
Hybrid HDFS: decreasing energy consumption and speeding
up Hadoop using SSDs

Apache Hadoop has evolved significantly over the last years, with more than 60 releases

bringing new features. By implementing the MapReduce programming paradigm and

leveraging HDFS, its distributed file system, Hadoop has become a reliable and fault

tolerant middleware for parallel and distributed computing over large datasets.

Nevertheless, Hadoop may struggle under certain workloads, resulting in poor

performance and high energy consumption. Users increasingly demand that high

performance computing solutions being to address sustainability and limit power

consumption. In this paper, we introduce HDFSH, a hybrid storage mechanism for HDFS,

which uses a combination of Hard Disks and Solid-State Disks to achieve higher

performance while saving power in Hadoop computations. HDFSH brings to middleware the

best from HDs (affordable cost per GB and high storage capacity) and SSDs (high

throughput and low energy consumption) in a configurable fashion, using dedicated

storage zones for each storage device type. We implemented our mechanism as a block

placement policy for HDFS, and assessed it over six recent releases of the Hadoop project,

representing different designs of the Hadoop middleware. Results indicate that our

approach increases overall job performance while decreasing the energy consumption

under most hybrid configurations evaluated. Our results also showed that in many cases

storing only part of the data in SSDs results in significant energy savings and execution

speedups.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

Hybrid HDFS: Decreasing Energy Consumption and
Speeding up Hadoop using SSDs

Ivanilton Polato
Dept. of Computer Science

Federal University of
Technology – Paraná

Campo Mourão, PR, Brazil
ipolato@utfpr.edu.br

Fabio Kon
Dept. of Computer Science

University of São Paulo
São Paulo, SP, Brazil
fabio.kon@ime.usp.br

Denilson Barbosa and
Abram Hindle

Dept. of Computer Science
University of Alberta

Edmonton, AB, Canada
{denilson,abram.hindle}@ualberta.ca

ABSTRACT
Apache Hadoop has evolved significantly over the last years,
with more than 60 releases bringing new features. By imple-
menting the MapReduce programming paradigm and lever-
aging HDFS, its distributed file system, Hadoop has be-
come a reliable and fault tolerant middleware for parallel
and distributed computing over large datasets. Neverthe-
less, Hadoop may struggle under certain workloads, resulting
in poor performance and high energy consumption. Users
increasingly demand that high performance computing so-
lutions being to address sustainability and limit power con-
sumption. In this paper, we introduce HDFSH , a hybrid
storage mechanism for HDFS, which uses a combination of
Hard Disks and Solid-State Disks to achieve higher perfor-
mance while saving power in Hadoop computations. HDFSH

brings to middleware the best from HDs (affordable cost per
GB and high storage capacity) and SSDs (high throughput
and low energy consumption) in a configurable fashion, us-
ing dedicated storage zones for each storage device type. We
implemented our mechanism as a block placement policy for
HDFS, and assessed it over six recent releases of the Hadoop
project, representing different designs of the Hadoop middle-
ware. Results indicate that our approach increases overall
job performance while decreasing the energy consumption
under most hybrid configurations evaluated. Our results
also showed that in many cases storing only part of the data
in SSDs results in significant energy savings and execution
speedups.

1. INTRODUCTION
Nowadays, two perspectives are relevant for big data anal-
ysis: the 3 “Vs”: volume, variety, and velocity [21, 36]; and
hardware and software infrastructures capable of processing
all the collected data. These processing infrastructures now
encounter new performance challenges: energy consump-
tion, power usage, and environmental impact. Over the last
years, the volume and speed of data creation consistently

increased. A recent study estimates that 90% of all data in
the world was generated over the last two years [3]. The
International Data Corporation (IDC) predicted that from
2005 to 2020, the digital universe will grow by a factor of
300, from 130 exabytes to 40,000 exabytes [31]. The same
study also predicted that the ?digital universe? will roughly
double every two years and the storage market will grow
55%. As a consequence, they expect that the discovery and
analytics software market will grow 33% until 2016, which
represents an 8 billion-dollar business [31].

In terms of infrastructure, the storage server market has ben-
efited from continually decreasing magnetic spinning hard
disk prices and higher performance solid state drives. Com-
panies can store data at a relatively low cost per GB and
create new data centers at affordable prices. Over the last
three years, the cost for hard disks has ranged between $0.03
and $0.05 per GB [22], with specialized providers offering
ever lower costs for hard disks bundled with services. SSDs
are faster, but cost around 20 times or more per GB.

From this perspective, the cost of SSDs could still be con-
sidered prohibitive for general storage purposes. However,
they can provide unique performance enhancements to data
analysis by reducing energy consumption if they receive ade-
quate support from processing platforms. In recent years, a
number of frameworks have been released to support parallel
and distributed computing, and provide high level solutions
to end-users [2, 6, 14, 23]. Some of these frameworks were
built over well-known programming models, such as MPI
and MapReduce. Nevertheless, these frameworks do not
sufficiently acknowledge the coexistence of HDs and SSDs
in the same environment, and therefore are not tailored to
benefit from this possibility.

Within this context, this paper presents a hybrid storage
model for the Hadoop Distributed File System (HDFS),
called HDFSH , which seamless integrates both storage tech-
nologies – HDs and SSDs – to create a highly-efficient hy-
brid storage system. Our results indicate that in most con-
figurations this approach promotes overall job performance
increases, while decreasing the energy consumption. Addi-
tionally, our hybrid storage model splits the file system into
storage zones, wherein a block placement strategy directs
file blocks to zones according to predefined rules. This en-
ables the use of different storage configurations for different

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

workloads, thereby achieving the desired tradeoff between
performance and energy consumption. Our goal is to allow
the user to determine the best configuration for the available
infrastructure, by setting how much of each storage device
should be used during MapReduce computations. The ob-
servations made during experiments may also be used as a
guide for users seeking to modify existing Hadoop clusters,
or even put together a new cluster. The key original contri-
butions of this paper are:

• A novel hybrid storage model for HDFS that
takes into account the performance profiles of
HDs and SSDs. Since SSDs are faster and use less
power than HDs but are much more expensive, these
characteristics must be adequately treated for different
workloads.

• An HD- and SSD-aware block placement pol-
icy that is optimized for heterogeneous storage.
This policy’s rules were designed to take advantage of
the differences between HDs and SSDs by accommo-
dating a pre-defined percentage of the total number
of blocks in the SSDs, and the remainder in the HDs.
Additionally, we also present the results of an experi-
ment in directing temporary files to a specific storage
zone.

