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Abstract  

 We present a procedure to retrieve the hemodynamic response function from 

resting state (RS) fMRI data. The fundamentals of the procedure are further 

validated by a simulation and with ASL data. We then present the modifications to 

the shape of the HRF at rest when opening and closing the eyes using a 

simultaneous EEG-fMRI dataset. Finally, the HRF variability is further validated on a 

test-retest dataset. 

I. INTRODUCTION 

Functional MRI time series can be modeled as the convolution of a latent neural 

signal (which is not measured) and the hemodynamic response function (HRF). First, 

since the temporal characteristics of the HRF across different anatomical regions can 

be influenced by the underlying venous structure, it is possible that intrinsic activity 

across disparate brain regions can be temporally correlated only due to the 

underlying vascular architecture. Second, the hemodynamic response is affected by 

physiological fluctuations arising from cardiac pulsation and respiration (Cordes, 

Haughton et al. 2001). These can introduce temporal correlations in fMRI signals. 

Also, given the fact that fMRI data is sampled slowly (typically every 1-2 seconds), 

physiological fluctuations cannot be removed by simple filtering as they can alias 

into the low frequency band of interest (0.01-0.1 Hz). Third, the period of the fastest 
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variation in RS-fMRI data is 10 s, which is orders of magnitude greater than the 

sub-second time scale at which most neuronal processes occur. 

This confounding effect can be dealt with by deconvolution of the HRF. In 

task-related fMRI this procedure has been known and applied since the very 

beginnings, since the onset of the HRF was known. This is not the case for RS-fMRI. 

Motivated by this evidence, we developed an approach to perform blind 

hemodynamic deconvolution (Wu, Liao et al. 2013) of RS-fMRI data to recover the 

underlying latent neuronal signals. This allowed to greatly improve the estimation of 

directed dynamical influences in RS-fMRI recordings (Wu, Liao et al. 2013), but also 

provided us with an estimation of the HRF shape for each voxel in the brain. In this 

chapter we will first validate the blind HRF retrieving approach by means of a 

simulation and a comparison with baseline CBF, then we will analyze the effects of 

physiological conditions (eyes open vs. eyes closed) on the HRF shape; finally the 

HRF variability will be assessed with the help of a test-retest resting state fMRI 

dataset. 

II. METHODOLOGY 

The deconvolution is blind because there is no external input in case of RS-fMRI 

data and consequently, both the HRF and the underlying neuronal latent variables 

must be simultaneously estimated from the observed fMRI data, making this an 

ill-posed estimation problem.  

We will now briefly review the foundations of a blind HRF retrieval technique for 

resting-state BOLD-fMRI signal developed in a previous work (Wu, Liao et al. 2013).  

There is accumulated evidence of specific BOLD events governing the dynamics of 

the brain at rest (Tagliazucchi, Balenzuela et al. 2012, Petridou, Gaudes et al. 2013). 

We start from the assumption that resting-state brain dynamics can be driven by 

spontaneous events, which can be seen as a point process. A linear time invariant 

(LTI) system is used to model the relationship between the spontaneous neural 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1317v1 | CC-BY 4.0 Open Access | rec: 20 Aug 2015, publ: 20 Aug 2015

P
re
P
rin

ts



  

event and the BOLD response. The hemodynamic response )(th  represents such 

dynamic process; the BOLD signal at time t , )(ty , is modeled as the convolution of 

neural state )(tx  and )(th , i.e. 

)()()()( tthtsty  . 

where   denotes convolution, and )(t  is the unexplained error.  

The right side of the above equation includes three unobserved quantities. In 

order to solve the equation for )(th  we need to substitute )(ts  with a hypothetical 

model of the neural activation for )(ts . Here we employ a stimulus function )(ˆ ts  to 

model )(ts . )(ˆ ts  is constituted by several time-shifted delta functions, which are 

centered at the onset of each spontaneous point process events. For task-related 

fMRI, the stimulus function is always derived according to the prior task design 

information. This is not the case for resting state fMRI. We need to retrieve the 

spontaneous point process event from a given signature (spike/peak) in the BOLD 

time series. As the peak of the BOLD signal lags behind the peak of neural activation 

(i.e. k  seconds), it is reasonable to assume that these BOLD spikes are generated 

from the spontaneous point process events. 

