model based on a fixed threshold, we consider the161

evolution of personal traits by taking inspiration from social psychology. As a new contribution to the162

state-of-the-art, we introduce the concept of tolerance which reflects the individual’s inner state and163

personal beliefs regarding surrounding opinions. For instance, egocentrism, as it is called in psychology,164

is highly correlated with individual’s emotional state (Elkind, 1967). We choose to extend this model165

because the egocentrism-emotional state correlation is a trait that has been shown to influence and evolve166

with individual opinion (Windschitl et al., 2008).167

Corroborating literature on attitude certainty (Clarkson et al., 2013), consensus (Clarkson et al., 2013),168

confirmation bias (Nyhan and Reifler, 2010), social group influence (Roccas and Amit, 2011), and ingroup169

emotion (Moons et al., 2009), we extrapolate the mechanism that leads to the formation of opinion into a170

measurable parameter. As such, we define tolerance θ as a parameter that reflects the willingness of an171

agent to accept new opinions. Similar to real life, individuals with higher tolerance will accept the others172

opinion easier; thus, this parameter can be defined as a real number 0 ≤ θ ≤ 1. An agent with a tolerance173

value of 1 is called fully tolerant, whereas an agent with a tolerance of 0 is called fully intolerant (i.e.174

stubborn agent). Tolerance values which are greater than 0.5 describe a tolerance-inclined agent, while175

values smaller than 0.5 describe an intolerance-inclined agent.176

Similar to the threshold-based continuous opinion fluctuation model described by Acemoglu et al.177

(Acemoglu et al., 2013), tolerance can be used as a trust factor for an agent relationship; however, as178

opposed to the trust factor, tolerance changes its value over time:179
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xi(t) =











0 i f i ∈ V0

1 i f i ∈ V1

θi(t)x j(t)+(1−θi(t))xi(t −1) i f j ∈ Ni

f or t > 0 (3)

where the new opinion xi(t) is a weighted sum of the agent’s prior opinion xi(t − 1) and the current180

opinion x j(t) of one randomly selected direct neighbor. The weights for the two opinions are given by181

the current tolerance θi(t) of the agent, thus, the extent of how much it can be influenced depends on its182

internal state.183

As can be inferred from equation 3, the greater the tolerance of an agent, the easier it can accept184

external opinions from others. At the beginning of the opinion formation process (t = 0), all agents are185

considered as having a high tolerance (θi(0) = 1), but, as the society evolves, agents become intolerant,186

therefore segregated in clusters which tend to have a more stable opinion. We further define the tolerance187

θ of the entire population as a normalized average of all individual tolerances:188

θ(t) =
1

|V | ∑
i∈V

θi(t) (4)

We also introduce the concept of opinion change ω as the ratio of agents which have changed their189

current state (discrete time step t) since the last observation (time t −1):190

ω(t) =
1

|V | ∑
i∈V

|si(t)− si(t −1)| (5)

If an agent changes its state from one opinion to another, then the absolute difference|si(t)− si(t −1)|191

will be 1; conversely, it will be 0 if the agent state does not change. This change, averaged over all agents192

at the interaction (discrete) moment t, defines the opinion change of the population ω(t). This metric is193

used to draw insights regarding the current tolerance level across the entire society.194

Progressive tolerance model195

Our model for tolerance evolution stems from the idea that the evolution towards both tolerance and196

intolerance varies exponentially (Hegselmann and Krause, 2002; Weidlich, 2002), e.g. a person under197

constant influence becomes convinced at an increased rate over time. If that person faces an opposing198

opinion, it will eventually start to progressively build confidence in that other opinion. Thus, our proposed199

progressive model represents the tolerance fluctuation as a non-linear function, unlike other models in200

literature. For the first time, we integrate these socio-psychological characteristics in the dynamical201

opinion interaction model; as such, the new tolerance state is obtained as:202

θi(t) =

{

max (θi(t −1)−α0ε0, 0) i f si(t −1) = s j(t)

min (θi(t −1)+α1ε1, 1) otherwise
(6)