• Evaluation of the technique over multiple ver-
sions of Apache Hadoop. Our research showed that
each Hadoop branch presents a unique energy con-
sumption profile; we detail these results and show how
our system behaves in each situation.

Our motivation relies on an inevitable side-effect of the data
analysis field’s expansion: data centers’ increase in energy
consumption. The number of data centers has consistently
grown, increasing the availability of computing nodes and
storage space, and demanding more power. Data centers’
maintenance costs and environmental impacts have consis-
tently increased with the demand for more energy to power
and cool them. In fact, energy accounts for 30% of the Total
Cost of Ownership (TCO), a major and continuous cost for
data centers [12].

Despite the fact that it may be easy and relatively cheap
to store data today, the information extraction process re-
mains a bottleneck for IT companies. A large body of re-
search concerns how to perform computations on large scale
datasets within acceptable time limits. As a result, great
effort is put into frameworks that help developers leverage
numerous available computing resources, providing support
for data integrity, replication, load balancing, task schedul-
ing, scalability, and failure recovery.

The MapReduce paradigm [5, 8], through its open source
middleware implementation, Apache Hadoop, comprises such
an approach to processing large datasets. The map function
generally filters and sorts the input data, while the reduce
functions are responsible for summarizing the results. Pop-
ular for its ability to achieve high computing power by using
commodity hardware in large-scale clusters, Hadoop is a rel-
atively low-cost way to obtain an infrastructure capable of

carrying out massive computations with a high level of paral-
lelism. The Hadoop middleware framework has three major
components: the Hadoop Distributed File System (HDFS),
a block file storage, designed to reliably hold very large
datasets using data replication [30]; MapReduce, a system
for parallel processing of large data sets using the homony-
mous programming paradigm; and the more recent compo-
nent, the YARN scheduler and resource manager, which is
included in Hadoop 0.23.0 and 2.0.0.

Using MapReduce over HDFS, the middleware has rapidly
evolved over the last years, promoting transparent data in-
tegrity, replication, scalability, and failure recovery features
that have made Apache Hadoop very popular both in academia
and industry. The platform popularization over the last five
years has benefitted from several concepts and technologies
that consolidated in the same period, including, e.g., the use
of Cloud Computing to achieve scalability, availability, and
flexibility in data processing [27].

Despite Hadoop’s popularity, it still struggles to properly
incorporate certain features. For example, Hadoop typ-
ically lacks features that support heterogeneous environ-
ments. In its storage layer, Hadoop uniformly treats diverse
storage devices. Thus, even it supports the use of SSDs, the
HDFS does not acknowledge any differences between HDs
and SSDs.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of Apache Hadoop, including
its history and components. Section 3 introduces our hy-
brid storage, the block placement models, and a cost model.
Section 4 delineates the experimentation methodology and
the infrastructure we used for testing. Section 5 presents and
analyzes the results. Section 6 discusses related work. Fi-
nally, Section 7 presents our conclusions and future research
directions.

2. APACHE HADOOP AND HDFS
The MapReduce programming model, now highly used in
the Big Data context, is not new. One of its first uses
was on the LISP programming language, which later in-
spired Google’s approach [5, pp. 1]. Google’s MapReduce
was initially composed of the GFS distributed filesystem
[8] and an implementation of MapReduce [5]. Hadoop was
developed based on this parallel approach, using the same
idea from Google’s implementation: hiding complexity from
users and thereby allowing them to focus on programming
the paradigm’s two primitive functions, Map and Reduce.
To move computation towards data, Hadoop uses the HDFS
file system. HDFS [30] is a block direct storage system ca-
pable of storing, managing, and streaming large amounts of
data in a reasonable time to user applications. As mentioned
earlier, HDFS lacks differentiation of the different storage
devices attached to a Hadoop cluster node; consequently, it
cannot properly exploit the features provided by such de-
vices to customizably increase job performance or decrease
a cluster’s energy consumption. Our approach tackles this
specific issue, creating storage zones according to the device
types connected to the cluster nodes. To the best of our
knowledge, this is a novel approach to represent and man-
age storage space for Hadoop’s MapReduce computations.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

Figure 1: Hadoop Versions Genealogy Tree

2.1 Brief Hadoop History
Throughout its history, Hadoop experienced more than 60
releases in several development branches. As of now, Hadoop
has three main development branches: 1.x, 0.23.x and 2.x.
Our research focused on each of these branches’ recent re-
leases. We observed that most of the Hadoop R&D works
were developed using older versions ranging from 0.19.x to
0.22.x [27]. We also observed that the number of studies
contributing to the project increased from 2010 to 2012, but
decreased in 2013, meaning that fewer studies focused on
Hadoop’s new releases, since they were launched in late 2011
(version 0.23.0 on 2011-11-01; version 1.0.0 on 2011-12-27)
and in the second quarter of 2012 (version 2.0.0 on 2012-
05-23) [11]. Additionally, versions 0.23.x and 2.x adopted a
new architecture, introducing the YARN resource manager.
Thus, we suspect that the new releases’ instability in the
YARN branches may have directly contributed to the low
number of studies using such versions. We built a genealogy
tree from the Hadoop project using release logs from each
project branch and its releases. Figure 1 shows a part of
the Hadoop project genealogy tree, from version 0.20.0 up
to the latest releases, including the release dates.

The versions we selected for our experiments include the
Hadoop project’s three current branches: 1.x, 0.23.x and
2.x. The 0.23.x and 2.x branches include the YARN re-
source manager. The difference between them is that 2.x
releases include the High Available NameNode for HDFS –
an effort focused on the automatic failover of the NameN-
ode – whereas the 0.23.x releases exclude such a feature.
The 1.x Hadoop releases do not include the YARN feature
and have the limitation that they are more tightly coupled
to the MapReduce paradigm and mostly designed to run
batch jobs, making them less flexible than the other two
branches. Table 1 lists the selected group of releases. With
these selections we can overview almost two years of the
project’s releases, including different versions and branches,
representing different Hadoop middleware designs.

