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Abstract9

Productivity of lentic ecosystems is well studied and it is widely accepted that as nutrient inputs10

increase, productivity increases and lakes transition from lower trophic state (e.g., oligotrophic)11

to higher trophic states (e.g., eutrophic). These broad trophic state classifications are good12

predictors of ecosystem condition, services (e.g., recreation and aesthetics), and disservices (e.g.,13

harmful algal blooms). While the relationship between nutrients and trophic state provides14

reliable predictions, it requires in situ water quality data in order to parameterize the model.15

This limits the application of these models to lakes with existing and, more importantly, available16

water quality data. To address this, we take advantage of the availability of a large national17

lakes water quality database (i.e., the National Lakes Assessment), land use/land cover data,18

lake morphometry data, other universally available data, and apply data mining approaches to19

predict trophic state. Using these data and random forests, we first model chlorophyll a, then20

classify the resultant predictions into trophic states. The full model estimates chlorophyll a with21

both in situ and universally available data. The mean squared error and adjusted R2 of this22

model was 0.09 and 0.8, respectively. The second model uses universally available GIS data only.23

The mean squared error was 0.22 and the adjusted R2 was 0.48. The accuracy of the trophic24

state classifications derived from the chlorophyll a predictions were 69% for the full model and25

49% for the “GIS only” model. Random forests extend the usefulness of the class predictions by26

providing prediction probabilities for each lake. This allows us to make trophic state predictions27

and also indicate the level of uncertainty around those predictions. For the full model, these28

predicted class probabilities ranged from 0.42 to 1. For the GIS only model, they ranged from29

0.33 to 0.96. It is our conclusion that in situ data are required for better predictions, yet GIS30

and universally available data provide trophic state predictions, with estimated uncertainty, that31

still have the potential for a broad array of applications. The source code and data for this32

manuscript are available from https://github.com/USEPA/LakeTrophicModelling.33
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1 Introduction36

Productivity in lentic systems is often categorized across a range of trophic states (e.g., the37

trophic continuum) from early successional (i.e., oligotrophic) to late successional lakes (i.e.,38

hypereutrophic) with lakes naturally occurring across this range (Carlson 1977). Oligotrophic39

lakes occur in nutrient poor areas or have a more recent geologic history, are often found in40

higher elevations, have clear water, and are usually favored for drinking water or direct contact41

recreation (e.g., swimming). Lakes with higher productivity (e.g., mesotrophic and eutrophic42

lakes) have greater nutrient loads, tend to be less clear, have greater density of aquatic plants,43

and often support more diverse and abundant fish communities. Higher primary productivity is44

not necessarily a predictor of poor ecological condition as it is natural for lakes to shift from45

lower to higher trophic states but this is a slow process (Rodhe 1969). However, at the highest46

productivity levels (hypereutrophic lakes) biological integrity is compromised (Hasler 1969, Smith47

et al. 1999, Schindler and Vallentyne 2008).48

Monitoring trophic state allows for rapid assessment of a lakes biological productivity and49

identification of lakes with unusually high productivity (e.g., hypereutrophic). These cases50

are indicative of lakes under greater anthropogenic nutrient loads, also known as cultural51

eutrophication, and are more likely to be at risk of fish kills, beach fouling, and harmful algal52

blooms (Smith 1998, Smith et al. 1999, 2006). Given the association between trophic state53

and many ecosystem services and disservices, being able to accurately model trophic state54

could provide a first cut at identifying lakes with the potential for harmful algal blooms (i.e.,55

from cyanobacteria) or other problems associated with cultural eutrophication. This type of56

information could be used for setting priorities for management and allow for more efficient use57

of limited resources.58

As trophic state and related indices can be best defined by a number of in situ water quality59

parameters (modeled or measured), most models have used this information as predictors60
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(Imboden and Gächter 1978, Salas and Martino 1991, Carvalho et al. 2011, Milstead et al. 2013).61

This leads to accurate models, but these data are often sparse and not always available, thus62

limiting the population of lakes for which we can make predictions. A possible solution for this63

issue is to build models that use widely available data that are correlated to many of the in situ64

variables. For instance, landscape metrics of forests, agriculture, wetlands, and urban land in65

contributing watersheds have all been shown to explain a significant proportion of the variation66

(ranging from 50-86%, depending on study) in nutrients in receiving waters (Jones et al. 2001,67

