
A unifying theory to describe transmembrane transport
derived from thermodynamic principles

Herrera-Valdez. A unifying theory of physiological transmembrane transport Cellular

homeostasis involves transmembrane molecular transport that is, in turn, mediated by

proteins that enable molecular transport along, or against the (electro) chemical gradient

of the molecules being transported. Transmembrane transport has been modelled in many

studies using many functional forms that were not always derived from the same

assumptions. A generic formulation that describes transmembrane fluxes regardless of

whether they are mediated by carrier proteins or by open channels is presented here. The

functional form of the flux was obtained from basic thermodynamic principles. Further,

taking a slightly different approach, the same generic formulation mentioned above can

also be obtained from the Nernst-Planck equation for the case of channel- mediated

electrodiffusion. The generic formulation can be regarded as the product of an amplitude

term and a driving force term, both nonlinear functions of the transmembrane

concentrations of the molecules and possibly the transmembrane potential. The former

captures the characteristics of the membrane-spanning protein mediating the transport

and the latter is a non-linear function of the transmembrane concentrations of the ions.

The generic formulation explicitly shows that the basal rate at which ions cross the

membrane is the main difference between currents mediated by pumps and channels.

Electrogenic transmembrane fluxes can be converted to currents to construct models of

membrane excitability in which all the transmembrane currents have the same functional

form. The applicability of the generic derivations presented here is illustrated with models

of excitability for neurones and pacemaker cardiocytes.
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Abstract

Cells communicate with their environments using transmembrane molecular transport that is, in turn, mediated
by proteins that facilitate diffusion (channels), or alternatively, translocate ions against the electrochemical gradient
(pumps). Transmembrane transport has been modelled in many studies using many functional forms that were not
always derived from the same assumptions. A generic formulation that describes transmembrane fluxes regard-
less of whether they are mediated by pumps or open channels is presented here. The functional form of the flux
was obtained from thermodynamic first principles. Further, taking a slightly different approach, the same generic
formulation mentioned above can be obtained from the Nernst-Planck equation for the case of channel-mediated
electrodiffusion. The generic formula can be regarded as the product of an amplitude term and a driving force term.
The former captures the characteristics of the membrane-spanning protein mediating the transport and the latter
is a non-linear function of the transmembrane concentrations of the ions. The generic formulation explicitly shows
that the basal rate at which ions cross the membrane is the main difference between currents mediated by pumps
and channels. Electrogenic transmembrane fluxes can be converted to currents to construct models of membrane
excitability in which all the transmembrane currents have the same functional form. The applicability of the generic
derivations presented here is illustrated with models of excitability for neurons and pacemaker cardiocytes.

Contents

1 Introduction 2

2 Methods 3
2.1 Electrodiffusion and Nernst potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Kinetics of reversible processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Energy required to transport one ion across the membrane . . . . . . . . . . . . . . . . . . . . . . . 4

3 Results 4
3.1 Electrodiffusive transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.1 Possible simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Generic formulations for transmembrane transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Possibly simultaneous transmembrane ionic transport . . . . . . . . . . . . . . . . . . . . . . 6
3.2.2 Flux due to transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.3 Electrogenic transport and the generic formulation for current . . . . . . . . . . . . . . . . . . 9

3.3 Whole membrane currents and channel gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.1 Generic formulation for gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Applications 11
4.1 Voltage clamp dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 The effects of rectification on neuronal excitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Cardiac pacemaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Discussion 15
5.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1312v2 | CC-BY 4.0 Open Access | rec: 30 Aug 2015, publ: 30 Aug 2015

P
re
P
rin

ts



Herrera-Valdez, Marco Arieli,
Mathematics, UNAM A unifying theory to describe transmembrane transport derived from thermodynamic principles

1 Introduction

The transport of molecules across cellular membranes, hereby referred to as transmembrane transport (TT), is

necessary to maintain cellular function and by extension, systemic activity (Blaustein et al., 2004). Of particular

interest, electrogenic TT takes place when the net charge transported by ions per unit time is nonzero, creating

currents that may, in turn, trigger different electrical or biochemical signalling cascades.

Many phenomena involving TT have been modeled mathematically, especially since the seminal work of Goldman

(1943) and Hodgkin and Huxley (1952). Nevertheless, the functional forms that have been used to represent fluxes

generated by TT are numerous and have not always been derived from the same assumptions (see for instance

Rasmusson et al., 1990a,b). The energy required for TT is provided by the (electro)chemical gradient of one or

more of the molecules being transported, or liberated by a biochemical reaction like the breakdown of adenosine

triphosphate. TT can be thought of as a change in the free energy of a system formed by the membrane, the two

compartments around it, the molecules in both sides, and the force fields that affect them. The energy stored in the

electrochemical gradients across the membrane is released when molecules are transported along their gradients,

and increases when molecules cross in the opposite direction (Hille, 1992). We can write expressions for the energy

required to transport molecules across the membranes using thermodynamical principles. It should then be possible

to to derive generic, macroscopic formulations for the molecular flux resulting from TT.