In equation 6, tolerance decreases by a factor of α0ε0 if the state of the agent before interaction, si(t −1),203

is the same as the state of the interacting neighbor (randomly chosen from all direct neighbors) s j(t). If204

the states are not identical, i.e. the agent comes in contact with an opposite opinion, then the tolerance205

will increase by a factor of α1ε1. Variable t represents the time step where an opinion update is triggered;206

these moments are considered as being randomly distributed. The two scaling factors, α0 and α1, both207

initially set as 1, act as weights (i.e. counters) which are increased to account for every event in which the208

initiating agent keeps its old opinion (i.e. tolerance decreasing), or changes its old opinion (i.e. tolerance209

increasing). Therefore, we have:210

α0 =

{

α0 +1 i f si(t −1) = si(t)

1 otherwise
(7)
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α1 =

{

1 i f si(t −1) = si(t)

α1 +1 otherwise
(8)

On even terms with the observation of the majority illusion (Lerman et al., 2015), which explains that211

globally rare opinions and bias may be strongly present in local neighborhoods as a result of the topology212

of social networks, we dynamically model bias using the two scaling factors α0 and α1. Whenever an213

event occurs, the counter corresponding to the other type of event is reset. These factors are used to214

increase the magnitude of the two tolerance modification ratios ε0 (intolerance modifier weight) and215

ε1(tolerance modifier weight). The two ratios are chosen with the fixed values of ε0 = 0.002 and ε1 =216

0.01. To determine these values, we have tried various ε0 : ε1 ratios as follows: if ε0 is increased such that217

ε0 : ε1 = 1 : 1, most nodes will quickly become intolerant, as opinion will cease to diffuse; conversely,218

if ε0 is decreased closer to a 1:10 ratio, then the society will become tolerance-inclined, with random219

opinion fluctuations. The used ε0 : ε1 ratio of 1:5 was chosen through consistent experimentation in order220

to provide a good balance between the deviations towards tolerance and intolerance, respectively.221

As an illustration of the 1:5 ratio for ε0 : ε1, Figure 4 represents the non-linear tolerance function222

as implemented in equation 6. The displayed examples show that a total of 10 consecutive steps are223

required to maximize the tolerance if an agent starts with θi(0) = 0.5, because the cumulative sum of224

θi(0)+ ε0 ∑ j α0 reaches 1 after 10 iterations. Similarly, in Figure 4b, the sum θi(0)− ε1 ∑ j α1requires225

t = 45 iterations to reach intolerance (θi(t) = 0), having started from θi(0) = 1.226

MODEL VALIDATION227

Our dynamical opinion model adds significant complexity to the opinion interaction model. Therefore, we228

use discrete event simulation (SocialSim (Topirceanu and Udrescu, 2014)) over complex social network229

topologies, in order to validate our model’s capability to reproduce real-world phenomena like the opinion230

formation phases and the phase transition towards social balancing.231

Simulation on basic topologies232

Regular networks233

The first simulation setup is based on regular topologies, i.e. lattice and mesh. The results show that234

a homogeneous cluster of stubborn agents divides the overall society opinion (i.e. green (1) vs. red235

(0)) with a ratio that is directly proportional with their initial distribution. Figure 5 shows how a mesh236

network of 100,000 agents evolves under the influence of 64 stubborn agents – 32 of each opinion evenly237

distributed among the population. This way, we observe the same opinion formation phases as identified238

by our empirical observations: initiation I (Figure 5a), fusion F (Figure 5b), tolerance T (Figure 5c),239

and intolerance T (Figure 5d). The situation in Figure 5c may lead to one of two scenarios: a perpetual240

(proportional) balance of the two opinions, introduced by us as social balancing (the society remains in241

the T phase, and T is never reached), or a constant decrease in opinion dynamics which ultimately leads242

to a stop in opinion change (the society reaches the T phase), as depicted in Figure 5d.243

Figure 6a illustrates a society which tends towards the tolerance phase T and social balance, by244

providing the evolution of the overall society state s(t) (as defined in equation 2), tolerance θ(t) (see245

equation 4), and opinion change ω(t) (equation 5). For the society described in Figure 6a, the initiation246

phase I is revealed by the early increase of ω(t), as the number of individuals with opinion increases. The247

climax of ω(t) represents the fusion phase F . At this stage, there is a maximum number of bordering248

agents with distinct opinions (a situation that is also depicted in Figure 5b) and s(t) evens out. In the249

tolerance phase T , the agents tend to stabilize their opinion, i.e. θ(t) stabilizes and s(t) converges towards250

the ratio of stubborn agents (which was chosen as 1:1).251

Another observation is that opinion fluctuation is determined by the stubborn agents density (see252