2004, Seilheimer et al. 2013). Building on these previously identified associations might allow us68

to use only landscape and other universally available data to build models. Identifying predictors69

using this type of ubiquitous data would allow for estimating trophic state in both monitored70

and unmonitored lakes. Furthermore, being able to classify a large number of lakes would have71

implications for the management of lakes. A broader discussion of ecological classification and72

resource management is beyond the scope of this paper, but see (Carpenter 1999) for more73

information on this topic.74

Many published models of nutrients and trophic state in freshwater systems are based on linear75

modelling methods such as standard least squares regression or linear mixed models (Jones et76

al. 2001, 2004). While these methods have proven to be reliable, they have limitations (e.g.,77

independence, distribution assumptions, and outlier sensitivity). Using data mining approaches,78

such as random forests, avoids many of the limitations, may reduce bias, and often provides79

better predictions (Breiman 2001, Cutler et al. 2007, Peters et al. 2007, Fernández-Delgado et80

al. 2014). For instance, random forests are non-parametric and thus the data do not need to81

come from a specific distribution (e.g., Gaussian) and can contain collinear variables (Cutler et82

al. 2007). Second, random forests work well with very large numbers of predictors (Cutler et al.83

2007). Lastly, random forests can deal with model selection uncertainty as predictions are based84

upon a consensus of many models and not just a single model selected with some measure of85

goodness of fit.86
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The research presented here builds on past work in three areas. First, we built, assessed,87

and compared two random forest models of chlorophyll a with 1) in situ and universally88

available GIS data and then 2) universally available GIS data only. Second, we converted the89

chlorophyll a estimates, for both models, to trophic state and assessed prediction accuracy90

and uncertainty. Third, we examined the important predictors for both models. Lastly, to91

promote transparency in our work, the analysis code and data are available as an R package92

from https://github.com/USEPA/LakeTrophicModelling.93

2 Methods94

2.1 Data and Study Area95

We utilized three primary sources of data for this study, the National Lakes Assessment (NLA),96

the National Land Cover Dataset (NLCD), and lake morphometery modeled from the NHDPlus97

and National Elevation Data Set (Homer et al. 2004, USEPA 2009, Xian et al. 2009, Hollister98

and Milstead 2010, Hollister et al. 2011, Hollister 2014). All datasets are national in extent99

and provide a unique snapshot view of the condition of lakes in the conterminous United States100

during the summer of 2007.101

The NLA dataset was collected during the summer of 2007 and the final datasets were released in102

2009 (USEPA 2009). With consistent methods and metrics collected at over 1000 locations across103

the conterminous United States (Figure 1), the NLA provides a unique opportunity to examine104

broad scale patterns in lake productivity. The NLA collected data on biophysical measures105

of lake water quality and habitat as well as an assessment of the phytoplankton community.106

For this analysis, we only use the various water quality measurements from the National Lakes107

Assessment (USEPA 2009). Additionally, the NLA included ecological regions as defined in the108

Wadeable Streams Assessment (Figure 2) (Omernik 1987, USEPA 2006).109
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Adding to the monitoring data collected via the NLA, we used the 2006 NLCD data to examine110

landscape-level drivers of trophic status in lakes. The NLCD is a national land use/land cover111

dataset that also provides estimates of impervious surface. We calculated total proportion of each112

NLCD land use land cover class and total percent impervious surface within a 3 kilometer buffer113

surrounding each lake (Homer et al. 2004, Xian et al. 2009). We chose this buffer distance for114

several reasons. First, in some preliminary efforts we tried a variety of scales (300 m, 1.5 km, and115

3 km), and they had little impact on prediction accuracy. Second, since we also include local lake116

specific variables (see below) as well as the broader scale ecoregions, we chose the 3km buffer as it117

made intuitive sense as representative of land use impacts that would not be accounted for these118

other variables. While many regional classifications and scales have been shown to be effective119

(e.g., Cheruvelil et al. 2013), we chose a three kilometer buffer as it represented an intermediate120

scale that is greater than immediate parcels but smaller than regional and whole-basin measures.121

Local, lake specific characteristics have been show to be important (Read et al. 2015). Thus to122

account for this, we used measures of lake morphometry (i.e., depth, volume, fetch, etc.). As123

these data are difficult to obtain for large numbers of lakes over broad regions, we used modeled124

estimates of lake morphometry (Hollister and Milstead 2010, Hollister et al. 2011, Hollister 2014).125