3. HDFS HYBRID STORAGE

Table 1: Releases used in the experiments

Hadoop Release Date

1.1.1 2012-11-18
1.2.1 2013-07-15
0.23.8 2013-06-05
0.23.10 2013-12-09
2.3.0 2014-02-20
2.4.0 2014-04-07

We developed a hybrid storage approach for HDFS that
leverages the different characteristics of HDs and SSDs con-
nected to a Hadoop cluster. This approach’s key feature is
the controlled use of SSDs to increase performance and re-
duce energy consumption. Yet, although these two SSDs’
characteristics are outstanding, we must also consider their
price. The cost per GB of the SSDs sits between $1.00 and
$1.50, with expectations it will decrease to less than $1.00
per GB in the near future [10]. Even reaching this cost per
GB, it still represents around 20 times or more the cost per
GB of HDs. From this perspective, the cost of SSDs could
still be considered prohibitive for general use as the single
storage option. Recently, a newly developed hybrid storage
device, known as SSHD, combines in the same device both
SSD and HD technologies. Generally, these devices can im-
prove performance by storing the most frequently accessed
data in their NAND flash memory.

In this context, our goal is to allow the user to determine
the best configuration according to the available infrastruc-
ture, by setting how much of each storage device should be
used during MapReduce computations. The observations
made during experiments may also be used as a guide for
users seeking to modify existing Hadoop clusters, or even
put together a new cluster. To describe our hybrid storage
approach, the total HDFS space available must be expressed
as the sum of available space in each device of the cluster
DataNodes. In our model, we limited the storage devices in
the cluster nodes to HDs and SSDs, excluding any SSHDs,

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

since they do not increase performance on read/write op-
erations compared to SSDs. Table 2 contains a glossary of
symbols and functions used in our storage model.

Table 2: Definitions used on the HDFS Hybrid Stor-
age Model

Symbol Definition

HD Hard Disk
SSD Solid-State Disk
DN DataNode
d Number of DataNodes in the cluster
DS Dataset composed of multiple files
blockSize HDFS default block size configured in

dfs.block.size

First, we define the HDFS storage space as the sum of the
available spaces on all DataNodes in the cluster. We use a
generic function SpaceAvailableInNode(), which returns the
free space that can be used by HDFS on a DataNode. Thus,
the HDFS storage space is defined as:

HDFS =

d∑
i=1

SpaceAvailableInNode(DNi) (1)

Since we are modeling a hybrid environment, each DataNode
may have different devices connected to it (HDs or SSDs),
each with different available spaces. Thus, we define two
storage space zones: HDzone is the sum of all HD space
available for HDFS on DataNodes; and SSDzone is analo-
gous for the SSDs. From each DataNode, we can obtain the
available space for each device category using the following
equations.

HDspace(DN) =

z∑
i=1

SpaceAvailableInDevice(HDi) (2)

SSDspace(DN) =

w∑
i=1

SpaceAvailableInDevice(SSDi) (3)

where z and w are, respectively, the number of configured
HDs and SSDs on DataNode DN . The total HD space will
compose the HDzone, and similarly, the SSDzone will be
composed of the sum of the SSD space available on each
DataNode. We define them as:

HDzone =
d∑

i=1

HDspace(DNi) (4)

SSDzone =

d∑
i=1

SSDspace(DNi) (5)

where d is the number of DataNodes running in the cluster.

Finally, we define the hybrid HDFS storage space for our
model as the following:

HDFSH = HDzone + SSDzone (6)

Our storage model aims to capture the existing nuances be-
tween the different storage devices in the same file system.
The NameNode middleware must be aware of the storage
zones and the difference between the devices on each DataN-
ode. Originally, the dfs.data.dir Hadoop configuration
variable contains a comma separated list of the directories
that HDFS can use. We extended this property to hold two
lists, one for the SSD directories and the other for the HD di-
rectories. By using both lists to create HDFS storage space
NameNode maintains a general view of the HDFS storage;
and also can separately access the devices from the block
placement policies.

3.1 Block Placement Policies
Following our HDFS hybrid storage model, we created the
block placement policy for HDFSH . From version 1.x on,
HDFS allows users to create their own pluggable block place-
ment policies. For our purposes, a Block Placement Policy
is an algorithm that specifies where a file’s blocks will be
stored on HDFS. These policies are controlled by the Na-
meNode daemon, which manages the table of files, blocks,
and locations.

The development of such a hybrid storage environment for
Hadoop added more flexibility to HDFS. Since SSDs are
faster and consume less power than HDs, given their instal-
lation on storage servers, we expect resulting performance
gains and energy consumption decreases. Our first block
placement policy can send a pre-configured percentage of the
blocks to one of the designed storage zones, and the remain-
der of the blocks to the other. Let DS be a dataset that will
be stored in HDFSH . To know the number of blocks of DS ,
we must know the number of blocks of each file in DS . Using
a generic function called blocks that returns the number of
blocks used by a file according to the default pre-configured
HDFS block size, we have:

blocks(file) = dsize(file)/blockSizee (7)

where the generic function size returns a given file’s number
of bytes. To obtain the total blocks needed to store DS into
HDFSH , we sum the individual number of blocks occupied
by each file in DS :

blocksDS =

k∑
f=1

blocks(filef) (8)

where k is the number of files in DS .

Since we know in advance how many blocks DS will require
in the file system and our policy controls the percentage of
blocks sent to each storage zone, we express the input of DS
into HDFSH as:

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

HDFSH ← DS

 SSDzone ← dρ.blocksDSe

HDzone ← b(1− ρ).blocksDSc
(9)

where ρ is the coefficient (0 <= ρ <= 1) that determines
how many blocks will be sent to the SSDzone. The com-
plement of ρ determines the amount of blocks sent to the
HDzone.

In all of the experiments, we configured the HDzone to hold
the temporary files during job execution. To explore ad-
ditional possibilities, we performed experiments using the
SSDzone to store Hadoop temporary files. These experi-
ments aim to show added benefits of including SSD storage
space into a Hadoop cluster.

3.2 Cost Model
Our storage model splits the dataset blocks in the HDFS into
different storage zones using HD and SSD devices. Given
that all files in the HDFSH are stored either in the HDzone
or in the SSDzone, the block proportion for each zone is
complimentary. Thus, considering a Hadoop job we have:

SSDprop + HDprop = 1 (10)

where SSDprop and HDprop are the storage proportion de-
fined for each zone by the HDFSH policy.

Therefore, let DS be a dataset in the HDFSH . We can
model the storage cost for a job as:

HDFSH StorageCost = size(DS)× (SSDC + HDC) (11)

where:

SSDC = SSDprop × SSDcostPerGB

HDC = HDprop ×HDcostPerGB

(12)

using Equation 10 we have:

HDC = (1− SSDprop)×HDcostPerGB (13)

Thus, we can estimate the storage cost for a Hadoop job
using HDFSH by setting the SSD proportion, and the SSDs’
and HDs’ cost per GB.