Figures 6b, c and d). Because of the regular topology, the fewer stubborn agents (regardless of their253

opinions) there exist in the society, the more the opinion fluctuates. This is explained by the fact that254

having few stubborn agents means few points of opinion control and stabilization in the local mesh255

structure; conversely, many stubborn agents make possible the control of more regular agents. Because256

of this, s(t) may drastically get biased in someone’s favor until the entire society stabilizes (Figure 6b).257

Also, due to the small influencing power of a few agents, the opinion will not necessarily stabilize with258
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the same distribution ratio. As expected, the opinion distribution of a society with a high opinion source259

concentration will tend towards the ratio of the two stubborn agent populations (Figure 6c).260

If the ratio of the two stubborn agent populations is not 1:1, then the opinion fluctuation will be around261

that ratio only during the initiation phase I. Afterwards, the overall opinion will get more biased towards262

the opinion of the larger stubborn agent population. In Figure 6d the ratio is 1:4 between green and red263

stubborn agents, therefore the fluctuation starts around 20% green opinions, but eventually stabilizes at264

8%.265

The scenarios presented above hold true for lattices. Consequently, these conclusions are more of266

theoretical interest, as real social networks are typically not organized as such regular topologies. Next,267

we consider more realistic network topologies.268

Small-world networks269

By constructing a Watts-Strogatz small-world network of 100,000 nodes, (Watts and Strogatz, 1998;270

Strogatz, 2001; Wang and Chen, 2003; Tsvetovat and Carley, 2005; Chen et al., 2007; Bandyopadhyay271

et al., 2011) we show experimentally that a different type of behavior can emerge. For instance, Figures272

7a and b present the society as having a mixed opinions distribution with no noticeable clusters. As273

opposed to the representation in Figure 5, this topology does not allow multiple agents to cluster around274

the stubborn agents and converge towards their opinion. Consequently, this model not only increases the275

dynamics of opinion fluctuation, but also keeps the society in social balance. The fourth and final phase276

of opinion evolution - the intolerance phase - does not occur, and opinion change ω(t) is maintained at a277

(high) constant level. Moreover, the state of the society s(t) is stable.278

The society depicted in Figure 7a is homogeneously mixed from an opinion standpoint. Clusters do279

not form because many agents have long range links to other distant agents whose opinion can be different280

from the local one. This leads to a perpetual fluctuation which remains in balance. The noticeable effect281

on a small-world network is that the opinion stabilizes very fast and always at the ratio of the two stubborn282

agent populations (i.e. 1:1 in our case). In a mesh network, having few stubborn agents leads to an283

imbalance of opinion, but in the case of small-world topologies, opinion across the entire population284

always stabilizes. Opinion change ω(t) is also much higher compared to the mesh (i.e. 42% versus 10%285

under the same conditions) due to the long range links.286

Scale-free networks287

We apply the same methodology by constructing a 100,000 node Barabasi-Albert scale-free network288

and highlight the unique behavior it enacts.(Barabási and Albert, 1999; Pastor-Satorras and Vespignani,289

2001; Albert and Barabási, 2002; Wang and Chen, 2003; Song et al., 2005; Chen et al., 2007) As Figure290

7c shows, the society does not reach a balance at the expected value (32 : 32 ⇒ 50%); instead, it gets291

biased towards one opinion or another. The reason behind this behavior is related to the power-law degree292

distribution (Wang and Chen, 2003). As such, scale-free networks behave more like a tree-structure with293

hubs rather than as a uniform graph. Indeed, as opinion flows from one agent to another, the higher impact294

of the hub nodes on the opinion formation at the society level becomes clear. If, for example, a green295

stubborn agent is placed as the root of a sub-tree filled with red stubborn agents, that sub-tree will never296

propagate red opinion as it cannot pass through the root and connect with other nodes. Experimentally,297

this is illustrated in Figure 7c. The green agents have been placed over nodes with higher degrees, and298

this can be seen in the evolution of the opinion. There is some initial fluctuation in the society and299

although the stubborn agent distribution is even, the fluctuation rapidly imbalances as the overall tolerance300