These included: surface area, shoreline length, Shoreline Development, Maximum Depth, Mean126

Depth, Lake Volume, Maximum Lake Length, Mean Lake Width, Maximum Lake Width, and127

Fetch.128

2.2 Predicting Trophic State with Random Forests129

Random forest is a machine learning algorithm that aggregates numerous decision trees in order130

to obtain a consensus prediction of the response categories (Breiman 2001). Bootstrapped131

sample data are recursively partitioned according to a given random subset of predictor variables132

and a predetermined number of decision trees are developed. With each new tree, the sample133
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data subset is randomly selected and with each new split, the subset of predictor variables are134

randomly selected. For a more detail description of random forests see Breiman (2001) and135

Cutler et al. (2007).136

Random forests are able to handle numerous correlated variables without a decrease in prediction137

accuracy; however, one possible shortcoming of this approach is that the resulting model may138

be difficult to interpret, thus selecting the most important variables is an important first step.139

Several methods have been proposed to do this with random forest. For instance, this is a problem140

often faced in gene selection and in that field, a variable selection method based on random forest141

has been successfully applied and implemented in the R Language as the varSelRF package142

(Díaz-Uriarte and De Andres 2006), but this is limited to classification problems. Additionally,143

others have suggested alternative variable importance measures, but this is only needed with a144

large number of categorical variables which are selected against with traditional random forest145

approach (Strobl et al. 2007).146

In our case, we predicted a continuous variable, chlorophyll a, directly thus varSelRF, does not147

apply, and nearly all of our variables are continuous so the approach suggested by Strobl (2007)148

is not necessary. Thus we developed an approach, similar to varSelRF but applied to random149

forest with regression trees. With this approach we fit a full random forest model that includes150

all variables and a large number of trees. We then rank the variables using the increase in mean151

square error, which has been shown to be a less biased metric of importance than the mean152

decrease in the Gini coefficient (Strobl et al. 2007). Using this ranking, we then iterate through153

the variables and create a random forest with the top two variables and record mean square error154

and adjusted R2 of the resultant random forest. We then repeat this process by adding the next155

most important variable in order of importance. With this information we identify both the top156

variables and the point at which adding variables does not improve the fit of the overall model.157

These variables are selected and used as the “reduced model.” With this method, a minimum set158

of variables that maximizes model accuracy is provided. This allows us to start with a full suite159
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of predictor variables from which to select a minimum, easier to interpret set of variables.160

2.3 Model Details161

We used the randomForest package in R to build predictive models of chlorophyll a with two162

sets of predictors (Liaw and Wiener 2002). The first included in situ and universally available163

GIS predictors. We refer to this as the “All variables” model. For the second model we used164

just the universally available data (i.e., no in situ information). This is referred to as the “GIS165

only” model. A list of all considered variables is in Appendix 1. Our separation of predictors was166

chosen so that we could highlight the additional predictive performance provided by adding the167

in situ water quality variables on top of the GIS only variables. Lastly, we used only complete168

cases (i.e., missing data were removed) so the total number of observations varied among models.169

Our modelling work flow was as follows:170

1. Identify a minimal set of variables from the full suite of variables (Appendix 1) that171

maximize accuracy of the random forest algorithm. This minimal set of variables, the172

reduced model, is calculated for each of the models.173

2. Using R’s randomForest package, we develop two random forest models with 5000 trees174

(“All variables” and “GIS only”).175

3. Assess model performance for both the predicted chlorophyll a and for categorical trophic176

state classifications. Trophic state was defined using the NLA chlorophyll a trophic state177

cut offs (Table 1).178

4. Examine importance and partial dependence of the most important variables.179
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2.4 Measures of Model Performance and Variable Importance180

We assessed the performance of the random forest two ways. First we compared the root mean181

square error and the adjusted R2 of the models. Second, we examined the accuracy of the model182

predictions when converted to trophic states classes via a confusion matrix (Table 1). A confusion183

matrix shows agreement and disagreement in a tabular form with predicted values forming184

the columns of the matrix and observed values, the rows. From this tabulated information we185

calculated the total accuracy (i.e., percent correctly predicted) and the kappa coefficient, which186

takes into account the error expected by chance alone (i.e., the off diagonal values of the matrix)187

