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Abstract The growth of the software industry has gone hand in hand with the devel-
opment of tools and cultural practices for ensuring the reliability of complex pieces
of software. These tools and practices are now acknowledged to be essential to
the management of modern software. As computational models and methods have
become increasingly common in the biological sciences, it is important to examine
how these practices can accelerate biological software development and improve
research quality. In this article, we give a focused case study of our experience
with the practices of unit testing and test-driven development in OpenWorm, an
open-science project aimed at modeling Caenorhabditis elegans. We identify and
discuss the challenges of incorporating test-driven development into a heteroge-
neous, data-driven project, as well as the role of model validation tests, a category
of tests unique to software which expresses scientific models.
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Introduction
Software plays an increasingly prominent role in the
biological sciences. This growth has been driven by
an explosion in the availability of data and the parallel
development of software to store, share, and analyze
this data. In addition, simulations have also become a
common tool in both fundamental and applied research
[1, 2]. Simulation management (initialization, execution,
and output handling) relies entirely on software.

Software used for collaborative biological research has
an additional level of complexity (beyond that shared
by other widely-used software) stemming from the need
to incorporate and interact with the results of scientific
research, in the form of large data sets or dynami-
cal models. This added level of complexity suggests
that technical tools and cultural practices for ensuring
software reliability are of particular importance in the
biological sciences [3].

In this article, we discuss our experience in applying
a number of basic practices of industrial software
engineering—broadly known as unit testing and the
related concept of test-driven development [4, 5, 6, 7]—in
the context of the OpenWorm project. OpenWorm is an
international, collaborative open-science project aimed at
integrating the world’s collective scientific understanding
of the C. elegans round worm into a single computational
model [8]. It is a diverse project incorporating data,
simulations, powerful but intuitive user interfaces, and
visualization. Since the goal of the project is to simulate
an entire organism, the project and its underlying code
are necessarily complex. The scope of the project is
immense – OpenWorm has over fifty contributors from
sixteen countries and projects divided into over forty-five
sub-repositories under version control containing a total
of hundreds of thousands of lines of code. For a project
of this magnitude to remain manageable and sustainable,
a thorough testing framework and culture of test-driven
development is essential [4, 5, 6, 7]. In Figure 1, we
show a diagrammatic overview of the many projects
within OpenWorm and the relationship of testing to
each of these. For extremely small projects, unit testing
simply adds an overhead with little or no return on the
time investment. As the project grows in size, however,
the gains are quite significant, as the burden on the
programmers of maintaining a large project can be
substantially reduced.

In the code excerpts below, we will discuss 4 types of tests
that are used in the OpenWorm code-base. They are:

• Verification tests: These are tests of basic software
correctness and are not unique to the scientific na-
ture of the project.

• Data integrity tests: These are tests unique to a
project which incorporates data. Among other pur-
poses, these tests serve as basic sanity checks verify-
ing, for instance, that each piece of data in the project

is associated with a scientific paper and correspond-
ing DOI.

• Biological integrity tests: These are tests that verify
correspondence with known information about static
parameters that characterize C. Elegans, for example,
the total number of neurons.

• Model validation tests: These are tests unique to
projects which incorporate dynamic models. Model
validation tests (using the Python package SciUnit)
verify that a given dynamic model (such as the be-
havior of an ion channel) generates output that is
consistent with known behavior from experimental
data.

The target audience for this article is computational bi-
ologists who have limited experience with large software
projects and are looking to incorporate standard indus-
trial practices into their work, or who anticipate involve-
ment with larger projects in either academia or industry.
We also hope that the exposition will be accessible to other
scientists interested in learning about computational tech-
niques and software engineering. We hope to contribute
to raising the quality of biological software by describing
some basic concepts of software engineering in the con-
text of a practical research project.

Unit testing for scientific software

A simple introduction to unit testing
The basic concept behind software testing is quite simple.
Suppose we have a piece of code which takes some
number of inputs and produces corresponding outputs. A
unit test, verification test, or simply test is a function that
compares an input-output pair and returns a boolean
value True or False. A result of True indicates that the code
is behaving as intended, and a result of False indicates
that it is not, and consequently, that any program relying
on that code cannot be trusted to behave as intended.