θ(t) plummets and all agents become sort of ”indoctrinated” by the green opinion. The rapid drop in301

tolerance coincides with the drop in opinion change ω(t) and the stabilization of the state s(t) at over302

90%. Simulations were also run on the WSDD topology (Chen et al., 2007), which has a strong scale-free303

component, and yield similar results which lead to the same set of observations.304

Phase transition in opinion dynamics305

This section aims at analyzing the impact of topology, network size, interaction model, stubborn agent306

placement, ratio and concentration on the opinion change (ω), and on convergence towards intolerance307

(θ ).308

Simulations show that, in a society with a fixed stubborn agent distribution, the topology τ determines309

if:310

• the society enters the intolerance phase I: θ → 0 (with θ < 0.1), which also results in ω → 0;311

7/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1322v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
ri
n
ts



• the society balances and never enters the intolerance phase I: θ → θlimit , where θlimit > 0.1 and312

maintains a high ω;313

• the society continues to oscillate for 0.1 < θ < 1, but the tolerance level does not stabilize.314

In case of the Yelp dataset, we notice that for a given topology τ , and a network of size N, when the315

concentration of stubborn agents is bigger than a critical ratio σ , the society never becomes intolerant. In316

such cases, the society becomes balanced, with slight oscillation in tolerance or opinion change. The goal317

is therefore to find the tuples (τ , N, σ ) at which this phenomenon occurs.318

To obtain our results we have used five topologies τ (mesh, random, small-world, scale-free and319

WSDD), network sizes N of 400 up to 100,000 nodes, our new tolerance interaction model, a ratio of320

1:1 between green (1) and red (0) stubborn agents, and an increasing concentration of stubborn agents321

ranging from 1% to 36%.322

Impact of topology323

The tolerance and opinion change with respect to the number of stubborn agents, as depicted in Figurs324

8a and b, highlight a clear difference between the five topologies, namely mesh, random, small-world,325

scale-free, and WSDD. There is a total of three clearly distinguishable behaviors: a responsive behavior326

(present in small-worlds and random graphs), a linear behavior (for mesh networks), and a saturated327

behavior (corresponding to scale-free and WSDD networks).328

The tolerance increases linearly for the mesh, as the population of stubborn agents increases. Con-329

sequently, there is no critical σ for which a phase transition occurs due to the high regularity of the330

network, but there is a visible saturation point (when the blue graph begins to drop in Figure 8a). This331

happens because the society is physically filled with more stubborn agents than regular ones and because332

all stubborn agents have θ = 0, the overall tolerance begins to drop.333

The responsive behavior exhibited by the random network and small-world networks suggests that334

these two topologies behave similarly in the context of opinion source saturation. The two topologies335

are almost identical under the conditions defined here, as they behave almost as the opposite of mesh336

networks: once the critical point σ is reached, their tolerance rises to the maximum value. Then, as the337

stubborn agents population increases, the tolerance and opinion change values decrease proportionally.338

The random and small-world topologies are equivalent with the mesh topology as the society becomes339

saturated with stubborn agents (i.e. see Figures 8a and b in terms of tolerance θ and opinion change ω ,340

respectively).341

Finally, the saturated behavior groups together the scale-free and WSDD topologies, both of which342

have the feature of degree-driven preferential attachment. The two topologies show smaller responsiveness343

to social balancing. As depicted in Figures 8a and b, the critical point of stubborn agents concentration344

for scale-free is by far the greatest one (i.e. σ = 16%) and the maximum tolerance θ reached is the345

smallest among the simulations aiming at the impact of topology (20%). The WSDD topology shows a346

better response, at a much lower critical stubborn agents concentration point (σ = 4%) and reaches social347

balance at θ = 30%.348

Impact of network size349

When analyzing the opinion change at society level, the same observations and classification are valid for350

all other network sizes. The larger the size N is, the more accurate the delimitation shown in Figures 8a351

and b becomes.352

The impact of size offers a comparison of different tolerance stabilization on the same topology. The353

results in Figures 8c, d, e, and f show how well the social balancing effect scales with increasing sizes of354