4. EXPERIMENTAL METHODOLOGY AND
INFRASTRUCTURE

With HDFSH and the block placement rules properly de-
signed, we then selected the Hadoop releases and bench-
marks for the experiments. Hadoop comes with a large set
of examples and tools that allow benchmarking in several
ways. Some of them use MapReduce applications, such as
Word Count, Sort, Terasort, and Join. Another relevant
benchmark set is HiBench [13], which is publicly available on
GitHub and developed by Intel, and includes machine learn-
ing and data analytics benchmarks, as well as the Hadoop
project’s stock benchmarks. To cover an array of different
situations, our final selection of benchmarks includes Sort
and Join from Hadoop and the Mahout K-Means clustering
from HiBench. Table 3 presents our set of benchmarks and

their corresponding dataset size. Although our approach fo-
cuses on storage, we also performed experiments using CPU-
bound benchmarks to analyze the behavior of the hybrid
storage under these workloads.

Table 3: Benchmarks and Dataset Sizes used in the
experiments

Benchmark Dataset Type

Sort 10GB I/O
48GB I/O
256GB I/O

Join 20GB CPU
K-Means Clustering 3× 107 samples CPU + I/O

Each benchmark uses a specific dataset that was generated
and stored for experimental reuse and replication. For the
Sort experiments, the datasets were generated using the
RandomWriter job, which generates a predefined amount of
random bytes. As a result of this job, a set of files with ran-
dom keys serve as input for the Sort jobs. The Join bench-
mark performs a join between two datasets, in a database
fashion. These experiments used datasets generated with
DBGEN from the TPC-H benchmark [4], which is widely
used by the database community. Finally, we used an im-
plementation of the K-Means clustering algorithm using the
Mahout Library [1] from HiBench in our experiments. K-
means considers a euclidean space and attempts to group
the existing elements into a predefined number of clusters.
This benchmark is CPU-bound during the iteration phase
and I/O-bound during the clustering phase. We chose our
experimentation benchmarks based not only on their I/O
or CPU characteristics, but also on prior research analysis
[13,26].

Table 4: Configurations used in the experiments

Data Percentage Configurations

Configuration Short Name HDzone SSDzone

HD 100% -
80/20 80% 20%
50/50 50% 50%
20/80 20% 80%
SSD - 100%

Our testing infrastructure limited dataset sizes. Since our
cluster has eight DataNodes with two disks – one HD (1TB)
and one SSD (120GB) – the SSDzone total size, which was
960GB, limited our datasets. Additionally, after each ex-
ecutions the Sort benchmark doubles the used file system
space. Therefore, the 256GB dataset benchmarks cannot be
performed only using the SSDs, and the experiments were
run both on the HD only and hybrid configurations. For
each benchmark, we ran a batch job as follows: for small
datasets, a 30-job batch; and for medium and large ones, a
5-job batch. Each selected Hadoop release ran one batch for
each benchmark/dataset pair. The 10GB and 48GB Sort ex-
periments, the Join, and the K-Means experiments ran with
a cluster configuration using 4 nodes, whereas the 256GB
Sort ran in the full cluster configuration. We used this ap-
proach to check the framework’s behavior under different

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

configurations, and to check the cluster’s energy consump-
tion. To record the power measurements during the experi-
ments, we deployed an additional daemon on the head node
gathering the data from each power meter, and stored the
power readings from each node in separate files. We config-
ured this daemon to record one reading every second from
each power meter.

To illustrate the use of our block placement policy, we set
five predefined proportions to split the data into the storage
zones. The first one keeps all the data in the HDzone, and
does not use the SSDzone. The three intermediate ones vary
the amount of data stored in each zone, as Table 4 shows.
The last one uses only the SSDzone to store the data.

Figure 2: Cluster Infrastructure

The testing infrastructure is a 9-node commodity cluster.
Each node has a quad-core processor (AMD A8-5600K; 3600
MHz), 8GB of RAM, a 1TB hard disk (Western Digital
WD Black WD1002FAEX; 7200RPM; 64MB Cache; SATA
6.0Gb/s), and a 120GB solid-state disk (Intel SSDSC2BW120A4;
SATA 6Gb/s; 20nm MLC). All nodes run the Red Hat
(4.4.7-4) GNU/Linux operating system. One of the nodes
(head) exclusively runs the Hadoop NameNode and Job-
Tracker daemons, which also keeps the job history log. The
other eight nodes run Hadoop DataNodes and TaskTracker
daemons. For the energy consumption measurements, we in-
strumented the cluster with Watts Up? Pro, a hardware de-
vice that measures wall socket power use and reports power
measures every second containing watts, kWh, voltage, amps,

Job Total Energy − 10GB Sort Benchmark

0

25

50

75

100

125

0

25

50

75

100

125

E
ne

rg
y

(k
J)

100% HD
100% SSD

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

Figure 3: Average Energy Consumption

Job Makespan − 10GB Sort Benchmark

0

50

100

150

200

250

300

0

50

100

150

200

250

300

T
im

e
(s

)

100% HD
100% SSD

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

Figure 4: Average Job Makespan

power-factor, and other information. We connected the DataN-
odes in pairs on each one of the four power meter devices.
Since we were concerned with power measurements on hy-
brid storage, we did not instrument the head node, since it is
responsible for coordinating Hadoop and does not store any
of the HDFS block files. We present the results and analysis
next. Figure 2 illustrates our hardware infrastructure.

5. EXPERIMENTAL RESULTS AND
ANALYSIS

We were concerned with the energy consumption impact of
hybrid storage system. Our first finding was the large dif-
ference among the multiple Hadoop releases. Due to archi-
tectural changes in the middleware, Hadoop releases that
included the YARN resource manager performed worst and
consumed more energy when compared to the 1.x releases.
In the following, we detail our experimental results. In terms
of performance, we consider makespan as the time difference
between the start and finish of Hadoop jobs.

5.1 I/O-Bound Benchmark Results
Starting with the 10GB Sort benchmark, Figure 3 shows the
differences between two HDFSH configurations: HD and
SSD. The differences among the three branches are eas-
ily identified. Whereas releases 0.23.x consumed on average
65% more power than releases 1.x, releases 2.x consumed on
average 85% more power than the 1.1.1 and 1.2.1 releases.