In order to obtain the time lag k , we search all values in the interval [0, PST], 

where PST is the peristimulus time, choosing the one for which the noise squared 

error (i.e. 
2

)()(ˆ)( thtsty  ) is smallest, indicating the spontaneous event onset. In 

practice, The timing set S  of these resting-state BOLD spikes/transients is defined 

as the time points exceeding a given threshold   around a local peak, which can be 

detected according to the following expression: 

           iiiiii tytytytytytiS &&,}{  . 

It is worth mentioning that we make no assumptions about the exact shape or 

functional form of the hemodynamic responses. The application of prior knowledge 

about possible hemodynamic response shapes could reduce the bias in the linear 

estimation framework especially for the low signal noise ratio dataset, and sharply 
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reduce the computational cost. Therefore, we assume that the hemodynamic 

responses for all resting state spontaneous point process events and at all locations 

in the brain are fully contained in an d -dimensional linear sub-space H  of d , then, 

any hemodynamic response h  can be represented uniquely as the linear 

combination of the corresponding basis vectors. The canonical HRF with its delay 

and dispersion derivatives (we denote it as canon2dd) are employed as the basis 

functions in our previous study (Wu, Liao et al. 2013). The HRF can also be 

reconstructed via (smoothed) Finite Impulse Response (sFIR) or ‘selective 

averaging’ (Dale and Buckner 1997). 

There are some implicit limitations in our previous work described so far.  

(1) ),0(~)( 2

1 Nt  is assumed to be white. However, )(t  is not independent in time 

due to aliased biorhythms and  neural activity not accounted for in the model. 

(2) The spontaneous point process event onsets need to be synchronized with 

scans, i.e. the time lag k  is an integral multiple of TR, which may induce some bias. 

(3) in equation 1,  the baseline activity is not included. 

To reduce the above estimation bias, we modify the algorithm to account for the 

temporal dependency in )(t , and the mismatching between events onset and scans, 

in the following way: 

(1) Using an AR(p) model during the parameter estimation of temporal correlation 

structure in )(t . 

(2) Estimating the time lag in a much finer temporal grid rather than TR, i.e. the 

peak of BOLD response lags behind the peak of neural activation is presumed to 

NTRk /  seconds (where TRNPSTk /0  ). 

(3) Adding a constant term into equation 1, 

)()()()( tcthtsty                                                                             (2) 

where c indicates the baseline magnitude of the BOLD response. 
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To characterize the shape of the hemodynamic response, three parameters of the 

HRF, namely response height and its normalization (normalized by baseline 

magnitude c, i.e. percent signal change, PSC), time to peak, Full Width at Half 

Maximum (FWHM), were estimated. These quantities are interpretable in terms of 

potential proxies for response magnitude, latency and duration of neuronal activity 

(Lindquist and Wager 2007).  

The procedure described above is sketched in Figure 1.  

 

Figure 1: scheme of the resting state HRF retrieving procedure. 

 

III. APPLICATIONS AND DISCUSSION 

1. Simulation  

To validate the feasibility and effectiveness of proposed algorithm, the simulated 

HRFs are used as the ground truth for simulations. The HRF was generated using a 

physiological model, the balloon model (Buxton, Wong et al. 1998), with TR=2s and 

the parameters used SPM package: signal delay = 0.64, autoregulation= 0.32, 

exponent for Fout(v) = 0.32,  resting oxygen extraction = 0.4, and varying transit 

time (τ0)  = 0.98, 1.3, 1.6, 2. The transit time is V0/F0, where V0 is resting blood 

volume fraction and F0 is resting flow. The physiology of the relationship between 
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flow and volume is determined by the evolution of the transit time (Friston, Mechelli 

et al. 2000). Two types of stimulus designs are employed to simulate the BOLD 

signal:  