Let us take a simple example. Suppose we have a
function that takes a list of numbers and then returns
them in sorted order, from lowest to highest. Sorting is
a classic algorithmic task, and there are many different
sorting algorithms with different performance charac-
teristics; while the specific strategies they employ differ
wildly, ultimately the result should be the same for any
implementation. A unit test for one’s sorting algorithm
should take as input a list of numbers, feed it to the
sorting algorithm, and then check that each element in
the output list is less than or equal to the one that comes
after it. The unit test would return True if the output list
had that property, and False if not.

If one has multiple implementations of a sorting
algorithm, then one can use a reliable reference imple-
mentation as a testing mechanism for the others. In
other words, a test might return True if a novel sorting
algorithm gives the same result as one widely known to
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Figure 1. Diagram of the some key OpenWorm modules and their corresponding testing frameworks.

be valid. There are other strategies along these lines.
For example, suppose we have an implementation of
an algorithm for multiplication called multiply. If
we have a trusted implementation of an algorithm for
addition, we can test that our multiplication algorithm
works as expected by checking its behavior against
the appropriate number of addition operations, e.g.,
multiply(3,5) = 3 + 3 + 3 + 3 + 3. See Listing
1 for an implementation of this test in Python code.

In the previous example, our unit test verified the core
functionality of the algorithm. We had an algorithm that
claimed to sort things, and we wanted to check that it
worked as advertised. But there are many other kinds
of tests that we might be compelled to write in order to
know that our software is working correctly. For instance,
what happens if we feed an empty list to our sorting
algorithm (this is an example of an edge case)? Should
it simply return the list, generate an error message, or
both? What if a user accidentally gives the algorithm
something that is not a list, say for example, an image?
What should the error message be in this case? Should
there be a single error message to cover all cases, or
should the error message be tailored to the specific case
at hand? One can easily write unit tests to verify that the
correct behavior has been implemented in all of these
cases.

The sum total of all of the desired behaviors of an algo-
rithm is called a specification, or spec for short. For in-
stance, the specification for a sorting algorithm might look
like the following:

• When given a list of numbers, return the list sorted
from smallest to largest.

• When given a list of strings, return the list sorted in
lexicographic order.

• If the input is an empty list, return the empty list and
do not generate an error message.

• If the input is not a list, generate the error message
“Input should be a list of real numbers or strings”.

• If the input is neither a list of strings nor a list of
numbers, return the same error message as above.

In Listing 2, we have given a suite of units tests for a
sorting algorithm called mySort based on this specifica-
tion. The basic notion demonstrated there in the context
of the sorting algorithm extends to any piece of software.
In OpenWorm, we make extensive use of unit testing to
verify both the functional properties of the system, as
well as the validity of the data and models that comprise
the simulation. For instance, the two tests given below in
Listing 3 check that any worm model has 302 neurons,
and that the number of synapses for a given type of
neuron is in accordance with its known value from the
scientific literature. We will examine the different types
of tests in more detail in the next section.

In test-driven development, the specification for a piece
of software, as well as the corresponding unit tests
are written before coding the software itself [4, 7]. The
argument for test-driven development is that having a
well-developed testing framework before beginning the
actual process of software development increases the
likelihood that bugs will be caught as quickly as possible,
and furthermore, that it helps the programmer to clarify
their thought processes. In practice, while some tests are
written before-hand, others are written in parallel with
the rest of code development, or shortly after a piece of
code is written but before it is integrated.

We mention here that, in the software community, a dis-
tinction is often made between unit tests and integration
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Listing 1. Simple test for the multiplication operation.
1 def test_multiply ():
2 """
3 Test our multiplication function against the
4 standard addition operator
5 """
6 assert multiply(3, 5) == 3 + 3 + 3 + 3 + 3

Listing 2. Sample tests for the sorting specification given in the text. The class SortingTest is a container for
all of the individual tests that define the specification and can be extended if more tests are added.