the network.355

The behavior of meshes, presented in Figure 8c, shows a linearly proportional increase of the critical356

stubborn agents concentration σ (around 20-25%) in accordance with the network size N. A similar357

evolution is visible in Figure 8f, on networks with preferential attachment, where the required σ is also358

proportionally bigger on larger networks. In Figures 8d and 8e, the random and small-world networks359

exhibit similar behavioral patterns: they achieve the critical point σ with maximal opinion change, and360

then evolve towards intolerance at a pace that is corroborated with N (i.e. a slower drop in tolerance for361

larger networks occurs).362

All simulations presented in this section confirm our main observations (Twitter, MemeTracker, Yelp)363

on opinion formation phases and phase transition towards social balancing.364
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DISCUSSION365

The results for the proposed tolerance-based opinion interaction model show that, if individual traits are366

considered for modeling social agents, then we can realistically reproduce real-world dynamical features367

of opinion formation such as opinion formation phases, as well as their evolution towards social balancing.368

At the same time, we demonstrate that the dynamics of opinion formation is influenced by topology,369

network size and stubborn agent (opinion source) distribution across the entire population. Overall, the370

topology seems to have the strongest influence on opinion formation and spread; this can be summarized371

by the following different tendencies:372

• Responsive behavior: Tolerance stabilization is attained right after reaching a relatively low critical373

ratio of stubborn agents. Inserting additional stubborn agents entail a drop in autonomy and opinion374

flow. Such a behavior is achieved by random and small-world topologies, and it can be motivated375

by the uniform degree distribution and the existence of both local and long-range links, which376

foster opinion diversity and social balancing; this can be representative for a decentralized and377

democratic society.378

• Linear behavior: The critical threshold at which tolerance becomes stable for mesh topologies379

increases linearly with the stubborn agents concentration. The mesh topology corresponds to380

a limited, almost ”autistic” social interaction behavior (where each agent only interacts with381

close proximity neighbors); therefore, the probability of opinion diversity only increases with382

the proportional addition of stubborn agents. For meshes, social balancing is attained only if a383

substantial number of stubborn agents is inserted.384

• Saturated behavior: Tolerance converges slowly around a specific low value. This behavior is385

achieved in scale-free and WSDD networks. Due to the nature of these topologies, even though386

long-range links exist, nodes tend to be preferentially attached to the same hub nodes, meaning the387

same opinion sources. The amount of stubborn agents required to reach social balance is much388

higher and the resulting balance saturates quickly. It is thus a conservative, stratified and oligarchic389

type of society which reacts later and slower to new stimuli. Most individuals within this type of390

society remain intolerant and opinion change is treated as suspicious and non-credible.391

Besides these original contributions, the results obtained with our model confirm prior studies which392

show how individuals converge towards the state of their ingroup (Moons et al., 2009; Van Der Schalk393

et al., 2011). This is especially noticeable on networks with high modularity, like the WSDD network in394

which every member in a community converges towards the community’s dominant opinion, yet every395

community converges towards a different state.396

An important real-world aspect of our new tolerance model (which assumes that the level of acceptance397

of neighboring opinions evolves over time) is that the tolerance level of an agent θi(t) is proportional to398

the degree of the node. In other words, the more neighbors a node has, the more likely it is to receive399

different influences which can guarantee a higher tolerance level. This observation is backed up by a400

recent study which proves that individuals with a higher (in)degree are less likely to be influenced, and401

the influence of friends is not significantly moderated by their friends’ indegree and friendship reciprocity402

(Geven et al., 2013).403

The results rendered with our tolerance model also fall in line with a research direction started by404

Gross et al. (Gross and Blasius, 2008) where the authors show that there is a self-organization in all405

adaptive networks, including multi-agent opinion networks. Our real-world observations and opinion406

simulation results show a similar topological self-organization based on stubborn agent topological407

properties.408

Finally, the study of opinion dynamics through our proposed concept of social balancing shows409

key features that may be used in practical applications, like marketing or conflict resolution. Under the410

requirement of keeping the social state stable, while never reaching intolerance, we provide a classification411

of network topologies based on the social balancing property. Networks with the democratic small-world412

structure promote balancing; the phenomenon is also exhibited if there is a high concentration of stubborn413

agents to stabilize opinion in mesh networks. If there are significantly fewer stubborn agents in the414

network, balancing will only be achieved if one side is using a placement strategy to counter its rivals415