TT may be mediated by proteins like channels and uniporters, which move molecules along their electrochemical

gradient, or though carriers such as symporters, antiporters (Veenhoff et al., 2002), and ATPases (Stahl and Baskin,

1990), which move of at least one family of molecules against its electrochemical gradient. The latter proteins

are herein called translocators and the name "transporter" will be applied herein to refer to any protein mediating

transport, as is the case for channels and translocators alike. One especially interesting issue that we address, is the

similarity between channel- and translocator-mediated transport. For consideration, one of the main macroscopic

differences between them macroscopically, is the difference in orders of magnitude of their associated fluxes. In

brief, we derive generic expressions with the same functional forms that accurately describe different properties of

the fluxes mediated by translocators and channels, including rectification. Further, an alternative formulation for

channel gating capable of capturing the sigmoidal behaviour observed in some voltage-clamp experiments is also

provided.

We start with a derivation of a generic expression for the current resulting from transmembrane ionic transport

based on thermodynamic considerations. We then derive expressions for the current through open channels thought

of as ”holes in the wall” (Eisenberg, 1998; Gadsby, 2009) by considering the Nernst-Planck equation. In other words,

we derive a generic formulation for whole-membrane, as well as single-channel currents for any given type of ion

channel using two approaches. The resulting expressions are generalizations of those derived by Kimizuka and

Koketsu (1964), Butler and Volmer (Bockris and Reddy, 1973), and Endresen et al. (2000). The first formulation

is obtained by considering the electrodiffusive transmembrane flux of ions across the membrane, as described by

the Nernst-Planck equation. The second approach is to consider the energy required to transport ions across the

membrane. The second derivation can be used to model transport mediated by channels, and also by pumps.

Examples of implementation of the formulations obtained here are discussed in models of membrane potential

for neurons and cardiac cells.
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2 Methods

2.1 Electrodiffusion and Nernst potentials

Consider an ionic species M (e.g. K+, Na+, Ca2+, Cl−). The flux of M across an open pore in the membrane is

the sum of the fluxes caused by diffusion and electrical drift, which can be described combining the Einstein relation

(Einstein, 1905) and the Nernst-Planck equation (Weiss, 1996a,b) as:

~JM = −µM (kT∇CM + qzMCM∇U) , (1)

where U represents a smoothly varying electric field, zM , µM , and CM are, respectively, the valence, electrical

mobility, and concentration of i. The elementary charge (Coulombs) is q, k is Boltzmann’s constant (mJ/K), and

T is the absolute temperature (oK). Taking a macroscopic perspective, assume that CM and U only change in

the transmembrane direction and the membrane delimits two compartments, denoted as 0 and 1 for external and

internal, respectively. Note the transmembrane potential is then v = U1−U0. The trajectory traversed by the ion as

it crosses the membrane can be parametrized by a real variable x, taking values a and b at the intra, and extracellular

edges of the membrane pore. Then it is possible to think of equation (1) as one-dimensional. To simplify notation, let

vT = kT/q and use [M ]k with k ∈ {0, 1} to represent the extra- and intracellular cocentrations of M , respectively.

From (1), the transmembrane voltage at which there is no net transmembrane flux of M , called Nernst potential for

i, is given by

vM =
vT
zM

ln

(
[M ]0
[M ]1

)
, (2)

which can be rewritten to yield a relationship between the extra- and intracellular concentrations of i as

[M ]0
[M ]1

= exp

(
zM
vT

vM

)
. (3)

Now assume that a pore is a revolution volume with cross sectional area A(x). Then, the current in cross section

is given by

I(x) = qzMA(x)JM (x), (4)

for each x ∈ [a, b]. The current from (4) can be assumed to be constant as a function of x (Endresen et al., 2000;

Hille and Schwarz, 1978). Using the integrating factor exp ( zsU/vT ) and integrating over [a, b] gives

I = zMB
−1T

[
C1 exp

(
zMU0

vT

)
− C0 exp

(
zMU1

vT

)]
, (5)

where C1 = C(a), C0 = C(b), U1 = U(a), and U0 = U(b). The term

B =
1

µMqk

∫ b

a

1

A(x)
exp

(
zMU

vT

)
dx (6)

describes the dependence of the current on the shape of the pore, but can be approximated by constant (Eisenberg,

1998, 1999; Hille and Schwarz, 1978). Equation (5) can then be conveniently rewritten as

I = zMB
−1TC1−s

1 Cs0

[(
C1

C0

)s
exp

(
zMU0

vT

)
−
(
C1

C0

)s−1

exp

(
zMU1

vT

)]
. (7)
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2.2 Kinetics of reversible processes

Phenomena like molecular transport across the membrane and conformational changes in proteins, such as channel

gating, can be thought of as reversible reactions of the form

A
α−⇀↽−
β

B. (8)

The kinetic scheme (8) may be used as a framework to model different phenomena involved in transmembrane trans-

port. For example, an exchange of molecules across the membrane mediated by a transporter, or the open→ close

conformational change that occurs in channel gating. The steady state balance between the forward and backward

reactions is given by

α

β
= exp

(
−∆G

kT

)
, (9)

where ∆G represents the energy required for the reactions steady state. The forward and backward rates in (9) can

be expressed as

α = r exp

(
−s∆G

kT

)
, β = r exp

[
(1− s)∆G

kT

]
, (10)

where r is a basal rate for the transport event and s ∈ [0, 1] accounts for the possibility asymmetry with respect to

the energy required for the forward and backward reactions (Blaustein et al., 2004; Chapman, 1978; Endresen et al.,

2000; Willms et al., 1999). The difference α− β gives information about the change in A and B from (8) over time.