Sort Experiments 10Gb Dataset

0

20

40

60

80

100

120

140

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

E
ne

rg
y

(k
J)

HD
80/20
50/50
20/80
SSD

Figure 5: Energy Consumption: Sort 10GB

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

Sort Experiments 48Gb Dataset

0

100

200

300

400

500

600

700

800

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

E
ne

rg
y

(k
J)

HD
80/20
50/50
20/80
SSD

Figure 6: Energy Consumption: Sort 48GB

The increase is partially explained by the performance loss:
jobs running on 0.23.x releases were 27% slower than on 1.x
releases. The same is observed in the 2.x branch, which was
around 35% slower than 1.x releases, as Figure 4 illustrates.
The significant difference in energy consumption can also be
explained by recent Hadoop branches’ increase in the num-
ber of included features. The YARN component brought
flexibility to the framework, allowing other types of jobs to
be executed in Hadoop, in addition to the original MapRe-
duce. YARN also enabled the instantiation of multiple Job-
Trackers and NameNodes. Our experiments demonstrated
that all this flexibility came at a price: loss in performance
and, consequently, an increase in energy consumption when
executing MapReduce jobs. From Figures 3 and 4, we can
also observe that there are small differences between releases
from the same branch, with small energy consumption vari-
ations.

Further considering the 10GB Sort experiments, Figure 5
presents the results for all the releases using the five config-
urations we tested, and in the following order: HD, 80/20,
50/50, 20/80, and SSD. We can also observe, in Figure 5,
the expected tendency in energy savings when moving data
to the configurations that favor SSD use.

Table 5: Sort Benchmarks: Energy consumed (kJ)

Dataset size Release HD 80/20 50/50 20/80 SSD

10GB

1.1.1 64 62 60 59 58
1.2.1 66 62 61 60 59
0.23.8 108 105 99 98 97
0.23.10 106 105 99 98 97
2.3.0 117 112 109 108 107
2.4.0 120 119 114 113 112

48GB

1.1.1 378 348 303 299 304
1.2.1 398 352 306 311 298
0.23.8 588 566 463 454 456
0.23.10 593 596 510 449 464
2.3.0 696 630 579 529 564
2.4.0 682 631 563 540 521

256GB

1.1.1 2005 1967 1795 1750 1626*
1.2.1 1972 1934 1796 1795 1588*
0.23.8 3339 3469 3001 3157 2790*
0.23.10 3168 2971 3000 3320 2736*
2.3.0 3461 3587 3248 3345 2885*
2.4.0 3530 3650 3212 3301 3077*

* HDFS Replication Factor = 1

Normalized Total Job Energy − Sort Benchmark − Datasets 10GB & 48GB

0

20

40

60

70

80

90

100

0

20

40

60

70

80

90

100

10GB Dataset 48GB Dataset

Hadoop Releases

Hadoop 1.1.1 Hadoop 1.2.1

HD 80/20 50/50 20/80 SSD HD 80/20 50/50 20/80 SSD

Figure 7: Energy Consumption: 1.x Releases

Next, we moved on to the experiments with larger datasets.
Figure 6 shows the results for the 48GB Sort experiments.
The results support the tendency toward energy savings
when using SSD. Analyzing these two initial experiments, we
noticed that increasing the dataset size shifts the tendency
of power saving toward the middle configurations: 50/50
and 20/80. This indicates that, by storing only a fraction of
the data on SSDs with these specific hybrid configurations,
we achieve a significant increase in performance and, con-
sequently, a reduction in energy consumption. Our results
indicates that, if all data is processed from the SSDzone,
there is an average reduction of 20% in energy consump-
tion. Additionally, a similar reduction can also be observed
in the 50/50 and 20/80 configurations in Figures 5 and 6.
The energy consumption results from the Sort benchmarks
are listed in Table 5.

To promote a better data visualization, we normalized the
energy results using the previously presented values – the
average of the observations for each tested configuration.
Therefore, for a pair release–dataset, we divided each value
by the maximum value of the group. Generally this value
is associated with the HD configuration, since it demands
more power when running experiments. This allowed the
side-by-side comparison of the results from different dataset

Normalized Total Job Energy − Sort Benchmark − Datasets 10GB & 48GB

0

20

40

60

70

80

90

100

0

20

40

60

70

80

90

100

10GB Dataset 48GB Dataset

Hadoop Releases

Hadoop 0.23.8 Hadoop 0.23.10

HD 80/20 50/50 20/80 SSD HD 80/20 50/50 20/80 SSD

Figure 8: Energy Consumption: 0.23.x Releases

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

Normalized Total Job Energy − Sort Benchmark − Datasets 10GB & 48GB

0

20

40

60

70

80

90

100

0

20

40

60

70

80

90

100

10GB Dataset 48GB Dataset

Hadoop Releases

Hadoop 2.3.0 Hadoop 2.4.0

HD 80/20 50/50 20/80 SSD HD 80/20 50/50 20/80 SSD

Figure 9: Energy Consumption: 2.x Releases

experiments, since their results are in different scales. Fig-
ures 7, 8, and 9 shows this panorama. We put together the
experiments from the two initial Sort benchmarks (10GB
and 48GB) in both versions from each release. Surprisingly,
for some releases the use of 50/50 configurations result in
energy consumption close to the power consumed when ex-
clusively processing data from SSD. This can be clearly ob-
served in releases 1.1.1, 1.2.1, 0.23.8, and 2.3.0. Even in the
other two releases, the energy consumption rates are closer
to the SSD values than to the HDs ones.

The results from the Sort benchmark using the 256GB dataset
also corroborate the previous statements. With the increase
in the dataset size, the energy consumption rates decrease
in the middle configurations, favoring the use of less SSD
storage to achieve results similar to the SSD-only configura-
tions. Table 5 presents these results. The power consump-
tion reduction when using more SSD storage is clearly no-
ticeable. During the 256GB Sort experiments, we observed
an issue regarding the SSDzone total space. Our DataNode
infrastructure has eight 120GB SSD disks, totaling 960GB
of useful storage space. Using a replication factor of 3, a
dataset triples its size in the HDFS. Thus, in this setting
the 256GB dataset uses 768GB, leaving less than 200GB of
free space in the SSDzone. This does not allow the Sort Job
execution, since it requires the equivalent of three times the
dataset size of free space (at least 768GB) during its execu-

Normalized Total Job Energy − Sort Benchmark

0

20

40

60
70
80
90

100

0

20

40

60
70
80
90
100

48GB Dataset 256GB Dataset

Hadoop Releases

Hadoop 1.1.1 Hadoop 1.2.1

HD 80/2050/5020/80 SSD HD 80/2050/5020/80 SSD

Figure 10: Energy Consumption: 1.x Releases

Normalized Total Job Energy − Sort Benchmark

0

20

40

60
70
80
90

100

0

20

40

60
70
80
90
100

48GB Dataset 256GB Dataset

Hadoop Releases

Hadoop 2.3.0 Hadoop 2.4.0

HD 80/2050/5020/80 SSD HD 80/2050/5020/80 SSD

Figure 11: Energy Consumption: 2.x Releases

tion. Therefore, the 256GB Sort experiments ran without
block replication in the HDFSH for the SSD configuration
with this particular dataset. These results appears in Ta-
ble 5.