1 import random
2 import unittest
3 from my_code import my_sort
4
5 """
6 Specification:
7 1) When given a list of numbers ,
8 return the list sorted from smallest to largest.
9

10 2) When given a list of strings ,
11 return the list sorted in lexicographic order.
12
13 3) If the input is an empty list ,
14 return the empty list and do not generate an error message.
15
16 4) If the input is not a list , generate the error message:
17 ‘‘Input should be a list of real numbers or strings ’’.
18 """
19
20 class SortingTest(unittest.TestCase):
21 """A class implementing tests for a sorting function """
22 def setUp(self):
23 self.f = my_sort # The function we will test is mySort
24
25 def test_number_sort(self):
26 """ Test that numbers sort correctly """
27 sorted_list = range (100000)
28 shuffled_list = random.shuffle(range (100000))
29 self.assertEqual(self.f(shuffled_list), sorted_list)
30
31 def test_string_sort(self):
32 """ Test that strings sort correctly """
33 word_file = ’/usr/share/dict/words ’
34 words = open(word_file).read().splitlines ()
35 sorted_words = words
36 shuffled_words = random.shuffle(words)
37 self.assertEqual(self.f(shuffled_words), sorted_words)
38
39 def test_empty_list(self):
40 """ Test that empty list returns empty list """
41 self.assertEqual(self.f([]), [])
42
43 def test_not_list(self):
44 """ Test that invalid inputs generate correct error message """
45 message = ’Input should be a list of real numbers or strings.’
46 self.assertRaisesRegexp(TypeError , message , self.f, ’a’)
47
48 def test_mixed_list(self):
49 """ Test that mixed lists generate appropriate error message """
50 mixed_list = [1, 2, ’a’, ’b’, 3]
51 message = ’Input should be a list of real numbers or strings.’
52 self.assertRaisesRegexp(TypeError , message , self.f, mixed_list)
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tests [7]. Strictly speaking, a unit test is a test which is ap-
plicable to the smallest, functional unit of code, and which
has no external dependencies. On the other hand, tests
which verify that different components work together are
classified as integration tests; they verify that multiple
components are integrated correctly. Some of the tests
discussed below would strictly be considered integration
tests. For the sake of simplicity, we will not distinguish be-
tween unit tests and integration tests in this article, and
will refer to both as simply tests or unit tests. The primary
distinction that we make here is instead between ordinary
verification tests (to verify that code works as intended)
and model validation tests (to validate a model against ex-
perimental data), which we discuss in more depth below.

Unit testing in OpenWorm
The software that makes up OpenWorm shares common
ground with all other pieces of software, whether the
sorting algorithm described above, a word processor, or
an operating system. As a result, there are a range of unit
tests that need to be written to ensure that basic pieces
of the software infrastructure function correctly. Many of
these tests will not be of any scientific significance; they
are simply sanity checks to ensure correct behavior for
predictable cases. For instance, there are tests for check-
ing that certain internal functions return the appropriate
error messages when given incorrect inputs; there are
tests for verifying that databases are loaded correctly;
there are tests which check that functions adhere to a
specific naming convention which will help automated
tools process the code-base.

As a data-driven, scientific research project, however,
OpenWorm also makes use of several other cate-
gories of tests that do not typically appear in software
development. For instance, the PyOpenWorm sub-
project of OpenWorm is a simple API that provides a
repository of information about C. elegans anatomy
(https://github.com/openworm/PyOpenWorm).
Given that the aim of OpenWorm is to produce a realistic
simulation of the nematode, a carefully curated repos-
itory of empirical information is a cornerstone of the
project.

In the context of unit testing, there needs to be a
category of tests that ensure that a curated datum has
been appropriately verified and, furthermore, that its
internal representation in the PyOpenWorm database is
consistent. For example, for each “fact” in PyOpenWorm,
there needs to be an associated piece of evidence,
which serves as a reference. Practically, this evidence
consists of a Digital Object Identifier [9], or DOI, which
corresponds to a research paper from which the fact
was originally retrieved. For this class of tests, we
traverse the database of facts and verify that for each
fact there is an associated source of evidence, i.e., a
DOI. Furthermore, these tests verify that each DOI is
valid, and that the URL corresponding to the DOI is
accessible. There are also tests to check the internal

consistency of the PyOpenWorm database, for instance,
that neurons with the same name have the same identifier.