In particular, if 8 represents molecular transport across the membrane, the difference α− β can be thought of as a

multiple of the total transmembrane flux of the molecules under consideration.

2.3 Energy required to transport one ion across the membrane

The energy required for transmembrane transport of a molecule i from compartment a to compartment b can be

expressed as

∆GM = qzM (vM − v) (aM − bM ), (11)

(see Blaustein et al., 2004, for details). If ∆GM > 0, the transport occurs against the electrochemical gradient for i,

in which case a source of energy not involving the transported ions is required for the transport. If ∆GM < 0, the

transport can take place without an additional source of energy. Note that when a− b < 0, the sign of ∆GM is the

opposite of the sign of vM − v.

3 Results

3.1 Electrodiffusive transport

Assume that the total length of the pore is l. If the pore region is regarded as solid of revolution with constant-valued

cross sections with respect to U , then U behaves as a 1-dimensional function across the pore. As a consequence,

there is an s ∈ {0, 1} and a corresponding point xs = a + sl along the length of the pore such that Us = U(xs)
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and

U1 − Us = sv, Us − U0 = (1− s)v, s ∈ (0, 1) (12)

The potential Us can then be used to rewrite the current (5) in terms of the transmembrane potential:

I(v; s) = zMTD

[
C1 exp

(
zMsv

vT

)
− C0 exp

(
zM (s− 1) v

vT

)]
, (13)

with D = B−1 exp (zMUs/vT ). If needed, the dependence of the current on the Nernst potential for the ion i can

then be realized by combining equations (3) and (7) into (13) so that,

I(v; s) = zMTDC
s
0C

1−s
1

[
exp

(
zMs (v − vM )

vT

)
− exp

(
zM (s− 1) (v − vM )

vT

)]
. (14)

Note that the valence guarantees that the current has the correct sign in case the ion under consideration has

negative valence (Fig. 1).

Equations (13) and (14) are macroscopic descriptions of transmembrane current driven by electric drift and

diffusion through an open channel that will be herein referred to as a DD current. Whole membrane or whole patch

currents can be obtained by adding gating and a factor that accounts for the number of channels to the terms outside

the parentheses in (13) or (14).

Figure 1: Shape of the curve I(v; s) for different values of s and a reversal potential vr . Note the rectification for s=0.1 and s=0.9.
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3.1.1 Possible simplifications

Pore with constant cross-sectional area. One possible simplification is to assume that A(x) = a, a con-

stant. From Eqn. (6),

D−1 =
vT

azMµMqk
exp

(
zMsv

vT

)[
exp

(
−zMv
vT

)
− 1

]
. (15)

As a consequence,

I(v; s) = −aµMq2z2MC
s
0C

1−s
1

exp
(
zMs(v−vM )

vT

)
exp

(
zMsv
vT

)
1− exp

(
− zM (v−vM )

vT

)
1− exp

(
−zM (v)
vT

)
 . (16)

Symmetry of the reference point xs with respect to inner and outer compartments. For the sym-

metric case m=1/2, equation (14) can be simplified for into

I = 2zMDT
√
C0C1 sinh

[
zM (v − vM )

2vT

]
. (17)

In addition, if the cross sectional radius of the pore is constant (see Eqn. (16)), then

I = −2aµMq2z2M
√
C0C1

 sinh
(
zM
2vT

(v − vM )
)

sinh
(
zM
2vT

v
)

 . (18)

Constant temperature and concentrations. If the absolute temperature and the transmembrane concen-

trations can be assumed to be constant, then 2aµMq2z2M
√
C0C1 can be replaced by a constant representing the

maximum amplitude of the current through a single open channel (Nonner and Eisenberg, 1998).

3.2 Generic formulations for transmembrane transport

Now consider a more general case in which m different ions are simultaneously transported across the membrane.

The flux caused by the simultaneous transport of the m different kinds of ions depends on the free energy involved

in the transport of each kind of ion, and possibly, the energy provided by the hydrolyzation of ATP, or some other

source.

3.2.1 Possibly simultaneous transmembrane ionic transport

The transmembrane transport of molecules M1,...,Mm can be macroscopically described by the reversible kinetic

scheme (Blaustein et al., 2004; Chapman, 1978)

n1M1,a1 + ...+ nmMm,am

α−⇀↽−
β
n1M1,b1 + ...+ nmMm,bm , (19)

where ai, bi ∈ {0, 1}, i ∈ {1, ...,m}, representing the source and target compartments, respectively. The number

of ions of each type involved in the transport is represented by ni, i ∈ {1, ...,m}. The scheme (19) is generic,

so the translocation of the ions could be that mediated by either a pump, or an open channel. The energy ∆Gm
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required for the transport of the m ions is the sum of the energies that correspond to the transport of each ion under

consideration (Blaustein et al., 2004; Chapman, 1978):