We also compared the results of the 256GB Sort with the
48GB Sort in normalized graphs. Figures 10 and 11 indicate
that we can achieve relatively higher performance and lower
energy consumption by increasing the dataset size.

To further investigate the effects of block replication on en-
ergy consumption, we ran experiments with the 256GB Sort
dataset on the HD configurations, presented in Figure 12.
The results indicate that the triple block replication de-
mands on average 1.5% more energy in the 1.x brach, 9.5%
more energy in 0.23.x releases, and 6.2% on branch 2.x. Fol-
lowing our previous results, this means that in the configu-
rations favoring the SSD storage, this percentage should be
greatly reduced, since SSDs consumes far less energy than
HDs.

5.2 CPU-Bound Benchmarks Results
To evaluate whether our approach favors I/O-bound jobs
only, we performed two sets of experiments using CPU-
bound jobs. The differences between the hybrid HD and
SSD configurations were insignificant, thus we present only
the results for the two extreme configurations using the Join

Job Total Energy − 256GB Sort Benchmark

0

500

1000

1500

2000

2500

3000

3500

4000

0

500

1000

1500

2000

2500

3000

3500

4000

E
ne

rg
y

(k
J)

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

100% HD − 3 Replicas
100% HD − 1 Replica

Figure 12: Impact of Triple Block Replica on Energy

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

Total Job Energy − Join Benchmark

0

25

50

75

100

125

0

25

50

75

100

125

E
ne

rg
y

(k
J

)

Hadoop Releases

100% HD
100% SSD

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

Figure 13: Energy Consumption, Join Benchmark

and K-Means benchmarks. Except for the differences among
branches, the Join benchmark did not present any significant
differences, as seen in Figure 13.

The Mahout K-Means is a hybrid benchmark that is CPU-
bound in the iterations, and I/O-bound in clustering. With
our setup (3 iterations), 3/4 of the execution in this bench-
mark was CPU-bound, while the rest was I/O-bound. As
can be seen in Figure 14, again, there is no significant dif-
ference across the configurations, except for the differences
among branches.

We thus conclude that, except for the difference among branches
and releases, there are no significant gains in terms of perfor-
mance and energy consumption when running CPU-bound
jobs with our approach.

Total Job Energy − Kmeans Benchmark

0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

700

E
ne

rg
y

(k
J

)

Hadoop Releases

100% HD
100% SSD

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

Figure 14: Energy Consumption K-Means Bench-
mark

5.3 Using SSD as Temporary Storage Space
Following the experiment’s results, we performed a set of
experiments using the SSDzone to store the temporary files
generated during Hadoop jobs. We named this configuration
tmpSSD . It stores the dataset file blocks in the HDzone, and
all the temporary files generated during job execution in the
SSDzone. Figures 15 and 16 present the results. We notice
that for the 10GB dataset there is no significant difference
in the 1.x releases. The results are similar to the SSD con-
figuration, which can be explained by the dataset size. But

Sort 48Gb − Temporary Files on SSD

0

100

200

300

400

500

600

700

800

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

E
ne

rg
y

(k
J)

HD
SSD
HD + tmpSSD

Figure 15: Energy using SSDzone as temporary

we observed a different behavior from 0.23.x and 2.x re-
leases, although they have the same software architecture.
Releases from the 0.23.x branch did not achieve any energy
benefits by using the tmpSSD . The opposite happened with
the 2.x releases, which achieved better performance and con-
sequently reduced their energy demands.

The same pattern developed for the bigger datasets in the
0.23.x and 2.x releases. The novelty was the 1.x branch
results, which performed better with bigger datasets. This
means that not only did performance improve, but there
were significant energy savings when using the SSDzone as
temporary space.

As a general conclusion here, it is worth mentioning that
both 1.x and 2.x releases significantly improved when using
the SSDzone to store temporary files during Hadoop jobs,
such that in most cases the performance was even better
than storing the dataset files in the SSDzone. By contrast,
releases from 0.23.x branch did not perform well, and in
some cases the results suggest that the use of this strategy
may be prohibitive, especially with small datasets. There-
fore, using SSD as part of a hybrid storage system offers
two kinds of benefits for Hadoop computations: (I) primary
storage in HDFS; and, (II) temporary storage space. In the
latter case, changes in the behavior of temporary files al-
lowed several releases to achieve better performance with
them on SSD.

5.4 Speedup

Sort 256Gb − Temporary Files on SSD

0

500

1000

1500

2000

2500

3000

3500

4000

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

E
ne

rg
y

(k
J)

HD
SSD
HD + tmpSSD

Figure 16: Energy using SSDzone as temporary

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

Average Job Makespan for Storage Configurations

0

1000

2000

3000

4000

5000

6000

7000

8000

0

1000

2000

3000

4000

5000

6000

7000

8000

T
im

e
(s

)

Sort 48GB Sort 256GB

HD
80/20
50/50
20/80
SSD
tmpSSD

1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0 1.1.1 1.2.1 0.23.8 0.23.10 2.3.0 2.4.0

Figure 17: Hadoop Performance: Multiple Releases over Configurations

Regarding job makespan performance, we observed that stor-
ing more data in the SSDs enabled the jobs to run faster,
which was expected, since SSDs provide higher through-
put. The novelty here is the non-linear behavior of the job
makespan as we increase the dataset size. With the 10GB
dataset, the 80/20 configuration was on average 7% faster
than the HD configuration, with only 20% of the data pro-
cessed from the SSD; in the 50/50 configuration, jobs were
on average 17% faster than the HD configuration; and, in
the 20/80 configuration, 22% faster; finally, jobs running
with the SSD-only configurations were on average 26% faster
than purely running on HD. In the 48GB Sort, the observed
speedups compared to the HD configuration were: 80/20,
8% faster; 50/50, 27% faster; 20/80, 31% faster; and SSD,
30% faster. The average makespan from the Sort bench-
marks can be seen in Figure 17.