1. Event-related (ER) design (0.1s on) with fixed inter-stimulus-interval (ISI) of 40 

s,  

2. Jittered ER design with non-uniform ISI (average ISI = 19s). 

Different levels of white noise ε, modeled by an autoregressive AR(1) process with  

AR coefficient of 0.2, are added such that the resulting SNR ( NoiseSignal  , where s is 

the standard deviation) are 1.5 (low noise) and 0.1 (high noise). Each ER design 

simulation is run 20 times with random values of ε in order to generate a null 

distribution (in order to ensure reliability of the result and calculate the mean and 

standard deviation of the HRF). 

 We observe that the retrieved HRF shapes are dependent on the SNR. As expected, 

the variability of canon2dd HRF is much lower than sFIR model across all level of 

SNR, both for fixed and non-uniform ISI. As shown in Figure 2, two HRF basis 

vectors show similar but different degree of fitting of ground truth HRF, slightly 

vary with different transit time. These stable characteristics implicate that the 

proposed algorithm could be a robust indicator of spontaneous BOLD response. 

Besides, as the balloon model is a nonlinear HRF model, the jittered design may 

induce nonlinear interaction between stimuli, which could violate the assumption 

behind the proposed algorithm (Boynton, Engel et al. 2012). 
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(a)  

 

(b)  
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(c)  

Figure 2 shows (a) ER stimulus timing, the ideal BOLD response, and ideal response 

corrupted with noise (SNR=1) (b) Ground truth (Balloon) and estimated HRFs for fixed 

ISI ER design, (c) Ground truth and estimated HRFs for jittered ER design. The colored 

shadow indicates the standard deviation.  

2.  Relation with cerebral blood flow 

The BOLD-fMRI signal reflects the complex interactions between cerebral metabolic 

rate of oxygen, cerebral blood flow  (CBF) and volume; the comparison of CBF and 

HRF in the same voxels could provide a better understanding of the temporal 

dynamics of resting state spontaneous responses.  In this section we employ a public 

dataset (Avants, Duda et al. 2015) to explore the relationship between baseline CBF 

and HRF. 

The resting state BOLD fMRI images were acquired using 2D EPI sequence (TR=2s, 8 

min). Subjects (N=108, some of them with longitudinal data) were required to relax 
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quietly while looking at a fixation point. Pseudo continuous arterial spin labeled 

(pCASL) images were acquired using gradient-EPI with TR/TE=4,000/12 ms. The 

total imaging time was 5.5 min, and 40 label/control pairs were acquired, with 1.5 s 

labeling duration and 1.2 s post-labeling delay. 

BOLD fMRI images were preprocessed with SPM12, including: realigning and 

unwarping, coregistration to anatomical image, spatial normalization into MNI 

space, smoothing, detrending, and linear regression to remove possible spurious 

variances from the data (including six head motion parameters, non-neuronal 

sources of noise estimated using the anatomical component correction method, i.e. 

white matter and cerebral spinal fluid signal), 0.008~0.1HZ band filtering. As the 

slice order information is not reported in this dataset, we did not perform the slice 

timing correction, which does not affect the HRF retrieving algorithm anyway. 

pCASL data were preprocessed using the ASLtbx toolbox (Wang, Aguirre et al. 

2008), with the following steps: realigning, coregistration to anatomical image, 

regression of the six head motion parameters and smoothing with 6mm FWHM 

Gaussian kernel. CBF was then estimated, and finally normalization to MNI space 

was performed (same normalization method used in BOLD fMRI images). The group 

median map of CBF and HRF parameters are presented in Figure 3. We can observe 

that the HRF response height shows a spatial pattern similar to the CBF map. A prior 

functional parcellation of cerebrum is applied on the median map to validate the 

effect of spatial correlations between them. The prior functional parcellation is 

composed of seven large-scale subnetworks: visual (VN), somatomotor (SMN), 

dorsal attention (DAN), ventral attention (VAN), limbic (LN), frontoparietal (FPN) 