∆Gm =

m∑
i=1

∆Gi =

m∑
i=1

nizi(vi − v)(ai − bi), (20)

as given by equation (11). Notice that (20) can be calculated for ions or for molecules without a charge, in which

case the Nernst potential depends on diffusion, but not on electrical drift. If ∆Gm ≤ 0, then the transport dissipates

energy from the electrochemical gradient of at least one of the ions being transported and that energy is sufficient to

complete the movement of the m molecules and ∆G = ∆Gm. In contrast, if ∆Gm > 0, then transport is primary

active and it requires the energy from an additional source, such as the breakdown of ATP into ADP− and P+. In

that case, the total energy for the transport is

∆G = ∆Gm + ∆GATP. (21)

Recall that vATP ≈ −450 mV. As a consequence, if one molecule of ATP is hydrolized for the transport, then

∆GATP = −450q. Examples of different energies required for some transporters can be found in table 1.

3.2.2 Flux due to transport

From (19), the transmembrane flux is given by a function of the form φ = r (α− β) where r is a rate that depends

on temperature, the concentrations and stoichiometry of the molecules being transported, and possibly other factors.

For instance, the basal rate r can be of the form

r = f(T )

m∏
i=1

[Mi]
ni(ai−bi)s
0 [Mi]

ni(ai−bi)(1−s)
1 (22)

for some increasing function of T that captures the dependence of transport rate on temperature (Schoolfield et al.,

1981; Sizer, 2006; Stearn and Action, 2009).

Taking the extracellular compartment as a reference, inward fluxes occur when r < 0 and outward flux occurs

when r > 0. Explicitly, the flux resulting from a single transport event can be obtained by combining (10) with (20)

or (21) :

φ = r

{
exp

[
s

vT

(
−vAB +

m∑
i=1

(ai − bi)nizi(v − vi)

)]

− exp

[
(s− 1)

vT

(
−vAB +

m∑
i=1

(ai − bi)nizi(v − vi)

)]}
(23)

where vAB = vATP for primary active transport, and 0 for secondary active transport, or transport through open

channels. A useful alternative expression in terms of the transmembrane concentrations can be obtained replacing
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the Nernst potential from (2) into (23):

φ = r exp

[
s

vT

(
−vAB +

m∑
i=1

(ai − bi)niziv

)]
m∏
i=1

(
[Mi]1
[Mi]0

)sni(ai−bi)

{
1− exp

[
1

vT

(
vAB −

m∑
i=1

(ai − bi)niziv

)]
m∏
i=1

(
[Mi]1
[Mi]0

)−ni(ai−bi)
}
. (24)

As before, the subscripts 0 and 1 indicate external and internal compartments relative to the membrane.

Table 1: Energy required for transmembrane transport mediated by different pumps or channels. For channels, it is assumed
that only one ion can cross at any given time. The source and target compartments for each ion i are represented by a and b
respectively. The direction of motion of the transport for each ion is indicated by a− b. The reversal potentials are noted in those
cases where transport is electrogenic.

Pump or channel Ion (i) ni ai bi ai − bi ∆Gi σ vr

Ca2+ ATPase Ca2+ 1 1 0 1 ∆GCa = 2qe(vCa − v) 1 2vCa + vATP

Na+-K+ ATPase
Na+ 3 1 0 1 ∆GNa = 3qe(vNa − v)

1 3vNa − 2vK + vATPK+ 2 0 1 -1 ∆GK = −2qe(vK − v)

Na+-Ca2+ exchanger
Na+ 3 0 1 -1 ∆GNa = −3qe(vNa − v)

-1 −3vNa + 2vCaCa2+ 1 1 0 1 ∆GCa = 2qe(vCa − v)

Na+-K+-Cl− symporter
Na+ 1 0 1 -1 ∆GNa = −qe(vNa − v)

0 –K+ 1 0 1 -1 ∆GK = −qe(vK − v)
Cl− 2 0 1 -1 ∆GCl = 2qe(vCl − v)

K+-Cl− symporter
K+ 1 1 0 1 ∆GK = qe(vK − v)

0 –
Cl− 1 1 0 1 ∆GCl = −qe(vCl − v)

Na+-H+ exchanger
Na+ 1 0 1 -1 ∆GNa = −qe(vNa − v)

0 –
H+ 1 1 0 1 ∆GH = qe(vH − v)

Na+ channel Na+ 1 0 1 -1 ∆GNa = −qe(vNa − v) -1 vNa

K+ channel K+ 1 1 0 1 ∆GK = qe(vK − v) 1 vK

Ca2+ channel Ca2+ 1 0 1 -1 ∆GCa = −2qe(vCa − v) -2 vCa

Cl− channel Cl− 1 0 1 -1 ∆GCl = qe(vCl − v) -1 vCl
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3.2.3 Electrogenic transport and the generic formulation for current

Recall that the transport (19) is electrogenic whenever the sum of the charges that cross in a single event is distinct

from zero. In terms of the scheme (19), electrogenic transport satisfies

σ =

m∑
i=1

nizi (ai − bi) 6= 0. (25)