5.5 Cost Model Analysis
With the SSDzone as a temporary storage, we achieved more
promising results than some SSD-only experiments. Fig-
ure 17 also presents these experiment’s results. All experi-
ments from the hybrid policy ran using the HD as tempo-
rary space. Thus, the SSD configuration stores the entire
dataset on SSD disks, and uses HDs as temporary space.
The tmpSSD configuration does exactly the opposite, stor-
ing the dataset in the HDzone, and the temporary files in the
SSDs. Thus, it is fair to compare these two experiment sets.
Although the HD experiments tend to be much slower than
the SSD, in this case the HDzone using SSD as temporary
space in most cases outperforms the SSDzone experiments.
Results from the 48GB and 256GB Sort experiments in 1.x
and 2.x releases point to a speedup factor of more than 2
times when comparing HD versus tmpSSD configurations,
and on average more than 1.5 times when comparing SSD
versus tmpSSD configurations.

For the storage cost analysis, we assume that the HDcost/GB =
$0.05 and the SSDcost/GB = $1.00 (20 times the HDcost/GB).
Following we plotted the ratio between job makespan and
job storage cost for the sort jobs, using the latest tested re-
lease from each branch. We can observe in Figure 18 that,

for each release, there is a pareto optimal configuration. This
example can be used to identify which proportions are the
best in the tradeoff between cost and performance. The
more SSD is used, the more expensive the cost is, but with
less hours spent to perform the job, less energy is used. On
the other hand, by using more HD in the configurations,
jobs take more hours to finish, demanding more energy, but
the cost decreases greatly. This behavior can be observed
in every release on the 48GB and 256GB datasets tested in
the sort experiments. Finally we can observe that, although
there is a general behavior within the tested releases, each
one has its particularities, which means that the optimal
point varies from one release to another, specially amongst
different branches.

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0

25
0

Storage Cost versus Performance

Job Makespan (Hours)

C
os

t (
$)

 (
H

D
: $

0.
05

/G
B

; S
S

D
: $

1.
00

/G
B

)

●

●

●

●

●

●

●

●

●

●

● 1.2.1
0.23.10
2.4.0

Sort 48GB

Sort 256GB

Figure 18: HDFSH storage cost versus performance

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

6. RELATED WORK
In our comprehensive literature research [27], we observed
that HDFS has been modified to increase its performance in
multiple ways: tuning the I/O mode [16,29,34], solving data
placement problems [33], and adapting it to support small
files processing [7, 16], since HDFS was not originally de-
signed for such purposes. Some works replaced the original
HDFS with a more suitable solution for specific compati-
bility problems [19, 24], or to support areas such as Cloud
Computing [9, 19]. Yet, these approaches only targeted the
HDFS’ performance increases without considering energy
consumption or using a combination of different storage de-
vices.

The use of SSDs as a storage solution on clusters is such
a recent trend in the industry that the first proposals for
MapReduce clusters only recently appeared. Most of the
research up to date tends to analyze whether MapReduce
can benefit, in terms of performance, when deploying HDFS
using SSDs. Jeon et al. [15] analyze the Flash Transla-
tion Layer (FTL) – the SSD core engine – to understand
the endurance implications of such technologies on Hadoop
MapReduce workloads. Kang et al. [18] explore the ben-
efits and limitations of in-storage processing on SSDs (the
execution of applications on processors in the storage con-
troller). Other researchers focus on incorporating SSDs into
HDFS using caching mechanisms to achieve better perfor-
mance [20,28,32,35]. A few works also discuss SSDs’ impact
on Hadoop [17,25], sometimes focusing on using SSDs as the
sole storage device under HDFS. Our approach tends to be
more affordable, since we developed a hybrid file system that
seamlessly couples the best from HDs (affordable cost per
GB, high storage capacity, and, to some extent, endurance)
and SSDs (high performance and low energy consumption
rates) in a configurable fashion.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented our approach to seamlessly inte-
grating HD and SSD technologies into HDFSH . Our block
placement policy shows an energy consumption reduction
even when only a fraction of the data is stored in the mod-
ified HDFS. We showed that, with larger datasets, the re-
duction in energy demand can be significant, achieving up
to a 20% savings under certain hybrid configurations. The
general use of HDFSH affords immediate benefits since it
increases MapReduce jobs’ performance and reduces energy
consumption. Yet, for now, users must manually define these
configurations. In future work, we intend to investigate au-
tonomic heuristics that would analyze the workflow to au-
tomatically and dynamically configure HDFSH for optimal
performance and energy consumption.

Regarding Hadoop branches and their significant performance
and energy consumption differences, we acknowledge that
YARN brought flexibility to the framework, but generated
a significant performance loss. Since most of the energy con-
sumed by Hadoop is associated with job makespan, branches
0.23.x and 2.x releases almost double the energy consumed
to run the same jobs compared to 1.x releases. Users must
focus on the real needs associated with Hadoop: flexibility
or performance. In the case of the latter option, we strongly
recommend selecting Hadoop releases from 1.x branch, and
applying the compatible HDFS security patches.

Additionally, we observed that the tmpSSD configuration
can bring benefits when used with the 1.x and 2.x branches.
This configuration can increase speedup rates to outperform
the exclusive use of SSD on certain releases and benchmarks.
Four out of 6 tested releases showed performance enhance-
ments using this configuration on our larger datasets. There-
fore, the use of SSD as an energy saver and performance en-
hancer for MapReduce computations ought to be seen as a
viable alternative to existing Hadoop clusters, since Hadoop
does not need to be modified to allow tmpSSD configura-
tions. We recommend that Hadoop deployment consider
using SSDs for temporary space.

Finally, we are also concerned with the Hadoop middleware
architectural changes. We are conducting a code repository
data mining experiment to investigate how source-code mod-
ifications across Hadoop releases have impacted performance
and, consequently, energy consumption. Additionally, our
results may show how much of the power being used relates
to job makespan, correlating the evolution of the framework
and its architectural changes with performance and energy
consumption.

Acknowledgment
This work was funded by Fundação Araucária, CNPq-Brazil,
and by the Emerging Leaders in the Americas Program
(ELAP) from the Government of Canada. Abram Hindle
is supported by an NSERC Discovery Grant.

8. REFERENCES
[1] Apache Mahout. Apache Mahout, 2014.

[2] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke. Nephele/PACTs: a programming model
and execution framework for web-scale analytical
processing. In Proceedings of the 1st Symposium on
Cloud Computing, pages 119–130, New York, NY,
USA, 2010. ACM.

[3] P. B. Brandtzæg. Big data - for better or worse, May
2013.

[4] T. P. P. Council. TPC Benchmark H (Decision
Support) Standard Specification, Jun 2002.