(Gionis et al., 2013). A small-world network will not offer an advantage to any of the opinions due the416

link layout and uniform degree distribution. On the other hand, the oligarchic scale-free topology shows417
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a clear importance of strategically placed agents in hub nodes which intrinsically render the opposing418

nodes on lower levels of the tree virtually powerless. The balancing phenomenon does not occur in419

networks with scale-free properties. Clearly, the social balancing concept remains open for further debate,420

improvement, and real-world validation.421

METHODS422

We rely on the following datasets, which contain opinion fluctuation data with time information:423

The Yelp dataset: contains graded (1-3 stars) user reviews of American businesses, each with a424

timestamp. One can obtain insights on the popularity of a business at a given time. The usable information425

is the number of reviews at a given moment in time (interpreted as network size of individuals with an426

opinion), the average grade in time (the average opinion over time), and the number of votes to each427

review (ratio of agents with strong or “stubborn” opinions, because when an agent votes, his opinion is428

already made up). The dataset contains 366,715 users, 61,814 businesses and 1,569,264 reviews.429

MemeTracker and Twitter hashtags with time information from the Stanford Large Network Dataset430

Collection (SNAP); which contain the history (repost rate in time) of diverse, popular hashtags. We can431

use this data to analyze the evolution of a particular opinion in time. MemeTracker phrases are the 1,000432

highest total volume phrases among 343 million phrases collected within 2008-2009. Twitter hashtags are433

the 1,000 highest total volume hashtags among 6 million hashtags from Jun-Dec 2009.434

Discrete simulation methodology435

Like any discrete event simulation, we define the salient properties of the experimental setup which436

was used to obtain the simulation results with our Java-based opinion dynamics simulator, SocialSim437

(Topirceanu and Udrescu, 2014).438

Events are synchronized by the simulation clock; we call the period of this clock a simulation day.439

One day is a simulation period in which agents can interact with their neighbors. However, an agent does440

not interact daily, in fact each agent picks a random number of days to be inactive after each active day. In441

our simulation, we use a random timeout interval between 1 day and 50 days. Only after this time has442

elapsed, will an agent interact again with one random neighbor. After that interaction, the agent will again443

choose to be inactive for a random period of days.444
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(a)

(b)

Figure 1. Opinion dynamics for six popular hashtags on: a. MemeTracker. Tags 1, 5, and 6 all exhibit

the fusion phase (F) (opinion spike), then they slowly converge towards intolerance. Tags 2 and 4 have an

initial spike before the F phase and more oscillations after F . The tolerance phase is depicted in tag 2 as

the oscillation exists, but it is balanced. Tag 3 exhibits a second spike after the F phase, then enters the

intolerance phase; as such, social balancing does not occur in tag 3. b. Twitter. Tags 1, 2, 3 and 5 exhibit

the fusion phase F (first opinion spike), then they oscillate during the tolerance phase keeping social

balance. Tags 4 and 6 show an example of convergence towards the intolerance phase, as social balancing

does not occur.
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(a)

(b)

(c)

Figure 2. Evolution of reviews count and reviews votes for three popular businesses on Yelp over the

period of 2008-2015. Accompanying each review trend, is the the average user defined popularity of the

respective business over the same period of time. We highlight each critical opinion source concentration

(i.e. ratio of reviews and votes) on the horizontal OX axis and corroborate it with a stabilization of the

opinion change given as the evolution of average stars awarded.
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Opinion representation

Discrete Continuous

Diffusion model
Simple SD(1) SC(2)

Complex CD(3) CC(4)

Table: interaction model taxonomy

(a)

(b)

(c)

Figure 3. The interaction models, based on the two types of opinion representation and two types of

diffusion. a. Taxonomy. b. Opinion representation types where the larger nodes (labeled with S)

represent stubborn agents (or opinion sources) which can also have any value for opinion, with the

property that their opinion value never changes. Discrete opinion (left): nodes have opinion 0 (red) or 1