As a consecuence, the rates α and β from (19) depend on v and a reversal potential that depends on the Nernst

potentials for the transported ions (Table 1). If the transport is primary active, then

vr = vATP +

m∑
i=1

nizivi (ai − bi) . (26)

In contrast, if the transport event does not require an extra source of energy, then

vr =

m∑
i=1

nizivi (ai − bi) . (27)

The current resulting from electrogenic transport is then qσφ. Explicitly,

I = qf(T )σ

{
m∏
i=1

[Mi]
ni(ai−bi)
1 exp

[
s

vT

(
−vAB +

m∑
i=1

(ai − bi)nkzkv

)]

−
m∏
i=1

[Mi]
ni(ai−bi)
0 exp

[
(s− 1)

vT

(
−vAB +

m∑
i=1

(ai − bi)niziv

)]}
. (28)

The generic formulation in (28) reduces to (13) for the case in which one kind of ion crosses the membrane along its

electrochemical gradient, as it happens with channels. As shown for equation (13), equation (28) can take different

functional forms, which can be useful for different purposes (see Tables 2 and 3). Moreover, the generic macroscopic

description of current (28) includes the electrodiffusive current in (13) as a particular case (Table 2). As noted before,

if s = 1/2, then equation (28) transforms into

I = 2qf(T )σ

m∏
i=1

([Mi]0[Mi]1)ni(ai−bi)/2 sinh

(
−vAB +

∑m
i=1 nizi (ai − bi) (v − vi)

2vT

)
. (29)

3.3 Whole membrane currents and channel gating

The formulation in Eq. (17) can be extended for a membrane containing several hundreds or thousands of channels

permeable to an ion M . Assume that there are NM channels in the membrane and let channel pM ∈ [0, 1] be a

gating variable. The gated, whole membrane current through a channel can then be written as:

IM = pMNM ãMTM
s
0M

1−s
1 S

[
zM (v − vM )

vT
, si

]
. (30)

If the transmembrane concentrations and the absolute temperature are constant, then NiãiTM
s
0M

1−s
1 can be

thought of as a constant āi representing the maximum current amplitude through the membrane. Furthermore, āi

can be regarded as an indicator of channel expression because it is a multiple of the number of channels in the
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Table 2: Generic formulations for transmembrane flux mediated by different pumps or channels. For channels, it is assumed that
only one ion can cross at any given time. The direction of motion of the transport for each ion is indicated by σ (Eq. (25)). The
terms that correspond to the amplitudes are abbreviated in all cases.

Pump or channel φ(v, 1/2)

Ca2+ ATPase ACaP sinh
(

2v−2vCa−vATP

2vT

)
Na+-K+ ATPase ANaK sinh

(
v−3vNa+2vK−vATP

2vT

)
Na+-Ca2+ exchanger ANaCa sinh

(
v−2vCa+3vNa

2vT

)
Na+-K+-Cl− cotransporter ANaKCl sinh

(
vK−2vCl+vNa

2vT

)
K+-Cl− cotransporter AKCl sinh

(
vCl−vK
2vT

)
Na+-H+ exchanger ANaH sinh

(
vH−vNa

2vT

)
Na+ channel ANa sinh

(
v−vNa

2vT

)
K+ channel AK sinh

(
v−vK
2vT

)
Ca2+ channel ACa sinh

(
v−vCa

vT

)
Cl− channel ACl sinh

(
v−vCl

2vT

)

membrane. The quantity Nipi can be thought of as the average number of open channels permeable (see Aldrich

et al. (1983) for an interesting perspective in this regard). The proportion pi depends on the gating mechanism of

the channel, which, in turn, may depend on voltage, the concentration of a ligand, or both. Different expressions for

pi will be discussed in the following paragraphs.

3.3.1 Generic formulation for gating

While fitting currents recorded using voltage-clamp mode, Hodgkin and Huxley noted that for some of the voltage

commands, especially the lower ones, the time course of the current had a sigmoidal shape, slow-changing at first,

then changing almost linearly, and then slowly changing as it converged exponentially toward a steady state. In

consideration of the above, Hodgkin and Huxley decided to fit the time course of gating by using powers of linearly

changing variables. For an alternative approach, the activation and inactivation profiles of currents recorded in
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voltage-clamp can be described by solutions to equations from the family

{
∂tu = uk (Fu − u)Cu, k = 0, 1, ...

}
, (31)

which display sigmoidal behavior. If gating is voltage-dependent, the steady state F and rate C can be written

explicitly as

Fu(v) =
exp

(
gu

v−vu
vT

)
1 + exp

(
gu

v−vu
vT

) , (32)

Cu(v) = ru
[
exp

(
sugu

v − vu
vT

)
+ exp

(
gu(su − 1)

v − vu
vT

)]
, (33)

which can be derived by considering the energy required for voltage-dependent gating, as previously described

(Endresen et al., 2000; Herrera-Valdez et al., 2013; Willms et al., 1999). For fixed v, the family (31) contains the

linear equations used by Hodgkin and Huxley (1952) and the logistic equation as particular cases (for details see

Feller, 1940; Kaplan and Glass, 2012; Ricklefs, 1967; Strogatz, 1994). For the linear case (k = 0), the parameter

su controls the symmetry of the time constant 1/Cu as a function of v. The solutions for the linear case always

converge toward Fu(v) at a rate Cu(v). In other words, i.e. there is a unique, asymptotically stable (attractor) fixed

point (Kaplan and Glass, 2012; Strogatz, 1994) with a time constant given by 1/Cu. In contrast, the logistic case

(k = 1) has two fixed points, a repeller at u∗ = 0 and one attractor at u∗ = Fu(v), respectively. The time constant

for convergence toward the attractor point Fu in this case is (Cu(v)Fu(v))−1 (see Appendix 5.1). The change in u

is the logistic case has cuadratic shape, reaching a maximum at Fu(v)/2, which explains why the dynamics of any

solution starting from an initial condition u0 < Fu(v)/2 have sigmoidal shape.