Listing 4 gives several excerpts from the PyOpenWorm
testing framework. It consists of tests to verify the refer-
ences in the database, i.e., the DOIs which correspond to
research papers.

In Listing 5, we give several tests for verifying the con-
tents of the PyOpenWorm repository. Since each of the
functions below is designed to test properties of Neuron
objects, they are part of a single class called NeuronTest.
These tests fall into the category of verification tests, and
several of the tests, such as test_name and test_type
simply check that the database is working correctly.

Model validation with SciUnit
Many computational models in biology are compared
only informally with the experimental data they aim to
explain. In contrast, we formalize data-driven model
validation in OpenWorm by incorporating tests to validate
each dynamical model in the project against experimen-
tal data from the literature. As an example, consider a
scenario where a developer creates a new model and
provides parameter values for a simulation. In addition
to running all of the verification tests described above,
the model and parameter values must be validated with
respect to established experimental results. In general,
each summary output of the model is validated against a
corresponding piece of data. One example of a summary
model output is the “IV Curve” (i.e. current evoked
in response to each of a series of voltage steps) of a
given neuronal ion channel. We expect that our model
will possess only ion channels which behave similarly
to those observed experimentally, i.e. that the model
IV Curve matches the experimentally-determined IV
curve. If our model’s IV curve deviates too greatly from
that observed experimentally, the model developers
should be alerted and provided with information that
will allow them to investigate the source of the dis-
crepancy [10]. This may mean that parameter values
must be modified, or in some cases the model itself
must be substantially revised. In the case of Open-
Worm, the necessary data for validating models is part
of the PyOpenWorm and ChannelWorm subprojects
(https://github.com/openworm/ChannelWorm),
which are repositories of curated information about C.
elegans anatomy and ion channels.

Ordinary unit testing frameworks do not readily lend
themselves to this kind of model validation. Rather than
simply comparing an input-output pair, model validation
tests should perform the same procedure that a scientist
would perform before submitting a newly hypothesized
model for publication. That is, they should generate some
kind of summary statistic encoding the deviation between
experimental data and model output. For example, in
the case of an IV Curve, one might use the area between
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Listing 3. Excerpts from basic biological integrity tests for worm models. Given the size of the data reposito-
ries that OpenWorm relies upon, there are many simple tests such as these for ensuring the correctness of the
associated data.

1 import PyOpenWorm
2 import unittest
3
4 class BiologicalIntegrityTest(unittest.TestCase):
5 """
6 Tests that read from the database and ensure that basic
7 queries have expected results , as a way to ensure data quality.
8 """
9 def test_correct_neuron_number(self):

10 """
11 This test verifies that the worm model
12 has exactly 302 neurons.
13 """
14 net = PyOpenWorm.Worm().get_neuron_network ()
15 self.assertEqual (302, len(set(net.neurons ())))
16
17 def test_neuron_syn_degree(self):
18 """
19 This test verifies that the number of chemical synapses
20 associated with a given neuron AVAL is equal to 90.
21 """
22 aval = PyOpenWorm.Neuron(name=’AVAL’)
23 self.assertEqual(aval.Syn_degree (), 90)

Listing 4. Verifying data integrity is an integral component of testing in OpenWorm. Below, we give several
sample tests to verify the existence of valid DOIs, one technique used to ensure that facts in the PyOpenWorm
repository are appropriately linked to the research literature.

