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Abstract

Physiological mechanisms for passive and active transmembrane transport have been theoretically
described using many different approaches. A generic formulation for both passive and active transmem-
brane transport, is derived from basic thermodynamical principles taking into account macroscopic forward
and backward molecular fluxes, relative to a source compartment, respectively. Electrogenic fluxes also
depend on the transmembrane potential and can be readily converted into currents. Interestingly, the
conductance-based formulation for current is the linear approximation of the generic formulation for current,
around the reversal potential. Also, other known formulas for current based on electrodiffusion turn out to
be particular examples of the generic formulation. The applicability of the generic formulations is illustrated
with models of transmembrane potential dynamics for cardiocytes and neurons. The generic formulations
presented here provide a common ground for the biophysical study of physiological phenomena that
depend on transmembrane transport.

1 Introduction

One of the most important physiological mechanisms underlying communication within and between cells
is the transport of molecules across membranes. Molecules can cross membranes either passively (Stein
and Litman, 2014), or via active transport (Bennett, 1956). Passive transmembrane transport occurs
through pores that may be spontaneously formed within the lipid bilayer (Blicher and Heimburg, 2013),
or within transmembrane proteins called channels (Hille, 1992; Stein and Litman, 2014) that may be
selective for particular ion types (Almers and McCleskey, 1984; Doyle et al., 1998; Favre et al., 1996). In
contrast, active transport is mediated by transmembrane proteins that mechanically translocate at least
one ion type against its electrochemical gradient (Bennett, 1956; Ussing, 1949a,c). These proteins are
also called pumps and use energy from biochemical reactions (e.g. ATPases, light-driven pumps) or from
the electrochemical gradients of other ions (e.g. symporters, exchangers) (SKou, 1965). One important
functional distinction between channels and pumps is that the rate of transport for channels is several
orders of magnitude faster than the rate for pump-mediated transport (Gadsby, 2009; Herrera-Valdez and
Lega, 2011; Ussing, 1949b) .

Theoretical models of transmembrane transport play a critical role in developing our understanding of
the function and the mechanisms underlying electrical signaling and cellular excitability (Barr, 1965; Cole,
1965; DiFrancesco and Noble, 1985; Endresen et al., 2000; Gadsby, 2009; Goldman, 1943; Kell, 1979;
Läuger, 1973; Stevens and Tsien, 1979; Wiggins, 1985a,b,c). The best known transmembrane transport
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models include the widely used conductance-based formulation from the seminal work of Hodgkin and
Huxley (1952), the Goldman-Hodgkin-Katz equation (Goldman, 1943; ?; ?), and several other expressions
for carrier and channel mediated transport with many different functional forms (DiFrancesco and Noble,
1985; Herrera-Valdez and Lega, 2011; Rasmusson et al., 1990a,b; Rosenberg and Wilbrandt, 1955). To the
author’s knowledge, the most general formulations for ionic transport across membranes available in the
literature include those in the seminal work by ??, ? (see also (?)), similar work by (Endresen et al., 2000),
and those in the excellent book by Johnston et al. (1995). Such formulations describe the relationship
between the activity and permeability of ions across membranes, and the transmembrane potential.
However generalizations to describe physiological transport at large, including non-charged molecules,
are still missing. The work presented here builds upon the results previously mentioned, describing
transmembrane transport macroscopically in terms of the energy required to move molecules across a
membrane. The result is a generic formulation with a functional form that is common for both passive and
active transport of molecules across membranes (Herrera-Valdez, 2014). Fits from experimental data can
be readily obtained using these formulations to construct a model of transmembrane potential dynamics
(Herrera-Valdez et al., 2013).

The details of the derivation can be found in the next section. A model of membrane potential dynamics
in cardiac pacemaker cells can be found in Section 3. A model of fast spiking interneuron dynamics based
on the same equations is also included in the Appendix A.