4 Applications

The applicability of the results presented earlier is illustrated with simulations of phenomena related to ionic trans-

port. Specifically, the dynamical behaviour of channel-mediated currents modeled with (30) in combination with the

generic gating formulation from (31)-(33) is used to simulate currents recorded in what would be a voltage-clamp

experiment. Then the dynamics of excitability in neurons are explored using the generic DD formulation as a func-

tion of rectification in K+ currents mediated by Kv2 (homologous to Shab in Drosophila (Herrera-Valdez et al., 2013;

Herrera-Valdez, 2012). The combination of currents mediated by pumps and channels is used to construct a low-

dimensional model of cardiac pacemaking. The generic formulation for current in (28) is used in combination with

the gating from (31)-(33). One particularly interesting aspect of the generic gating formulation proposed here is that

it allows a formulation of currents without using powers in the gating terms, which permits the calculation of null-

clines and enables the possibility of bifurcation analysis based on analytical results. This is illustrated briefly with the

simulation of cardiac pacemaking. See Tables 3 and 4 for details about the currents and the parameters used in the

simulation.
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Figure 2: Simulation of currents mediated by Shab (Kv2) delayed rectifier channels, recorded in voltage clamp experiments. The
currents were modelled using the particular case (30) of (28) for different values of the symmetry constant in the driving force and
the symmetry constant in the activation dynamics. Parameters: vu=1 mV, gu =3, su ∈ {0.2, 0.5, 0.8}, (ru, k) ∈ {(0.2, 0), (1, 1)},
voltage commands starting at -110 mV in steps of 10, , vK=-89.0, sK=1/2, maximum current amplitude in the open channel āK=10
nA (constant temperature and transmembrane concentrations).

4.1 Voltage clamp dynamics

The functions (31)-(33) can be used to fit currents from voltage-clamp recordings, including those of sigmoidal shape

(see simulation of Kv2 current in voltage clamp in Fig. 2), without using powers in the gating variables. Larger values

of su shift the peak in the time constant as a function of v (Fig. 2A, D, G), and result in sharper current profiles

(Fig. 2B, E, H for k=0, or C, F, I for k>1). The solutions of equation (31) for k > 0 and initial conditions far enough

from the asymptotic state for u, have an initial period of slow change followed by an asymptotic approach to the

steady state (see Fig. 2C, F, and I for the case k>1).

4.2 The effects of rectification on neuronal excitability

A simple 2D model of neuronal dynamics can be constructed assuming that K+ and Na+ are the only ions that

cross the membrane via Na+-K+ ATPases, and voltage-dependent K+ and Na+ channels. The dynamics of the
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Figure 3: Neuronal dynamics for the rectification parameter sK ∈ {0.1, 0.5, 0.9}. A. Action potentials starting from
(v0, w0) = (25, 0.01). B. (∂tv, v) curve for the trajectories shown in A. C. Dynamics for IK(t). D. Contribution of the K+ current
to the change in v, (∂tv, IK(v)).

membrane in this case can be modeled with a 2-dimensional system of the form

Cm∂tv = −INa(v, w)− IK(v, w)− INaK(v)− IS(t), (34)

∂tw = w [Fw(v)− w]Cw(v), (35)

where v and w represent the membrane potential and the proportion of activated K+-channels, respectively. The

change in membrane potential depends on transmembrane currents INaK, IK, and INa, which are described in

Table 3 and Fig. 3. The current IS(t) represents forcing that could be provided by current injection, or the fluctuations

of the local field potential.

The effects of rectification in the potassium current IK can be readily observed by varying the rectification pa-

rameter for a K+ current modelled with (28) (see Tables 3 and 4). In general, action potentials become faster and

of larger amplitude for smaller values of sK. Inwardly rectifying currents (sK=0.1, Hibino et al., 2010) increase the

excitability of the membrane, whereas outwardly rectifying currents (sK=0.9) have the opposite effect (Fig. 3A). The

velocity of the action potential increases for inwardly rectifying channels (Fig. 3B) because inward rectification delays

the K-current (compare values of sK 0.1, 0.5, and 0.9 in Fig. 3C). The total amplitude and overall time course of

the K-current does not change for sK, but its contribution to the change in membrane potential is delayed for inward

rectifiers (Fig. 3C). Also, the activation of the K+ current for sK = 0.5 and sK = 0.9 is similar and occurs earlier dur-
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ing the action potential in comparison to the inwardly rectifying case sK = 0.1 (Fig. 3C). The maximum downstroke

speed of the action potential occurs for sK = 0.5. Notably, the downstroke speed has similar values for sK = 0.1

and sK = 0.9 (Fig. 3B,D). Overall, smaller values of the parameter sK increase the excitability of the membrane.