1 import _DataTest # our in -house setup/teardown code
2 from PyOpenWorm import Evidence
3
4 class EvidenceQualityTests(_DataTest):
5 """A class implementing tests for evidence quality."""
6 def test_has_valid_resource(self):
7 """ Checks if the object has either a valid DOI or URL"""
8 ev = Evidence ()
9 allEvidence = list(ev.load())

10 evcheck = []
11
12 """ Loop over all evidence fields in the database """
13 for evobj in allEvidence:
14 if evobj.doi():
15 doi = evobj.doi()
16 val = requests.get(’http ://dx.doi.org/’ + doi)
17 evcheck.append(val.status_code == 200)
18
19 elif evobj.url():
20 url = evobj.url()
21 val = requests.get(url)
22 evcheck.append(val.status_code == 200)
23
24 else:
25 evcheck.append(False)
26
27 self.assertTrue(False not in evcheck)
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Listing 5. An assortment of verification tests from PyOpenWorm. These verify that the database behaves as we
would expect it to, that properties of certain objects (Neuron objects, in this case) are correctly specified, and
that the database is not populated with duplicate entries.

1 import _DataTest # our in -house setup/teardown code
2 from PyOpenWorm import Neuron
3
4 class NeuronTest(_DataTest):
5 """
6 AVAL , ADAL , AVAR , and PCVL are individual neurons in C. Elegans.
7 AB plapaaaap is the lineage name of the ADAL neuron.
8 A class implementing tests for Neuron objects.
9 """

10 def test_same_name_same_id(self):
11 """
12 Test that two Neuron objects with the same name
13 have the same identifier ().
14 """
15 c = Neuron(name=’AVAL’)
16 c1 = Neuron(name=’AVAL’)
17 self.assertEqual(c.identifier(query=True), c1.identifier(query=True))
18
19 def test_type(self):
20 """
21 Test that a Neuron ’s retrieved type is identical to
22 its type as inserted into the database.
23 """
24 n = self.neur(’AVAL’)
25 n.type(’interneuron ’)
26 n.save()
27 self.assertEqual(’interneuron ’, self.neur(’AVAL’).type.one())
28
29 def test_name(self):
30 """
31 Test that the name property is set when the neuron
32 is initialized with it.
33 """
34 self.assertEqual(’AVAL’, self.neur(’AVAL’).name())
35 self.assertEqual(’AVAR’, self.neur(’AVAR’).name())
36
37 def test_init_from_lineage_name(self):
38 """
39 Test that we can retrieve a Neuron from the database
40 by its lineage name only.
41 """
42 c = Neuron(lineageName=’AB plapaaaap ’, name=’ADAL’)
43 c.save()
44 c = Neuron(lineageName=’AB plapaaaap ’)
45 self.assertEqual(c.name(), ’ADAL’)
46
47 def test_neighbor(self):
48 """
49 Test that a Neuron has a ’neighbors ’ property , and that the
50 correct Neuron is returned when calling the ’neighbor ’ function.
51 """
52 n = self.neur(’AVAL’)
53 n.neighbor(self.neur(’PVCL’))
54 neighbors = list(n.neighbor ())
55 self.assertIn(self.neur(’PVCL’), neighbors)
56 n.save()
57 self.assertIn(self.neur(’PVCL’), list(self.neur(’AVAL’).neighbor ()))
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the model and data curves as a summary statistic. In
the case of OpenWorm, because these models are part
of a continuously updated and re-executed simulation,
and not simply static equations in a research paper, the
model validation process must happen automatically and
continuously, alongside other unit tests.

To incorporate model validation tests, we use the Python
package SciUnit [11]. While there are some practical
differences between writing SciUnit tests and ordinary
unit tests, the concepts are quite similar. For example,
a SciUnit test can be configured to return True if the
test passes, i.e. model output and data are in sufficient
agreement, and False otherwise. Ultimately, a scientific
model is just another piece of software—thus it can be
validated with respect to a specification. In the case of
dynamical models, these specifications come from the
scientific literature, and are validated with the same
types of tests used before submitting a model for publica-
tion. SciUnit simply formalizes this testing procedure
in the context of a software development work-flow.
In Listing 6, we give an example of SciUnit tests
using the neuron-specific helper library NeuronUnit
(http://github.com/scidash/neuronunit) for
neuron-specific models).