and default network (DMN) (Yeo, Krienen et al. 2011). The correlation analysis 

across voxels in each subnetworks showed a striking spatial overlap between CBF 

and HRF response height (PSC, baseline) (Figure 4). Such phenomenon is not 

observed in other HRF parameters. In particular there is evidence of a highly 

nonlinear relationship between height PSC/baseline and CBF. In the DMN (baseline) 
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and LN (height PSC) the linear relation is not evident, both for canon2dd and sFIR 

model. Furthermore, the across subject correlation between CBF and HRF were also 

analyzed both at voxel level and large-scale networks level (Figure 5 & 6). We found 

different HRF model show different correlation with CBF at the both spatial 

resolutions. In contrast to canon2dd, sFIR show higher correlation in HRF response 

height, lower in time to peak. The physiological basis of this complicated interaction 

will need to be investigated further. 

(a)  
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 (b)   

Figure 3. Median maps of CBF (a) and HRF (b) parameters across subjects. 
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Figure 4. Scatterplot of the spatial correlations across voxels between CBF and HRF 

parameters. The X-axis is the CBF, Y-axis are the HRF parameters. Blue scatterplots 

indicate that the linear correlation is significant, p<0.05, corrected. 
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Figure 5. Scatterplot of the across subject correlations between CBF and HRF 

parameters. X-axis is the CBF, Y-axis are the HRF parameters. Blue scatterplots 

indicate the linear correlation is significant, p<0.05, corrected. 
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Figure 6. Correlations between CBF and HRF parameters at voxel level across subjects. 

The upper colorbar is for inside plots, the bottom colorbar is for surface plots. 
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3.Relation with EEG power 

In order to further investigate the electrophysiological basis of the HRF and its 

coupling to electrical brain activity we considered simultaneously recorded EEG and 

fMRI data. EEG were collected at 1000 Hz and down-sampled at 250 Hz. Scanner 

artifact correction, pulse artifact correction, notch filtering and ICA analysis were 

performed on the raw data. fMRI data were collected at 7 Tesla, with a repetition 

time of 1s. Resting-state fMRI data preprocessing was carried out using both AFNI 

and SPM8 package. First, the EPI volumes were corrected for the temporal 

difference in acquisition among different slices, and then the images were realigned 

to the first volume for head-motion correction. The resulting volumes were then 

despiked using AFNI's 3dDespike algorithm to mitigate the impact of outliers. Next, 

the despiked images were spatially normalized to the Montreal Neurological 

Institute template then resampled to 3-mm isotropic voxels.  

Several parameters were included in a linear regression to remove possible 

spurious variances from the data. These were i) six head motion parameters 

obtained in the realigning step, ii) non-neuronal sources of noise estimated using 

the anatomical component correction method (aCompCor, the representative 

signals of no interest from white matter (WM) and cerebral spinal fluid (CSF) 

included the top five principal components (PCs) from WM and the top five from 

CSF mask; the subject-specific WM and CSF masks was segmented from the 

anatomical image of each participant using SPM8's unified segmentation–

normalization procedure) (Behzadi, Restom et al. 2007). Then the time series were 

temporally band-pass filtered (0.01~0.08 Hz) and linearly detrended. 

The scalp EEG voltage data from the three occipital channels O1, O2, and Oz were 

selected (Mo, Liu et al. 2013). 
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First, EEG signals for each channel were segmented into 500 ms non-overlapping 

epochs. Second, the EEG power spectrum for each single epoch was calculated using 

a nonparametric multitaper approach, and the alpha band power was obtained by 

integrating the power spectrum between 8 and 12 Hz. Third, the channel-level alpha 

power time series from each of the three occipital channels was averaged to yield 

the subject-level alpha power time series, which was convolved with a canonical 

hemodynamic response function (HRF). The HRF-convolved alpha power time 

series was then downsampled to the same sampling frequency as the BOLD signal. 

To identify brain regions whose BOLD activity co-varied with EEG alpha power, 

we examined the temporal correlation between HRF-convolved alpha power time 

series and BOLD time series from all voxels based on the general linear model 

(GLM). HRF-convolved alpha power time series was incorporated as a parametric 

regressor in the GLM, modeling the coupling effects between alpha and BOLD. 