4.3 Cardiac pacemaking

A low dimensional model of membrane dynamics that describes cardiac pacemaking (Herrera-Valdez and Lega,

2011) can be constructed using the general formulation (28) to model a calcium current mediated by L-type Cav13

channels, a delayed-rectifier current, a current mediated by a Na+-Ca2+ exchanger, and a Na+-K+ ATPase. In

addition, the change in the intracellular Ca2+ concentration can be modeled with a variable c with linear dynamics

attracted toward a steady state value c∞, with increases proportional to the total transport of Ca2+ ions via L-type

channels and the Na+-Ca2+ exchangers (Fig. 4). The explicit form of the currents can be found in table 3 and the

parameters for the simulations can be found in table 4. The resulting equations have the form

Cm∂tv = −ICa(v, w, c)− IK(v, w, c)− INaK(v)− INaCa(v, c), (36)

∂tw = w [Fw(v)− w]Cw(v) (37)

∂tc = rc (c∞ − c)− kc [ICa(v, w)− INaCa(v, c)] (38)

The model (36)-(38) is capable of reproducing important features of the membrane dynamics observed in the

rabbit’s central sinoatrial node, including the period, amplitude, and maximum speed of the action potentials (Zhang

et al., 2000).

The general formulation for current in (28) and the inclusion of Ca2+ dynamics into the system (36)-(38) allows

us to appreciate important details about the different currents that contribute to the change in v, especially the ones

mediated by Na-Ca exchangers and L-type Ca-channels. For instance, the dynamics of the system (36)-(38) include

a double activation of the Ca2+ current, as previously reported in different studies of cardiac dynamics (Fig. 4C,D,

Rasmusson et al., 1990a,b). Importantly, the secondary activation occurs for the L-type Ca2+ current, which does

not have a second activation variable or multiple terms in the steady state for activation (see for instance Rasmusson

et al., 1990a,b). The secondary activation is possible because of the slow time constant for inactivation, which allows

the Ca2+ current to increase as the action potential starts decaying, before inactivation takes place. Notice that

in this case inactivation is assumed to be linearly related to the activation of the K+ channels, a simplification that

does not prevent or affect the double activation of the L-type Ca2+ channels during the action potential (Herrera-

Valdez and Lega, 2011; Mitchell and Schaeffer, 2003). That double fluctuation is reflected in the Nernst potential

for Ca2+, which displays two decreasing phases, the first and faster one during the initial activation of the L-type

channels, the second during the double peak of the Ca2+ current. By extension, the reversal potential for the Na-Ca

exchanger, vNaCa = 3vNa − 2vCa also has two decaying phases that are related to the secondary activation of the

Ca2+ channels Fig. 4A-D. The reversal potential for the Na-Ca exchanger also fluctuates around the membrane po-

tential, taking values above v during the diastolic depolarization and below v during the peak of the action potentials

(Fig. 4A,B). During these short periods of time, the Na-Ca exchanger current reverses and becomes an outward

current (Fig. 4E,F).
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Figure 4: Central sinoatrial node dynamics using the system (36)-(38).

5 Discussion

The most important assumption for the modelling proposed here is that the electrochemical gradients of the molecules

are the main determinants for the transmembrane ionic transport. The time courses of the transport events mod-

elled here are fast enough to guarantee that the models and assumptions made to obtain the general formulation

(28) yield a quantitatively accurate and generic macroscopic description of transmembrane currents (Blaustein et al.,

2004; Hille, 1992). In particular, the macroscopic description of the electrodiffusive flux across a transmembrane

pore can be readily adjusted to currents mediated by channels permeable to K+, Na+, and Ca2+, (Almers and

McCleskey, 1984; Hille and Schwarz, 1978) recorded experimentally (see Herrera-Valdez et al., 2013).

It is important to mention that the particular case of the electrodiffusion formulation (30) was first published by

Kimizuka and Koketsu (1964) and later by Endresen et al. (2000). One particular case, the constant field approxi-

mation version, has been used in several modelling studies. For instance, Clay et al. (2008) used the constant-field
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Table 3: Transmembrane currents used in the models. All defined in terms of the auxiliary functions S(y, s) = eys
(
1− e−y

)
,

C(y, s) = eys
(
1 + e−y

)
, and F (y) = ey

1+ey
.

Current Amplitude Driving force Description

Channels

INa (1 − w)āNaF
(
gmT

v−vmT

vT

)
S
(

v−vNa

vT
, sNa

)
Transient Na+ current

IK wāK S
(

v−vK
vT

, sK

)
Delayed-rectifyier K+ current

ICa13 ãCa13c
1−sCa13(1 − w)F

(
gm13

v−vm13

vT

)
S
(

2
(

v−vCa

vT

)
, sCa

)
L-type current mediated by
Cav13 channels

Pumps

INaK āNaK S
(

v−vNaK

vT
, sNaK

)
Na+-K+ ATPase current

INaCa ãNaCac
1−sNaCa
i S

(
v−vNaCa

vT
, sNaCa

)
Na+-Ca2+ exchanger cur-
rent

Table 4: Parameters used in the different simulations.