In the preceding example, the statistic is computed within
the SciUnit method judge, which is analogous to the
self.assert statements used in the ordinary unit tests
above. While the ordinary unit test compares the output
of a function pair to an accepted reference output, judge
compares the output of a model (i.e. simulation data)
to accepted reference experimental data. Internally, the
judge method invokes other code (not shown) which
encodes the test’s specification, i.e. what a model must
do to pass the test. The output of the test is a numeric
score. In order to include SciUnit tests alongside other
unit tests in a testing suite, they can be configured to map
that numeric score to a boolean value reflecting whether
the model/data agreement returned by judge is within
an acceptable range.

The output of these model validation tests can also be
inspected visually; Figure 2 shows the graphical output
of the test workflow in Listing 6, and illustrates for
the developers why the test failed (mismatch between
current-voltage relationship produced by the model and
the one found in the experimental literature). Further
details about the output of this test – including the
algorithm for computing model/data agreement, and the
magnitude of disagreement required to produce a failing
score – can also be accessed via attributes and methods
of the score object (not shown, but see SciUnit docu-
mentation). Consequently, full provenance information
about the test is retained.

Some computational science projects use ad-hoc scripts
that directly run models and compare their outputs to ref-
erence data. This can be adequate in simple cases, but
for larger projects, particularly, distributed open-source

projects with many contributors, the mixing of implemen-
tation and interface carries significant drawbacks [12].
For example, in order to record and store the membrane
potential of a model cell–to then compare to reference
data–one could determine which functions are needed to
run the simulation in a given simulation engine, extract
the membrane potential from the resulting files, and then
call those functions in a test script. However, this ap-
proach has three major flaws. First, it may be difficult
for a new contributor or collaborator to understand what
is being tested, as the test code is polluted with imple-
mentation details of the model that are not universally
understood. Second, such a test will not work on any
model that does not have the same implementation de-
tails, and thus has limited re-usability. Third, any changes
to the model implementation will require parallel changes
to the corresponding tests. In contrast, by separating
tests from implementation, tests can work on any model
that implements a well-defined set of capabilities exposed
via an interface. SciUnit does this by design, and
SciUnit tests interact with models only through an inter-
face of standard methods, for example, those provided by
NeuronUnit. It is the responsibility of the model devel-
oper to match this interface by referencing standard meth-
ods, e.g. run, get_membrane_potential, etc. Ulti-
mately, the separation of implementation from interface
leads to greater code clarity, more rapid development, and
greater test re-usability.

Test coverage
The coverage of a testing suite is defined as the percentage
of functions in a code-base which are being tested. Since
there is no rigorous measure of what constitutes an
adequate test, precise figures of test coverage should be
interpreted with caution. Nonetheless, automated tools
which analyze a code-base to determine test coverage can
be a valuable resource in suggesting areas of a code-base
in need of additional attention. Ideally, test coverage
should be as high as possible, indicating that a large
fraction of or even the entire code-base has been tested
according to the intended specifications.

In PyOpenWorm, we make use several of pre-existing
tools in the Python ecosystem for calculating test cover-
age of the Python code-base, specifically, the aptly-named
Coverage package [13], as well as a GitHub extension
dedicated to tracking the coverage of such projects known
as Coveralls [14]. We adopted these tools in an ef-
fort to track which parts of the code-base need additional
tests, and to give further backing to the test-driven culture
of the project. PyOpenWorm currently has a test coverage
of roughly 73%. If a contributor to PyOpenWorm intro-
duces some new code to the project but does not add tests
for it, the contributor will see that test coverage has been
reduced. By making changes in test coverage explicit, for
example, with a badge on the project’s homepage, it is
easier to track the impact of a growing code-base.
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Listing 6. Excerpt from a SciUnit test in ChannelWorm, a repository of information about ion channels. The test
listed here verifies that a given ion channel has the correct current / voltage behavior. In terms of the informal
classification of tests given above, this test falls under the category of model validation tests.