2 Generic formulation for transmembrane flux and current

2.1 Work required for transmembrane ionic fluxes

Consider a system with two aqueous compartments separated by a membrane and regard one of the
compartments as a source and the other as a target. Assume that the two compartments contain ions of
the same type and that the membrane is permeable to those ions. Let α and β represent source→target
(forward) and source←target (backward) fluxes. Explicitly,

α = rα exp

(
−Eα

kT

)
, (1)

β = rβ exp

(
−Eβ

kT

)
, (2)

as described by the van Hoff-Arrhenius equation (Arrhenius, 1889; van’t Hoff, 1884), where rα and rβ
are flow rates (molecules ms−1µ m−2); Eα and Eβ are the energies required for the molecules to cross
in the forward and backward direction; k is Boltzmann’s constant and T is the absolute temperature,
respectively. Let ∆G = Eα −Eβ represent the work required for the transport. The energies Eα and Eβ
can be assumed to depend on the concentrations of the molecules, and if the molecules are ions, on the
electrical potential across the membrane. If the energy is continuous as a function of space, there is a
b ∈ [0, 1] such that

Eα = b∆G, and Eβ = −(1− b)∆G. (3)

The rates α and β can then be rewritten in terms of ∆G,

α = rα exp

(
−b∆G

kT

)
, β = rβ exp

(
(1− b)∆G

kT

)
. (4)

The parameter b ∈ [0, 1] can be thought of as a bias for the transport in the forward direction when
close to 1, and in the backward direction when close to 0 (Butler, 1924; Erdey-Grúz and Volmer, 1930;
Herrera-Valdez, 2014; Wiggins, 1985a). The ratio between the forward and backward fluxes at steady
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state should then be such that

α

β
= exp

(
−∆G

kT

)
, (5)

which means that rα = rβ , and the flux associated to the transmembrane transport taking the source
compartment as a reference can then be written as

α− β = r

[
exp

(
−b∆G

kT

)
− exp

(
(1− b)∆G

kT

)]
, (6)

with r in units of molecules millisecond−1 µm−2. The rate r should larger for electrodiffusive transport
in comparison to the slower transport rates for pumps and other carrier proteins. There is experimental
evidence for some ion channels that supports the replacement of r as a constant (Nonner and Eisenberg,
1998). It is possible, however, to derive expressions for r that take into account biophysical variables like
temperature and the shape and length of the pore through which the ions cross (Endresen et al., 2000; ?).

The applicability of the generic formulation for transmembrane flux (equation (6)) depends on whether
it is possible to calculate ∆G for different transport mechanisms. The following section shows how to
calculate, explicit expressions for ∆G in terms of the concentrations of the transported molecules and the
transmembrane potential if they are charged. These calculations can then be extended to calculate the
energy required for different passive and active transmembrane transport mechanisms involving different
types of molecules in parallel.

Figure 1: Fluxes biased in the target→source (b=0.1, black dashed line), source→target (b=0.9, red dash-dot line), or
showing no rectification (b=0.5, blue solid line). See Table 1 for examples.

2.2 Transmembrane transport of molecules of the same type

Assume that molecules of type s (e.g. K+) are able to cross the membrane and that ∆Gs is the energy
for required for their transport across the membrane. To take the direction of motion into account, label
the extracellular and intracellular compartments as 0 and 1, respectively, and let cs and ds represent the
source and the destination compartments for the transport of the s-molecules. The pair (cs, ds)=(0,1)
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represents inward transport and the pair (cs, ds)=(1,0) represents outward transport. The work required
to transport ns molecules of type s from compartment cs to compartment ds can then be expressed as

∆Gs = ns (cs − ds)
[
kT ln

(
[s]0
[s]1

)
− qzsv

]
, (7)

(Aidley, 1998; Blaustein et al., 2004; Weer et al., 1988) where q, zs, [s]0, and [s]1 represent the elementary
charge, the valence, the extracellular, and the intracellular concentrations for the molecules of type s,
respectively. If the s-molecules are not charged, zs = 0 and the work required to move the s-type
molecules from cs to ds simplifies to

∆Gs = ns (cs − ds) kT ln

(
[s]0
[s]1

)
.

For ions, zs 6= 0, and equation (7) can be rewritten as

∆Gs = qzsns (cs − ds) (vs − v) , (8)

where vs is the transmembrane potential at which there is a zero net flux of s-ions across the membrane
(Nernst, 1888). If ∆Gs < 0, s ∈ 1, ...,m, then the molecules can be transported passively (e.g.
electrodiffusion), thus freeing energy stored in their electrochemical gradient. In contrast, if ∆Gs > 0,
the transmembrane transport of the s-molecules from cs to ds is not thermodynamically favorable, which
means the transport from cs to ds must be active (e.g. pumping), and it increases the electrochemical
gradient of s if it happens.