The processed BOLD signal at every voxel was converted into its z-score, and the 

resting state HRF was retrieved as described above, according to the canon2dd and 

sFIR model.  

 

Figure 7: clusters of significant correlation (red) and anti-correlation (blue) between 

BOLD and alpha power spectrum 
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Two canonical ROIs were chosen from the previous GLM analysis (Thalamus and 

Occipital Lobe) (Laufs, Kleinschmidt et al. 2003), both for eye closed and open 

condition, under individual voxel p-value<10-6, cluster size>50.  

A positive correlation between BOLD and canonical HRF convolved alpha power 

was observed in the thalamus, and a negative one in the Occipital Lobe (Figure 7). 

After (canon2dd and sFIR) HRF deconvolution, the Pearson correlation between 

devonvolved BOLD and alpha power is almost strengthened, only one weaken 

connectivity is found in thalamus with eye closed after canon2dd HRF 

deconvolution (Figure 8).             

The voxel-level HRF shapes derived in these two regions in the two conditions are 

reported in Figure 9. We observe opposite patterns of HRF shapes between the 

thalamus and occipital cortex under the two conditions, which is consistent with the 

correlation and anti-correlation between the alpha power spectrum and BOLD 

signal in thalamic and occipital cortex. It is worth to note how the variations in HRF 

are consistent with the differences in net arterial and venous flow, and the 

consequent effects on the estimation of Granger causality reported in (Webb, 

Ferguson et al. 2013). This evidence confirms the importance of performing HRF 

deconvolution prior to estimating not only for lag-based directed connectivity (Wu, 

Liao et al. 2013), but also for standard functional connectivity . 
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Figure 8. Pearson correlation between (BOLD) Deconvolved BOLD signal and 

(canonical HRF convolved)  alpha power.  Occ: occipital area; Thal: thalamus; Cc: eyes 

closed, canon2dd; Cs: eyes closed, sFIR; Oc: eyes open, canon2dd; Os: eyes open, sFIR.ss  

 

Figure 9: HRF at rest in the occipital cortex (left) and in the thalamus (right) for eyes 

open and closed. Left upper pannel is HRF estimated by sFIR model, the bottom pannel 
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is HRF estimated by canonical HRF with its derivatives. The red and blue shadows are 

the standard deviations of voxelwise HRFs under eyes closed and open conditions. 

4. HRF modulations with eyes open and closed 

In order to study the modulations of HRF shape when opening or closing the eyes 

on a larger sample, we considered a dataset of 48 healthy controls collected at the 

Beijing Normal University in China with 3 resting state fMRI scans of six minutes 

each (http://fcon_1000.projects.nitrc.org/indi/IndiPro.html). During the first scan 

participants were instructed to rest with their eyes closed. The second and third 

resting state scan were randomized between resting with eyes open versus eyes 

closed. Data were preprocessed as described in above section. Then the resting state 

HRF was retrieved. Statistical significance of the spontaneous hemodynamic 

response evoked by opening and closing eyes was assessed with a group-level 

repeated-measures analysis of covariance (ANCOVA) that included subjects as the 

random factor and two fixed factors, resting state type (eyes closed and open) and 

order (eyes closed-open-closed, eyes closed-closed-open), age, gender, and mean FD 

power as the covariates. The ANCOVA revealed significant main effect for resting 

state type in hemodynamic response height. No significant main effect of order and 

interaction effect were found. The significant differences in the height of the HRF 

located in the occipital areas, and were depicted in figure 10. The corresponding 

HRF shape is also reported. Though the difference in the thalamus is not obvious, we 

still can find the opposite patterns of HRF shapes under eye closed and open, similar 

with the finding in EEG-fMRI dataset. 
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Figure 10: statistical differences in HRF height with eyes closed (1), open, then closed 

again (2) (top), and typical shapes in the occipital (left) and thalamic (right) area 

(middle: sFIR; bottom: canonical HRF with its derivatives).  