(Cohen 1960, Hubert and Arabie 1985). The kappa coefficient can range from -1 to 1 with 0188

equaling the agreement expected by chance alone. Values greater than 0 represent agreement189

greater than would be expected by chance. A kappa coefficient greater than approximately 0.6 is190

considered “substantial” agreement (Landis and Koch 1977). Negative values are rare and would191

indicate no agreement between the predicted and observed values. We use kappa as a means192

of comparison across models as well as within subsets of a given model. Additionally, random193

forest builds each tree on bootstrapped, random subsets of the original data, thus, a separate194

independent validation dataset is not required and random forest error estimates are expected to195

be unbiased (Breiman 2001).196

Random forests explicitly measure variable importance with two metrics: mean decrease in Gini197

and percent increase in mean squared error. These measure the impact on the overall model198

when a particular variable is included and thus can be used to assess importance (Breiman 2001).199

The Gini Index has been shown to have a bias (Strobl et al. 2007), thus, we used percent increase200

in mean squared error to assess variable importance. Lastly, partial dependence plots provide a201

mechanism to examine the partial relationship between individual variables and the response202

variable (Jones and Linder 2015). We examined these plots for the top variables as assigned by203

percent increase in mean squared error for each the reduced models.204
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2.5 Trophic State Probabilities205

One of the powerful features of random forests is the ability to aggregate a very large number of206

competing models or trees. Each tree provides an independent prediction or vote for a possible207

outcome. In the context of our chlorophyll a models, we have 5,000 estimates of chlorophyll208

a for each lake. We convert these values to trophic states (Table 1) then count up total votes209

for each class and divide by total possible votes to get an estimate of the probability that a210

lake is in a given trophic state. For instance, for a single lake (National Lake Assessment ID =211

NLA06608-0005), the vote probabilities for the “All variables” model were 95% for oligotrophic,212

5% for mesotrophic, 0% for eutrophic, and 0% for hypereutrophic. The maximum probability213

provides the predicted class, in this case oligotrophic, and suggests little uncertainty in this214

prediction. We refer to this value as the “prediction probability.”215

Further, we might expect higher total accuracy for lakes that have more certain predictions. This216

should be evident by looking at the Kappa coefficient of lakes given their prediction probability217

is at or above a certain probability. To test this we use an approach similar to one outlined by218

Paul and MacDonald (2005) and implemented by Hollister et al. (2008) and examine the change219

in Kappa coefficient as a function of the prediction probability for both models.220

3 Results221

Our complete dataset included 1148 lakes; however 5 lakes did not have chlorophyll a data. Thus,222

the base dataset for our modelling was conducted on data for 1143 lakes. The lakes were well223

distributed across the four trophic state categories (Table 1) and spatially throughout the United224

States (Figure 1).225
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3.1 Models: All Variables226

The model built with all predictors used 1080 total observations, had a mean squared error227

of 0.09 and and R2 of 0.8. The accuracy of the four trophic states was 68.7% and the kappa228

coefficient was 0.57 (Table 2). The variable selection process identified a reduced model with 20229

variables (Figure 3). The six most important variables were turbidity, total phosphorus, total230

nitrogen, elevation, total organic carbon, and N:P ratio (Figures 4). The role that each played in231

predicting chlorophyll a varied (Figure 5).232

3.2 Models: GIS Only Variables233

The GIS only model was built using 1138 total observations, had a mean squared error of 0.22234

and and R2 0.48. Four trophic states were predicted with a total accuracy of 49% and had a235

kappa coefficient of 0.29 (Table 3). The variable selection process for this model produced a236

reduced model with 15 variables (Figure 6). The six most important variables were ecoregion,237

percent cropland, elevation, latitude, percent evergreen forest, and mean lake depth (Figures 7 &238

5).239

3.3 Trophic State Probabilities240

The “All variables” model provides more certain model predictions with a median prediction241

probability of 0.81 versus 0.72 for the “GIS only” model (Figure 9). Additionally, the Kappa242

coefficient of the predictions is a function of this uncertainty. Lakes with more certain predictions243

were more accurately classified and had higher Kappa coefficients (Figure 10). For both models,244

when prediction probabilities are approximately 0.8 or higher, the models had a Kappa coefficient245

of ~1. This represents 55% of the lakes for the “All variables” model and 22% of the lakes for the246