2.3 Joint transmembrane transport of molecules of different types

To find a generic expression for ∆G in equation (6), consider a generic transport mechanism by which m
different types of molecules move across the membrane (e.g. for Na+-Ca2+ exchange, m = 2) according
to equation (7). Let M = {1, ...,m} represent a set for the types of molecules undergoing transport in
parallel. The total energy required for the transport the molecules is the sum of the energies required to
transport each type of molecule. In other words,

∆GM =
∑
{∆Gs : s ∈M} . (9)

Not all the molecules may not be transported in the same direction and also, molecules may be
transported against their (electro)chemical gradient. Those molecules that are transported in a thermody-
namically unfavorable direction form a set U = {s ∈M : ∆Gs > 0}. The (simultaneous) transmembrane
transport of the molecules in M is called passive if U = ∅, and active if not. Primary active transport is
such that at least one of the molecular types in M is transported against its electrochemical gradient, and
also, such that the energy required to pump the molecules from the set U is larger than the energy stored
in the electrochemical gradients of those molecules from not in U . That is,∑

{∆Gs : s ∈ U} >
∑
{∆Gs : s ∈M \ U} . (10)

In physiological systems, the extra energy required for the transport is supplied by different mechanisms
like ATP hydrolysis (Fleischer and Fleischer, 1988) and light transduction (Lanyi, 1993). In contrast,
secondary active transport is such that the energy stored in the electrochemical gradients of those
molecules not in U is larger than the energy required to pump the molecules from U . Explicitly,∑

{∆Gs : s ∈ U} <
∑
{∆Gs : s ∈M \ U} , (11)

If the transport is passive or secondary active, ∆GM < 0, and the energy required for the transport is
supplied by the electrochemical gradients of the molecules that are not in U . In contrast, ∆GM > 0 for

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1312v8 | CC BY 4.0 Open Access | rec: 16 Apr 2018, publ: 16 Apr 2018



primary active transport. This means that the transport can only be done by adding an external source
of energy ∆GExt, which must be large enough so that ∆GM + ∆GExt becomes negative. Taking the
above remarks into account, write the total energy for the transport as

∆G = δExt∆GExt + ∆GM , (12)

where δExt = 1 when ∆GM > 0, and 0 otherwise. In particular, for ATP-driven transport, the free energy
from the breakdown of ATP can be written as (Tanford, 1981; Weer et al., 1988)

∆GATP = q

[
∆G0

ATP +
kT

q
ln

(
[ADP] [Pi]

[ATP]

)]
= qvATP, (13)

where vATP ≈ −450 mV (Endresen et al., 2000; Weer et al., 1988), but could vary depending on the
amounts of ATP, ADP, and Pi. Similar expressions could be derived active transport driven by light, or
other sources of energy, so that ∆GExt = qvExt.

Taking the above observations into account, it is possible to combine equations (9) and (12), and write
α/β from equation (5) as

exp

(
−∆G

kT

)
= exp

(
ηv − δExtvExt

vT

) m∏
s=1

(
[s]0
[s]1

)ns(ds−cs)

(14)

where vT = kT/q, and

η =

m∑
s=1

ns (cs − ds) zs. (15)

represents the net number of charges moved across the membrane. The product qη (in Coulombs)
represents the net charge moved across the membrane, relative to the extracellular compartment. As a
consequence, if η = 0, then transport is non-electrogenic and does not depend on the transmembrane
potential.

Transmembrane transport of ions. If the transport only involves ions, then equation (14) can be
simplified to

exp

(
−∆G

kT

)
= exp

(
ηv − vo
vT

)
(16)

with

vo = δExtvExt +

m∑
s=1

nszs (cs − ds) vs. (17)

The quantity vo/η can be thought of as a reversal potential. If η > 0, then positive charge is transported
inward, or negative charge is transported outward. In contrast, η > 0 means that positive charge is
transported outward or negative charge transported inward. For instance, inward electrodiffusion of single
Na+ ions gives an η = −1, which can be thought of as loosing one positive charge at a time from the
extracellular compartment (see Table 1). More in general, if transport is electrodiffusive and carried by a
single ion of type l (as it would be in channels permeable to ions of type l), vo reduces to ηlvl where vl is
the Nernst potential for ions of type l. A list with examples of energies and total charge movements for
different transport mechanisms can be found Table 1.