5. HRF variability 

The hemodynamic response has been shown to vary in timing, amplitude, and 

shape across brain regions and cognitive task paradigms (Miezin, Maccotta et al. 

2000, Handwerker, Gonzalez-Castillo et al. 2012). Such variation is expected also for 

resting state. In order to investigate the variability on the resting state HRF, a 

test-retest reliability analyses were performed on a resting-state fMRI dataset that 

has been publicly released in the ‘‘1000 Functional Connectomes Project’’. All 

included participants had no history of neurological and psychiatric disorders and 
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all gave the informed consent approved by local Institutional Review Board. During 

the scanning participants were instructed to keep their eyes closed, not to think of 

anything in particular, and to avoid falling asleep. 

Two data sets with different TR (TR = 2.5 s and TR = 0.645 s) were acquired on 

Siemens 3T Trio Tim scanners using standard EPI sequence (TR = 2500msec, 3mm 

isotropic voxels, 5 minutes) and multiband EPI sequence (TR = 0.645 s, 3 mm 

isotropic voxels, 10 min).  

To evaluate the test–retest (TRT) reliability of the voxel HRF parameters 

between the two sessions, a measurement of the intraclass correlation coefficient 

(ICC) was employed. A one-way ANOVA with random subject effects was used to 

compute the between-subject mean square (BMS) and within-subject mean square 

(WMS). Then an ICC value was subsequently calculated according to the equation 

(Shrout and Fleiss 1979) 

WMSmBMS

WMSBMS
ICC

)1( 


  

where m represents the number of repeated measurements of the voxel HRF 

parameter (here, m = 2). We calculated the ICC value for each voxel and generated 

the ICC map for each HRF parameter. Next, the TRT reliability of the HRF parameter 

was assessed in a voxel-wise manner with the classifying criteria of ICC values 

(Sampat, Whitman et al. 2006): less than 0.4 indicated low reliability; 0.4 to 0.6 

indicated fair reliability; 0.6 to 0.75 indicated good reliability and 0.75 to 1.0 

indicated excellent reliability. To further assess the regional variability of TRT 

reliability, we utilized the above-mentioned prior functional parcellation of 

cerebrum,  and calculated the mean ICC values and their standard deviations within 

these subnetworks, respectively.  As was expected, sFIR showed lower ICC than 

canon2dd model, both at voxel level and large-scale network level. We did not 

observe an obvious spatial pattern in the ICC maps for distinct networks. The 

hemodynamic response height (psc) showed good reliability for canon2dd model 
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acorss all subnetworks and TR (excluding the VN at TR=2.5s), and for sFIR in VAN, 

FPN and DMN at TR=2.5s,  and fair reliability for most of the subneworks with sFIR 

model. The other HRF parameters (FWHM and time to peak) showed low reliability. 

These results reveal that the different hemodynamic response sampling (i.e. in units 

of TR) only slightly affects the ICC maps of hemodynamic response height.  

 

Figure 11. TRT reliability of HRF parameters within seven subnetworks. C-TR645: 

canon2dd HRF, TR=0.645s; S-TR645: sFIR HRF, TR=0.645s; C-TR25: canon2dd HRF, 

TR=2.5s; S-TR25: sFIR HRF, TR=2.5s; T2P: Time to peak. 
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Figure 12. TRT reliability maps of hemodynamic response height (PSC) with different 

HRF basis vectors (canon2dd, sFIR), at different TR (0.645s, 2.5s). 
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IV.  CONCLUSIONS AND FUTURE WORK 

We have presented a methodology to retrieve the hemodynamic response function 

from resting state fMRI data. The feasibility and effectiveness of proposed algorithm 

is confirmed by simulation data. The results are promising since the retrieved HRF 

is consistent with the literature and supports evidences of the vascular flow. 

Additionally, functional modifications to the HRF shape are consistent with evidence 

previously reported using different methodologies. The approach will need further 

validation using electrophysiological and cardiovascular data. 
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