Parameter Value Units Description

Cm 20 pF Membrane capacitance

Neuronal membrane
āNa 1 nA Maximum amplitude for the transient Na+ current
āK 16 nA Maximum amplitude for the delayed-rectifier K+ current
āNaK 0.05 nA Maximum amplitude for the Na+-K+ ATPase current

Central SAN membrane
ãCa 2 pA/mM Maximum amplitude for the L-type Ca2+ current
āK 180 pA Maximum amplitude for the K+ current
ãNaCa 20 pA/mM Maximum amplitude for the Na+-Ca2+ current
āNaK 2 pA Maximum amplitude for the Na+-K+ current

approximation to enrich the dynamics of K+ currents in Hodgkin and Huxley models based on data from the squid

axon. The formulation presented here was independently obtained by the author, but in a more general setting in a

more general setting.

Importantly, Eq. (14) works for transport mediated by transporters in general. Notably, the current formulation for

channel-mediated electrodiffusion is a particular case of the general formulation for translocators (28). The equiva-

lence provides theoretical support to the idea that channel-mediated transport is macroscopically similar to transport

mediated by carrier proteins such as uniporters, symporters, antiporters and ATPases. In all cases, transport can be

written as a the product of an amplitude term and a driving force term. In other words, the case m = 1 of (28) tells

us that electrodiffusion through a channel as described by the Nernst-Planck equation is macroscopically equivalent

to ionic "translocation" across the membrane by a carrier protein, one ion at a time. Therefore, the modelling re-

sults presented here support the hypotheses advanced by Gadsby (2009) and other researchers, that channel and

pump-mediated transport are macroscopically equivalent.

A yet a additional improvement over currently available models is that the formulation in (28) enables the calcula-
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tion of the null cline associated to the intracellular calcium concentration in models like (36)-(38), by simply solving for

c. Also, the alternative formulation for activation in (31) adds a new steady state at u = 0, which could be interpreted

as a non-activated state repelling state. If u is a population of channels, this non-activated state would only be possi-

ble if all channels are blocked or otherwise unable to activate. In fact, the case where k = 1, u = 0 in equation (31)

yields an unstable fixed point once v and the parameters for Fu and Cu are fixed within a physiologically meaningful

range. It is worth remark that the value u = 0 is unlikely to occur. However, the formality of multiplying u to the linear

term Fu(v) − u adds richness to the dynamics of u and opens the possibility for better fits to experimental records

(see Shab current fits in Herrera-Valdez et al., 2013). In sum, adjustment of su, ru, and k in enables the possibility

of including sharper changes in the dynamics of u and have sigmoidal temporal dynamics without having to include

powers in the gating variables, which sometimes complicates the analysis for the lack of closed-form expressions for

the null clines.

The generality of the formulation (28) combined with (31)-(33) opens the possibility of a the systematic modelling

study of heterogeneities in populations of channels, possibly including different subtypes or splice variants (see

for instance Lin et al., 2009; Shipston, 2001). Another interesting application of the general formulation is that of

short-term plasticity in network models with synaptic currents written with (28).

5.1 Summary and conclusions

The generic formulation (28) was derived from basic macroscopic considerations about the changes in free energy

that occur in transmembrane transport. An alternative derivation for a particular case involving electrodiffusive trans-

membrane transport can be made from the Nernst-Planck equation yielding equivalent results. The functional form

in both cases can be regarded as the product of an amplitude term and a driving force term, which shows that,

macroscopically, carrier and channel-mediated currents are equivalent, as already suggested by Gadsby (2009).

Importantly, in the absence of other changes, varying the balance between the maximum amplitudes for the currents

and the membrane capacitance is enough to obtain membrane dynamics for different kinds of excitable cells (see

table 4). Finally, the simplicity and homogeneity of the generic formulations presented here also enables the pos-

sibility of constructing network models with synaptic inputs of different types that are easy to simulate in personal

computers. The details of this last application will be discussed at length in a following publication.
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Supplementary information

Logistic equation: solution and time constant for evolution

Consider a logistic equation of the form

∂tu = u(a− u)r, u(0) = u0 (39)

The analytical solution for (39) can be obtained by separation of variables as follows:

−rt =

∫ t

0

∂su

u− ads

=
1

a

(∫ u(t)

u0

1

u− a −
1

u
du

)

=
1

a

(∫ u(t)

u0

du

u− a −
∫ u(t)

u0

du

u

)

=
1

a

[
log

(
u(t)− a
u0 − a

)
− log

(
u(t)

u0

)]
(40)

=
1

a

[
log

(
u0 (u(t)− a)

u(t) (u0 − a)

)]
(41)

Therefore,

u0 (u(t)− a) = u(t) (u0 − a) exp (−art)

−au0 = u(t) [(u0 − a) exp (−art)− u0]

u(t) =
au0

u0 − (u0 − a) exp (−art) (42)

Notice then that the time constant for convergence toward steady state is (ar)−1.
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