1 import os, sys
2 import numpy as np
3 import quantities as pq
4 from neuronunit.tests.channel import IVCurvePeakTest
5 from neuronunit.models.channel import ChannelModel
6 from channelworm.ion_channel.models import GraphData
7
8 # Instantiate the model; CW_HOME is the location of the ChannelWorm repo
9 ch_model_name = ’EGL -19. channel ’

10 channel_id = ’ca_boyle ’
11 ch_file_path = os.path.join(CW_HOME , ’models ’, ’%s.nml’ % ch_model_name)
12 model = ChannelModel(ch_file_path , channel_index =0, name=ch_model_name)
13
14 # Get the experiment data and instantiate the test
15 doi = ’10.1083/ jcb .200203055 ’
16 fig = ’2B’
17 sample_data = GraphData.objects.get(
18 graph__experiment__reference__doi=doi ,
19 graph__figure_ref_address=fig
20 )
21
22 # Current density in A/F and membrane potential in mV.
23 obs = zip(* sample_data.asarray ())
24 observation = {’i/C’:obs [1]*pq.A/pq.F, ’v’:obs [0]*pq.mV}
25
26 # Use these observations to instantiate a quantitative test of the peak
27 # current (I) in response to a series of voltage pulses (V) delivered
28 # to the channel.
29 test = IVCurvePeakTest(observation)
30
31 # Judge the model output against the experimental data.
32 # Score will reflect a measure of agreement between I/V curves.
33 score = test.judge(model)
34 score.plot()
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Figure 2. Graphical output from Listing 6, showing a failed test which alerts developers to an inconsistency between model
and data.

Continuous integration
Modern software is often written using a process of
continuous integration or CI [15, 16], whereby the
contributions of developers are integrated into a shared
repository multiple times a day by an automated system.
Typically, the output of a testing suite will determine
whether or not the new contributions of a developer
can be immediately integrated, or whether changes are
required to avoid regression, i.e. failing unit tests that
were passing before the new contribution.

The benefits of continuous integration include early
detection of bugs, eliminating development bottle-necks
close to the release date (in the case of commercial
software), and the regular availability of usable versions
of the software. The process of continuous integration
also encourages shifts in how developers think about
structuring their code, and encourages regular, modular
contributions, rather than massive, monolithic changes
that can be difficult to debug.

The entire OpenWorm project, including the
PyOpenWorm and ChannelWorm modules make use
of continuous integration (see Fig. 3), taking advantage
of a free service called Travis-CI that tests changes to
the code-base as they are pushed to the collaborative
software development portal GitHub [17]. With each
change, the entire project is built from scratch on a ma-

chine in the cloud, and the entire test suite is run. A build
that passes all tests is a “passing build”, and the changes
introduced will not break any functionality that is being
tested. Because the entire project is built from scratch
with each change to the code-base, the dependencies
required to achieve this build must be made explicit. This
ensures that there is a clear roadmap to the installation
of dependencies required to run the project successfully
– no hidden assumptions about pre-existing libraries can
be made.

Skipped tests and expected failures
Suppose we have rigorously employed a process of test-
driven development. Starting with a carefully designed
specification, we have written a test suite for a broad
range of functionality, and are using a continuous inte-
gration system to incorporate the ongoing contributions
of developers on a regular basis.

In this scenario, given that we have written a test suite
prior to the development of the software, our CI system
will reject all of our initial contributions because most
tests fail, simply because the code that would pass the
tests has not been written yet! To address precisely this
scenario, many testing frameworks allow tests to be
annotated as expected failures or simply to skip a given
test entirely. The ability to mark tests as expected failures
allows developers to incrementally enable tests, and
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Figure 3. Sample output from the OpenWorm continuous integration dashboard. Each row corresponds to a single set of
contributions, known as a commit, submitted by a given developer. A commit is assigned a build number, which is given in
the second column, and the result of the build process is indicated by the color of the corresponding row. If any of the unit
tests fail, the build will be marked as failed, and the code contributions will be rejected. The developer is then responsible
for identifying and fixing the corresponding bugs, and resubmitting their contributions to the code repository.

furthermore, draws attention to missing functionality.
Consequently, the fraction of tests passed becomes a
benchmark for progress towards an explicit development
goal, that goal being encoded by the set of all tests that
have been written.