(green) at any time (SD). Continuous opinion (right): nodes have any opinion between 0 and 1,

highlighted by the color gradient transitioning from red to green (SC). c. A scenario highlighting the two

opinion diffusion models for discrete representation. Single diffusion (left): the central white node picks

one random neighbor and adopts his opinion (SD). Complex diffusion (right): the white node polls all

neighbors for their opinion and then adopts an averaged opinion (CD). Note that only direct neighbors

can influence opinion, not friends of friends etc. (e.g. the gray node).
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(a) (b)

Figure 4. The tolerance function as defined by the progressive tolerance model. a. Tolerance scaling:

shows how tolerance θ increases with the α1ε1 scaling, as a result of continuous opinion change for an

agent i. b. Intolerance scaling: shows how tolerance θ drops with the α0ε0 scaling, from an initial

tolerance θi(0) = 1 to complete intolerance (θi(t) = 0).
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(a) (b)

(c) (d)

Figure 5. Green (1) vs. red (0) opinion evolution with homogeneous stubborn agent distribution in a

100,000 node social network. The network is initialized with 32 red and 32 green stubborn agents

(represented as the darker nodes) which start influencing the neighboring regular agents. Initially, the

regular agents have no opinion and are colored with grey. We distinguish between the following phases of

opinion formation: a. The initiation phase I where the society has no opinion, i.e. the stubborn agents

exercise their influence to the surrounding neighborhood without being affected by any other opinion.

The opinion change ω(t) rises during this phase, whereas tolerance θ(t) remains high. b. The fusion

phase F where the society is now mostly polarized (green or red) and different opinion clusters expand

and collapse throughout the society. The opinion change ω(t) reaches a maximum, and tolerance θ(t)
begins to slowly decrease. c. Tolerance phase T , where the cluster interaction stabilizes and new, larger,

more stable clusters emerge. Most of the individuals within the society have been in contact with both

opinions; each agent’s opinion si(t) begins to converge, and the tolerance θ(t) is steadily declining or

becomes stable. d. Intolerance phase T , where the overall tolerance of agents has decreased to a point

where opinion fluctuation ceases and the red opinion becomes dominant (θ(t)< 0.1). The society may or

may not reach this phase.
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(a)

(b)

(c)

(d)

Figure 6. Simulation of a 100,000 mesh network with SocialSim (Topirceanu and Udrescu, 2014),

displaying a representative example for the evolution of s(t), θ(t), and ω(t), as well as the opinion

evolution s(t) with various stubborn agents distributions. a. Representative setup for for the mesh

topology, where the lowest panel displays the opinion change (ω) evolution over three simulation phases:

(I) initiation, (F) fusion, and (T ) tolerance. The opinion state (s) and its tolerance (θ ) are also displayed

in the middle and upper panels. b. Opinion evolution s(t) with few and evenly distributed SA (1:1 ratio: 1

green, 1 red). c. Opinion evolution with many and evenly distributed stubborn agents (1:1 ratio: 32 green,

32 red), d. Opinion evolution with few and unevenly distributed stubborn agents (1:4 ratio: 1 green, 4

red).
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(a) (b)

(c)

Figure 7. Opinion evolution with homogeneous stubborn agent distribution (32:32) in small-world and

scale-free networks. a. Tolerance phase where no visible clusters emerge for small-world networks. b.

For small-world networks, social balancing is attained because tolerance remains extremely high

(θ(t)> 90%), opinion change (ω) exhibits the three opinion evolution phases (initiation I, fusion F , and

tolerance T ), and never reaches intolerance. The state of the society s(t) is stable. c. Social balancing is

not achieved for scale-free networks: tolerance drops constantly and the society reaches the intolerance

phase (T ). The state of the society s(t) is unstable during the first three phases of opinion change, then

stabilizes as tolerance (θ ) and opinion change (ω) fall.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Tolerance (θ ) and opinion change (ω) evolution with the increasing concentration of evenly

distributed stubborn agents and increasing network sizes. values over the five topologies for an increasing

concentration of evenly distributed stubborn agents. a and b. θ and ω respective values, over the five

topologies when the size of the network is fixed as N = 2500, and the concentration of stubborn agents

ranges from 4% to 36%. c, d, e, and f. Tolerance θ stabilization values at which social balancing occurs

over increasing network sizes (N=400 to 2500 nodes) on mesh, small-world, scale-free, and WSDD

networks, respectively.
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