2.4 Flux and current

The normalized energy for the possibly simultaneous transmembrane transport of ions of m different types
(equation (16)) can be used to describe their transmembrane flux and also the current when the transport
is electrogenic.
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Table 1: Energy required for transmembrane ionic transport mediated by different passive and active mechanisms.

Pump or channel Ion (s) ns cs ds cs − ds ∆Gs = qns(cs − ds)
[
vT log

(
[s]0
[s]1

)
− zsv

]
η vo α/β = exp

(
−∆G

kT

)
Cl− channel Cl− 1 0 1 -1 ∆GCl = q(vCl − v) 1 vCl

(
[Cl]1
[Cl]0

)
exp

(
v
vT

)
K+ channel K+ 1 1 0 1 ∆GK = q(vK − v) 1 vK

(
[K]1
[K]0

)
exp

(
v
vT

)
Na+ channel Na+ 1 0 1 -1 ∆GNa = −q(vNa − v) -1 −vNa

(
[Na]0
[Na]1

)
exp

(
− v

vT

)
Ca2+ channel Ca2+ 1 0 1 -1 ∆GCa = −2q(vCa − v) -2 −2vCa

(
[Ca]0
[Ca]1

)
exp

(
−2 v

vT

)
Na+-K+ ATPase

Na+ 3 1 0 1 ∆GNa = 3q(vNa − v)
1 vATP + 3vNa − 2vK

(
[Na]1
[Na]0

)3 (
[K]0
[K]1

)2

exp
(

v−vATP

vT

)
K+ 2 0 1 -1 ∆GK = −2q(vK − v)

Ca2+ ATPase Ca2+ 1 1 0 1 ∆GCa = 2q(vCa − v) 2 vATP + 2vCa

(
[Ca]1
[Ca]0

)
exp

(
2v−vATP

vT

)
H+ ATPase H+ 1 1 0 1 ∆GH = q(vH − v) 1 vATP + vH

(
[H]1
[H]0

)
exp

(
v−vATP

vT

)
Na+-Ca2+ exchanger

Na+ 3 0 1 -1 ∆GNa = −3q(vNa − v)
-1 2vCa − 3vNa

(
[Na]1
[Na]0

)3 (
[Ca]0
[Ca]1

)
exp

(
− v

vT

)
Ca2+ 1 1 0 1 ∆GCa = 2q(vCa − v)

Na+-I− symporter
Na+ 2 0 1 -1 ∆GNa = −2q(vNa − v)

-1 −vI − 2vNa

(
[Na]1
[Na]0

)2 (
[I]1
[I]0

)
exp

(
− v

vT

)
I−1 1 0 1 -1 ∆GI = −q(vI − v)

Na+-H+ exchanger
Na+ 1 0 1 -1 ∆GNa = −q(vNa − v)

0 vH − vNa

(
[H]1
[H]0

)(
[Na]0
[Na]1

)
H+ 1 1 0 1 ∆GH = q(vH − v)

K+-Cl− symporter
K+ 1 1 0 1 ∆GK = q(vK − v)

0 vK − vCl

(
[K]1
[K]0

)(
[Cl]1
[Cl]0

)
Cl− 1 1 0 1 ∆GCl = −q(vCl − v)

Na+-K+-Cl− symporter
Na+ 1 0 1 -1 ∆GNa = −q(vNa − v)

0 2vCl − vNa − vK

(
[Na]0
[Na]1

)(
[K]0
[K]1

)(
[Cl]1
[Cl]0

)2
K+ 1 0 1 -1 ∆GK = −q(vK − v)
Cl− 2 0 1 -1 ∆GCl = 2q(vCl − v)

Explicitly, combining equations (6) and (14), the flux rate resulting from simultaneously transporting
molecules of m types across the membrane is

α− β = r

[
m∏
s=1

(
[Cs]0
[Cs]1

)bns(ds−cs)

exp

(
b
ηv − δExtravExtra

vT

)

−
m∏
s=1

(
[Cs]0
[Cs]1

)(b−1)ns(ds−cs)

exp

(
(b− 1)

ηv − δExtravExtra

vT

)]
, (18)

which reads

α− β = r

{
exp

[
b

(
ηv − vo
vT

)]
− exp

[
(b− 1)

(
ηv − vo
vT

)]}
, (19)

when only ions are involved in the transport. The first, more complex, form of the flux in equation (18)
could be useful when working with models in which the concentrations of different molecules are relevant.