The OpenWorm code-base makes extensive use of skipped
tests and expected failures as a core part of the culture of
test-driven development. In PyOpenWorm, for example,
data integrity tests are often added in advance of the data
itself being incorporated to the database. These tests pro-
vide a critical safety net as new information is curated
from the scientific literature. Prior to the curation of this
information, the tests are simply skipped. Once the infor-
mation is curated, the tests are run, and indicate whether
the information is usable by the project.

Frivolous tests and overly specific tests
Tests are typically sufficiently straightforward to write
that it is easy to proliferate a testing suite with a large

number of unnecessary tests. Often, these tests will be
completely frivolous and cause no harm, beyond causing
a testing suite to take much longer than necessary to run.
However, tests which are overly specific can actually hin-
der the process of development. If there are tests which
are too specific and constrain internal behavior that is not
meant to be static, a developer’s contributions may be un-
necessarily rejected during the process of continuous in-
tegration.

Conclusions
Our aim in this article is to give an overview of some basic
development practices from industrial software engineer-
ing that are of particular relevance to biological software.
As a summary, we list here the types of tests used in Open-
Worm. This list is simply an informal classification, and
not a definitive taxonomy:

Verification tests (the usual suspects) These are tests
common to all pieces of software and are not particu-
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larly relevant to the biological nature of the project. For
instance, tests that verify that error handling is imple-
mented correctly, that databases are accessed correctly,
or that performing certain numerical operations produces
results within an acceptable range.

Data integrity tests These are tests unique to a project
that incorporates curated data. In the case of OpenWorm,
these tests check (among other things) that every biolog-
ical fact in the PyOpenWorm repository has an associated
piece of experimental evidence, typically corresponding
to a DOI, and that each of these DOIs is valid.

Biological integrity tests These tests verify that data to-
kens in the PyOpenWorm repository correspond to known
information about C. Elegans. In contrast to the model
validation tests described below, biological integrity tests
typically only check static information / parameters.

Model validation tests These are tests specific to a
project that incorporates scientific models. Model vali-
dation tests allow us to check that specific models, such
as the behavior of ion channels, correspond to known
behavior from the scientific literature. In effect, they
extend the notion of unit testing to compare summary
data and model output according to some summary
statistic. In OpenWorm, the Python package SciUnit
and derivative packages like NeuronUnit are used for
writing tests that check the validity of scientific models
against accepted data.

It should be clear from the above discussion and corre-
sponding code examples that unit tests are fundamentally
quite simple objects. Their behavior is no more than to
compare input-output pairs, or in the case of SciUnit
tests, that a given model’s output corresponds to a known
reference from the scientific literature. The sophistication
of testing frameworks is generally quite minimal when
compared to the software itself being tested. While
ad-hoc test scripts may be sufficient for small projects,
for large projects with many contributors, a systematic
approach to unit testing can result in significant effi-
ciency gains and ease the burden of long-term code
maintenance. In the context of continuous integration,
whereby a piece of software is built in an ongoing cycle as
developers make changes and additions to the code-base,
unit testing provides a valuable safety net that can
prevent flawed code from prematurely being integrated.

However, in spite of the conceptual simplicity and
potential pitfalls of testing, its importance cannot be
overstated. Writing tests requires careful thought and
planning and some knowledge of the code-base being
tested. Testing from a specification alone can result in
inadequate testing, but tests which are too specific to
the code-base can result in unnecessary roadblocks for
developers.

Rather than being thought of as a sophisticated set of
technical tools, unit testing should be viewed as a cul-
tural practice for ensuring the reliability of complex soft-
ware. Perhaps a useful analogy is the powerful impact

that checklists have had in clinical medicine, aviation,
construction, and many other industries [18, 19, 20]. Unit
tests are sanity checks at a minimum, and can potentially
guide the scientific development of models when used in
conjunction with experimental data. In order to reap their
benefit, their existence and maintenance needs to be val-
ued by all of the participants of the research and software
development process. Finally, in order for this culture
to be created, test-driven development should not be a
heavy-handed imposition on the developers. Otherwise,
it will be incorrectly perceived as a bureaucratic hurdle,
rather than the valuable safety-net that it is.
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