“GIS only” model. A Kappa coefficient of 0.6 or higher is considered “substantial” agreement247
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(Landis and Koch 1977). For the “GIS only” model this is seen with 52% of the lakes. Lastly, as248

prediction probabilities increased, the difference in kappa coefficient between the two models249

decreased (Figure 10 & Tables 4 & 5 ).250

4 Discussion251

4.1 Trophic State Probabilities252

Not surprisingly, lakes with more certain predictions (i.e., higher prediction probabilities) were253

more accurately predicted (Figure 10). The fact that the difference in accuracy (as measured by254

the Kappa coefficient) between the two models decreased as certainty in the prediction increased255

suggests that models with lower overall accuracy, such as the “GIS only” model, may have256

acceptable accuracy for many individual cases (Tables 4 & 5). Additionally, the prediction257

probabilities may be mapped for each of the four classes (Figure 11). The spatial patterns show258

little variability between the “All variables” and “GIS only” models, thus we only show the259

results from the more broadly applicable “GIS only” model (Figure 11).260

This map provides several insights. First, since low uncertainty is associated with high accuracy,261

this map shows the broad spatial patterns of lake trophic state across the United States (i.e darker262

colors more likely to be correctly predicted). Hypereutrophic lakes are much more commonly263

predicted in the Midwest and southeastern United States. Clear, oligotrophic lakes are in the264

northwestern United States, through the western mountains and in the northeastern united265

states. The middle trophic states are more evenly distributed across the country. Lastly, this266

particular map is very similar to simply mapping the raw data. However, it highlights what267

could be done if the “GIS only” model were used to map data without measured chlorophyll a268

values which would provide probabilities of given trophic states for all lakes in the United States.269
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4.2 Partial dependencies of explanatory variables270

In line with past predictive modelling of chlorophyll a concentrations the “All variables” model271

selected the water quality variables (turbidity, total organic carbon, total nitrogen, total phos-272

phorus, and N:P ratios) as important variables (Downing et al. 2001). While there is variation in273

the response of chlorophyll a to changes in nutrient concentrations, the general pattern suggests274

that limiting nutrients have predictable impacts. If we examine the partial dependencies of these275

variables we see a general linear increase in log chlorophyll a with nitrogen, phosphorus and276

organic carbon concentrations (Figure 5). This relationship holds until nutrient concentrations277

become saturated. The partial dependency plots (Figure 5) for the nitrogen:phosphorus ratio278

is more complicated, indicating that for ratios less than ~14 chlorophyll a increases but after279

~14 there is marked decrease. The effect of the nitrogen phosphorus ratio on chlorophyll has280

been the subject of considerable research and our results are consistent with the majority of the281

findings suggesting that at low ratio values nitrogen is limiting (Downing and McCauley 1992,282

Smith and Schindler 2009). Conversely, at higher ratios the phosphorus levels may be limiting.283

This would be a cause for concern with linear models; however, linearity is not an assumption of284

tree-based modelling approaches such as random forest.285

Turbidity was selected as the most important variable in the “All variables” model. The partial286

dependency analysis shows that, similar to the nutrients discussed above, log chlorophyll a287

increases with increased turbidity. At first this may seem counter intuitive since we might expect288

productivity to decrease as turbidity increases, and therefore light availability decreases (Tilzer289

1988, Bilotta and Brazier 2008). However, algal biomass can contribute heavily to measures290

of turbidity and we expect greater productivity to lead to increased turbidity (Hansson 1992).291

We interpret this pattern as indicating that as chlorophyll a concentrations increase we see a292

concomitant increase in turbidity due to increased algal cell densities.293

Elevation was selected as an important predictive variable in both the all variables and the GIS294
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only models; the partial dependencies (Figures 5 & 8) indicate a negative relationship between295

elevation and chlorophyll a concentration that is probably due to fact that the location of296

mountains in the United States is the spatial inverse of the distribution of agricultural and urban297

lands. As elevation increases we expect decreased loads due to smaller watershed contributing298

areas. In contrast lower elevation sites will have larger drainage areas and greater potential for299

increased nutrient loads from urban and agricultural sources.300

The variables in the “GIS only” model captured the large scale spatial pattern of the trophic301

status gradient of lakes across the United States. In addition to elevation, mentioned above, the302

model was most sensitive to latitude and ecoregion. In general, chlorophyll a concentrations are303

highest in the Southern portions of the study area where temperatures can be higher (a known304

driver of productivity), elevations lower, and agricultural impacts more pronounced. Likewise305

ecoregion (see Figures 2 & 8) has a pronounced affect indicting continental scale effects of land306

use and geography. Agriculturally dominated landscapes such as the Temperate Plains, Southern307