[5] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. In Proceedings of the
6th Conference on Operating Systems Design and
Implementation, volume 6, pages 10–10, Berkeley, CA,
USA, 2004. USENIX Association.

[6] D. J. DeWitt, E. Paulson, E. Robinson, J. Naughton,
J. Royalty, S. Shankar, and A. Krioukov. Clustera: an
integrated computation and data management system.
Proceedings of the VLDB Endowment, 1(1):28–41,
Aug. 2008.

[7] B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, and Y. Li.
A novel approach to improving the efficiency of
storing and accessing small files on Hadoop: A case
study by PowerPoint files. In International Conference
on Services Computing, pages 65–72. IEEE, july 2010.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. ACM SIGOPS Operating Systems
Review, 37(5):29–43, 2003.

[9] S. Guang-hua, C. Jun-na, Y. Bo-wei, and Z. Yao.
QDFS: A quality-aware distributed file storage service
based on hdfs. In International Conference on

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

Computer Science and Automation Engineering,
volume 2, pages 203–207. IEEE, june 2011.

[10] M. Hachman. SSD prices face uncertain future in
2014, 2014.

[11] A. Hadoop. Apache hadoop releases.
http://hadoop.apache.org/releases.html, 2015.

[12] J. Hamilton. Overall data center costs, September
2010.

[13] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.
The hibench benchmark suite: Characterization of the
mapreduce-based data analysis. In Data Engineering
Workshops (ICDEW), 2010 IEEE 26th International
Conference on, pages 41–51, March 2010.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. ACM SIGOPS Operating
Systems Review, 41(3):59–72, Mar. 2007.

[15] H. Jeon, K. El Maghraoui, and G. B. Kandiraju.
Investigating hybrid ssd ftl schemes for hadoop
workloads. In Proceedings of the ACM International
Conference on Computing Frontiers, CF ’13, pages
20:1–20:10, New York, NY, USA, 2013. ACM.

[16] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The
performance of MapReduce: an in-depth study.
Proceedings of the VLDB Endowment, 3(1-2):472–483,
Sept. 2010.

[17] K. Kambatla and Y. Chen. The truth about
mapreduce performance on ssds. In 28th Large
Installation System Administration Conference
(LISA14), pages 118–126, Seattle, WA, Nov. 2014.
USENIX Association.

[18] Y. Kang, Y. suk Kee, E. Miller, and C. Park. Enabling
cost-effective data processing with smart ssd. In Mass
Storage Systems and Technologies (MSST), 2013
IEEE 29th Symposium on, pages 1–12, 2013.

[19] G. Kousiouris, G. Vafiadis, and T. Varvarigou. A
front-end, Hadoop-based data management service for
efficient federated clouds. In Third International
Conference on Cloud Computing Technology and
Science, pages 511–516. IEEE, 29 2011-dec. 1 2011.

[20] K. Krish, M. Iqbal, and A. Butt. Venu: Orchestrating
ssds in hadoop storage. In Big Data (Big Data), 2014
IEEE International Conference on, pages 207–212,
Oct 2014.

[21] D. Laney. 3D data management: Controlling data
volume, velocity, and variety. Technical report, META
Group, February 2001.

[22] J. C. MacCallum. Disk drive prices.
http://www.jcmit.com/diskprice.htm, 2014.

[23] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proceedings
of the International Conference on Management of
Data, pages 135–146, New York, NY, USA, 2010.
ACM.

[24] S. Mikami, K. Ohta, and O. Tatebe. Using the Gfarm
File System as a POSIX compatible storage platform
for Hadoop MapReduce applications. In Proceedings of
the 12th International Conference on Grid Computing,
pages 181–189, Washington, DC, USA, 2011.
IEEE/ACM.

[25] S. Moon, J. Lee, and Y. S. Kee. Introducing ssds to
the hadoop mapreduce framework. In Cloud
Computing (CLOUD), 2014 IEEE 7th International
Conference on, pages 272–279, June 2014.

[26] F. Pan, Y. Yue, J. Xiong, and D. Hao. I/O
characterization of big data workloads in data centers.
In J. Zhan, R. Han, and C. Weng, editors, Big Data
Benchmarks, Performance Optimization, and
Emerging Hardware, volume 8807 of Lecture Notes in
Computer Science, pages 85–97. Springer International
Publishing, 2014.

[27] I. Polato, R. Ré, A. Goldman, and F. Kon. A
comprehensive view of Hadoop research - A systematic
literature review. Journal of Network and Computer
Applications, 46:1 – 25, 2014.

[28] M. Roger, Y. Xu, and M. Zhao. Bigcache for big-data
systems. In Big Data (Big Data), 2014 IEEE
International Conference on, pages 189–194, Oct 2014.

[29] J. Shafer, S. Rixner, and A. Cox. The Hadoop
Distributed Filesystem: Balancing portability and
performance. In International Symposium on
Performance Analysis of Systems Software, pages
122–133. IEEE, march 2010. IEEE.

[30] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In Proceedings
of the 26th Symposium on Mass Storage Systems and
Technologies, pages 1–10, Washington, DC, USA,
2010. IEEE.

[31] D. Vesset, A. Nadkarni, C. W. Olofson, and
D. Schubmehl. Worldwide big data technology and
services 2012-2016 forecast. Technical report, IDC
Corporate USA, 2012.

[32] B. Wang, J. Jiang, and G. Yang. mpCache:
Accelerating mapreduce with hybrid storage system
on many-core clusters. In C.-H. Hsu, X. Shi, and
V. Salapura, editors, Network and Parallel Computing,
volume 8707 of Lecture Notes in Computer Science,
pages 220–233. Springer Berlin Heidelberg, 2014.

[33] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors,
A. Manzanares, and X. Qin. Improving MapReduce
performance through data placement in heterogeneous
Hadoop clusters. In International Symposium on
Parallel Distributed Processing, Workshops and Phd
Forum, pages 1–9. IEEE, april 2010. IEEE.

[34] J. Zhang, X. Yu, Y. Li, and L. Lin. HadoopRsync. In
International Conference on Cloud and Service
Computing, pages 166–173, dec. 2011.

[35] D. Zhao and I. Raicu. Hycache: A user-level caching
middleware for distributed file systems. In Parallel
and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 1997–2006, May 2013.

[36] P. Zikopoulos and C. Eaton. Understanding Big Data:
Analytics for Enterprise Class Hadoop and Streaming
Data. Mcgraw-hill, 2011.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1320v1 | CC-BY 4.0 Open Access | rec: 24 Aug 2015, publ: 24 Aug 2015

P
re
P
rin

ts