Plains, and Coastal Plains show the highest levels of Chlorophyll a. Whereas high elevation308

zones (Western Mountains), arid lands (Xeric), Northern habitats (Upper Midwest) have lower309

concentrations.310

Further evidence for the role of land use/land cover variables, and similar to results from Read311

et. al. (2015), is shown by the selection of the percent cropland and percent evergreen forest312

variables. As indicated by the partial dependency plots (Figure 8), chlorophyll a increases with313

cropland and decreases with evergreen cover. It is not surprising that croplands were selected314

given the overwhelming impact of agriculture on the eutrophication process. Evergreens and315

chlorophyll a concentrations show a negative association (Figure 8). As the percent of evergreens316

increases we are likely to see increased elevation and soil differences that limit agriculture.317

Lastly, morphometry (e.g., depth) also proved to be important in the prediction of lake trophic318

state (Genkai-Kato and Carpenter 2005). As morphometry shows little to no broad scale spatial319

pattern and is unique to a given lake, these data are likely illuminating the local, lake scale320

13

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1319v3 | CC-BY 4.0 Open Access | rec: 3 Dec 2015, publ: 3 Dec 2015



drivers such as in-lake nutrient processing and residence time.321

5 Conclusions322

Our research goals were to explore the utility of a widely used data mining algorithm, random323

forests, in the modelling of chlorophyll a and lake trophic state. Further, we hoped to examine324

the utility of these models when built with only ubiquitous GIS data, which allows estimation of325

trophic state for all lakes in the United States. The “All variables” model had an RMSE of 0.09326

and an adjusted R2 of 0.8 whereas, the GIS only models had an RMSE of 0.22 and the adjusted327

R2 was 0.48. Our total accuracy in predicting chlorophyll a based trophic states was 69% for the328

“All variables” model and 49% for the “GIS only” model.329

While the “GIS only” model showed lower prediction accuracies than the “All variables” model,330

the association between the uncertainty of prediction and total accuracy (Figure 10 and Tables331

Tables 4 & 5) suggest that the “GIS only” model will provide reasonable estimates of trophic332

state for many lakes across the United States. Furthermore, we can map the uncertainty of the333

predictions, thus, we know the spatial patterns and location of the lakes for which we are certain,334

or not, of their predicted trophic state. Given this and that these models may be applied to any335

lake in the United States we can recommend using this model.336

Future iterations of this modelling effort may be able to utilize modeled predictions of nutrients337

to improve accuracy and also maintain broad applicability (Milstead et al. 2013). Changes such338

as these have several advantages. First, this would allow for estimating changes to chlorophyll a339

and trophic state as a function of changing nutrient loads, which are expected due to climate340

change (Adrian et al. 2009, Jeppesen et al. 2011, Moss et al. 2011, Jones and Brett 2014).341

Second, with the ability to make predictions for most lakes in the United States, the “GIS only”342

models could be used as a source of information on national scale phenomena. For example,343
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predictions of chlorophyll a, with measures of uncertainty, could be used in efforts to scale up344

the contributions from lakes to broad scale estimates of gross primary production.345

For the “All variables” model, the in situ water quality variables drove the predictions. This346

is not surprising. For the “GIS only”" model, the results were more nuanced. Three broad347

categories were routinely being selected as important: broad scale spatial patterns in trophic348

state, land use/land cover controls of trophic state, and local, lake-scale control driven by lake349

morphometry.350

Our results raise three important considerations related to managing eutrophication. First,351

the broad scale patterning, indicated by ecoregion as an important variable, suggests regional352

trends. This is noteworthy because it suggests that efforts to monitor, model and manage353

eutrophication and cyanobacteria should be undertaken at both national and regional levels.354

This corroborates past findings that regional drivers are important for water quality (Cheruvelil355

et al. 2013). Second, while direct control of water quality in lakes would have a large impact,356

the land use/land cover drivers (i.e., non-point sources) of water quality are also important, and357

better management of the spatial distribution of important classes such as forest and agriculture358

can provide some level of control on trophic state and amount of cyanobacteria present. Third,359

in-lake processes (i.e., residence time, nutrient cycling, etc.) are, as expected, important and360

need to be part of any management strategy. Building on these efforts through updated models,361

direct prediction of cyanobacteria, and additional information on the regional differences will362

help us get a better handle on the broad scale dynamics of productivity in lakes and the potential363

risk to human health from cyanobacteria blooms.364
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7 Figures373

Figure 1: Map of the distribution of National Lakes Assesment Sampling locations
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Figure 2: Wadeable Streams Assesment ecoregions
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Figure 3: Variable selection plot for all variables. Shows percent increase in mean squared error
as a function of the number of variables.
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Figure 4: Importance plot for All Variables., shows percent increase in mean square error. Higher
values of percent increase in mean squared error indicates higher importance.
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Figure 5: All Variables partial dependence plots for the top 5 most important variables.

21

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1319v3 | CC-BY 4.0 Open Access | rec: 3 Dec 2015, publ: 3 Dec 2015



Figure 6: Variable selection plot for GIS only variables. Shows percent increase in mean squared
error as a function of the number of variables.
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Figure 7: Importance plot for GIS Only Variables., shows percent increase in mean square error.
Higher values of percent increase in mean squared error indicates higher importance.
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Figure 8: GIS Only Variables partial dependence plots for the top 5 most important variables.
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Figure 9: Prediction probabilities for the All Variables and GIS Only models.
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Figure 10: Accuracy of predictions as a function of lake prediction probability. The x-axis
represents lakes with a prediction probability at a given level or higher.
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Figure 11: Maps of prediction probabilities for each of the four chlorophyll a trophic states
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8 Tables374

Table 1: Chlorophyll a based trophic state cut-offs.

Trophic State (4 class) Trophic State (2 class) µg/L Cut-off

oligotrophic oligotrophic/mesotrophic <= 2

mesotrophic oligotrophic/mesotrophic >2-7

eutrophic eutrophic/hypereutrophic >7-30

hypereutrophic eutrophic/hypereutrophic >30
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Table 2: Random Forest confusion matrix for All Variables model converted to 4 trophic states.

Columns show predicted values and rows show observed values. Agreement indicated on diagonal

and accuracy for each trophic state indicated in ‘Class Accuracy’ column.

oligo meso eu hyper Class Accuracy (%)

oligo 115 31 0 0 78.77

meso 67 251 63 0 65.88

eu 7 61 217 75 60.28

hyper 0 5 29 159 82.38
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Table 3: Random Forest confusion matrix for GIS Only model converted to 4 tropic states.

Columns show predicted values and rows show observed values. Agreement indicated on diagonal

and accuracy for each trophic state indicated in ‘Class Accuracy’ column.

oligo meso eu hyper Class Accuracy (%)

oligo 65 14 6 0 76.47

meso 101 213 98 18 49.53

eu 29 126 193 141 39.47

hyper 1 8 38 87 64.93
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Table 4: Summary of relationship between prediction probabilities, total accuracy, and number

of lakes for the All variables model.

Prediction Prob. Kappa Coefficient Percent of Sample Number of Samples

All 57 100 1080

0.50 59 98 1063

0.60 63 92 999

0.70 73 81 870

0.80 95 55 596

0.90 100 21 227
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Table 5: Summary of relationship between prediction probabilities, total accuracy, and number

of lakes for the GIS only model.

Prediction Prob. Kappa Coefficient Percent of Sample Number of Samples

All 29 100 1138

0.50 31 96 1091

0.60 38 83 949

0.70 56 57 651

0.80 88 22 247

0.90 100 4 43
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9 Appendix 1. Variable Definitions375

Variable Names Description Source Mean Std. Error

AlbersX Longitude (Albers meters) GIS 126757.1 34305.5

AlbersY Latitude (Albers meters) GIS 436908.1 17367.2

BarrenPer_3000m % Barren GIS 0.7 0.1

BASINAREA Watershed Area (sq. meters) GIS 3208.5 788.1

CropsPer_3000m % Cropland GIS 13.3 0.6

DDs45 Growing Degree Days (Days) GIS 2750.0 41.0

DeciduousPer_3000m % Decidous Forest GIS 17.1 0.6

DevHighPer_3000m % High Intensity Development GIS 0.4 0.0

DevLowPer_3000m % Low Intensity Development GIS 3.0 0.2

DevMedPer_3000m % Medium Intensity Development GIS 1.4 0.1

DevOpenPer_3000m % Developed Open Space GIS 5.4 0.2

ELEV_PT Elevation (meters) GIS 607.6 20.1

EvergreenPer_3000m % Evergreen Forest GIS 12.2 0.6

FetchE Fetch from East (m) GIS 1652.8 80.3

FetchN Fetch from North (m) GIS 2009.6 106.9

FetchNE Fetch form Northeast (m) GIS 1645.0 80.9

FetchSE Fetch from Southeast (m) GIS 1642.0 80.5

GrassPer_3000m % Grassland GIS 13.8 0.7

HerbWetPer_3000m % Herbaceuos Wetland GIS 1.7 0.1

IceSnowPer_3000m % Ice/Snow GIS 0.0 0.0

LakeArea Lake Surface Area (sq. meters) GIS 12.2 2.3

LakePerim Lake Perimeter (meters) GIS 33.6 4.5

MaxDepthCorrect Est. Maximum Lake Depth (m) GIS 8.4 0.3

MaxLength Maximum Lake Length (m) GIS 2972.1 137.2
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Variable Names Description Source Mean Std. Error

MaxWidth Maximum Lake Width (m) GIS 1567.5 76.0

MeanDepthCorrect Est. Mean Lake Depth (m) GIS 2.9 0.1

MeanWidth Mean Lake Width (m) GIS 1370.1 122.6

MixedForPer_3000m % Mixed Forest GIS 3.8 0.3

PasturePer_3000m % Pasture GIS 7.7 0.3

PercentImperv_3000m % Impervious GIS 2.6 0.2

ShoreDevel Shoreline Development Index GIS 2.7 0.1

ShrubPer_3000m % Shrub/Scrub GIS 10.4 0.6

VolumeCorrect Est. Lake Volume (cubic meters) GIS 101211909.9 27438696.4

WaterPer_3000m % Water GIS 4.1 0.2

WoodyWetPer_3000m % Woody Wetland GIS 5.2 0.3

WSA_ECO9 Ecoregion GIS NA NA

ANC Acid Neutralizing Capacity (ueq/L) NLA 2584.2 171.7

ANDEF2 Anion Deficit (ueq/L) NLA -506.4 143.2

ANSUM2 Sum of Anions using ANC (ueq/L) NLA 8043.1 1197.9

BALANCE2 Ion Balance (%) NLA -0.7 0.1

CA Calcium (ueq/L) NLA 1388.3 54.0

CATSUM Sum of Cations (ueq/L) NLA 7536.7 1105.0

CL Chloride (ueq/L) NLA 1600.3 438.2

COLOR Color (PCU) NLA 16.1 0.5

CONCAL2 Calculated Conductivity (uS/cm) NLA 949.0 148.1

COND Conductivity (uS/cm) NLA 656.0 72.6

CONDHO2 D-H-O Calculated Conductivity (uS/cm) NLA 618.6 55.1

DATE_COL Date Samples Collected NLA NA NA

DEPTHMAX Maximum Depth (meters) NLA 9.6 0.3
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Variable Names Description Source Mean Std. Error

DO2_2M Dissolved Oxygen (mg/L) NLA 7.9 0.1

DOC Dissolved Organic Carbon (mg/L) NLA 8.6 0.5

H Hydrogen Ions (ueq/L) NLA 0.2 0.1

K Potassium (ueq/L) NLA 245.6 40.6

MG Magnesium (ueq/L) NLA 2190.4 282.2

Na Sodium (ueq/L) NLA 3709.7 816.3

NH4 Ammonium (mg/L) NLA 2.9 0.2

NH4ION Calculated Ammonium (ueq/L) NLA 2.5 0.2

NO3 Nitrate (ueq/L) NLA 5.4 0.7

NO3_NO2 Nitrate/Nitrite (mg N/L) NLA 0.1 0.0

NPratio Nitrogen:Phophorus Ratio NLA 34.5 1.8

NTL Total Nitrogen (µg/L) NLA 1109.9 56.4

OH Hydroxide (ueq/L) NLA 3.1 0.2

ORGION Est. Organic Anions (ueq/L) NLA 85.9 4.8

PH_FIELD pH NLA 8.1 0.0

PTL Total Phosphorus (µg/L) NLA 103.1 7.8

SIO2 Silica (mg/L) NLA 8.6 0.3

SO4 Sulfate (ueq/L) NLA 3853.4 935.7

SOBC Sum of Base Cation (ueq/L) NLA 7534.1 1105.0

TmeanW Mean Profile Water Temp. (C) NLA 24.1 0.1

TOC Total Organic Carbon (mg/L) NLA 9.6 0.6

TURB Turbidity (NTU) NLA 12.3 1.0
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