Transmembrane current. Transport is electrogenic when the net charge transported is not zero
(η 6= 0). In that case, the fluxes in equations (18) and (19) can be converted to a current density after
multiplication by qη. In short form,

i = qη (α− β) (20)

with qr in amperes/m2 or equivalent units.
Substitution of equation (18) or (19) into equation (20) yields general formula for the current generated

by transmembrane ionic flux (Fig. 2), at a crossing location in the membrane, whether it is mediated
by a single channel or pump. Recall that equation (20) can also be written explicitly in terms of the
transmembrane concentrations of one or more of the ions involved using equation (18).

2.5 Special cases and examples

Expressions for current already present in the literature can be obtained from equation (20). Examples
include electrodiffusive currents that result from integration of the Nernst-Planck equation along the length
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of membrane pore (Johnston et al., 1995; ?; ?). Of particular interest, conductance-based currents are
linear approximations of the formulation (20), around the reversal potential for the current. This explains
why the Hodgkin and Huxley (1952) model captures many of the defining features of action potential
generation, in spite of modeling the currents created by ion fluxes as resistive.

A number of nontrivial and important properties of transmembrane ionic currents, including rectification,
are also described by equation (20). Examples of applications and special cases involving the formula (20)
are shown next.

2.5.1 Rectifying and non-rectifying current

The flux of molecules across the membrane can be biased in either the outward or the inward direction.
This was first called ”anomalous rectification” by Katz (1949), who noticed that K+ flows through muscle
membranes more easily in the inward, than in the outward direction (Armstrong and Binstock, 1965; ?). It
was later found some K+ channels display the bias in the opposite direction (?). The former type of K+

current rectification is called inward, and the latter outward. Rectification is thus a bias in either of the two
directions of transport, and it can be described by equation (18) when the value of b is moved away from
1/2. Rectification becomes more pronounced as b is closer to either 0 or 1, values that represent biases
in the transport toward the source, or the target compartment, respectively. Another way to think about
it is that values of b closer to 0 limit the flux when ∆G < 0, and values of b closer to 1 limit the flux for
∆G > 0 (Fig. 2). As a consequence, rectification yields an asymmetry in the graph of α− β as a function
of ∆G (Fig. 2).

For electrogenic transport, the type of rectification (inward or outward) depends on what ions are
being transported, and in what direction. In this case, rectification can be thought of as an asymmetric
relationship between current flow and voltage, with respect to the reversal potential vo. The particular
case b = 1/2 (non rectifying) yields a functional form similar to that proposed by ?, and later reproduced
by (Endresen et al., 2000), namely

i = 2qηr sinh

(
ηv − vo

2vT

)
. (21)

From here on, subscripts will be used to represent different transport mechanisms. For instance, the
current for a Na-Ca pump will be written as iNaCa.

Electrodiffusion of K+ through channels (η = 1 and vo = vK), is outward for v > vK, and inward for
v < vK. The K+ current through the open pore is therefore

iK = qrK

{
exp

[
bK

(
v − vK
vT

)]
− exp

[
(bK − 1)

(
v − vK
vT

)]}
. (22)

Current flow through inward rectifier channels (Riedelsberger et al., 2015) can be fit to values of bK < 1/2.
For instance,

iKin = qrK

[
1− exp

(
vK − v
vT

)]
, (bK = 0), (23)

describes a current with limited flow of K+ in the outward direction, similar to the currents described
originally by Katz (1949). Analogously, bK > 1/2 limits the inward flow. For example, the current

iKout = qrK

[
exp

(
v − vK
vT

)
− 1

]
, (bK = 1), (24)

describes outward rectification (Riedelsberger et al., 2015).
Based on the work of Riedelsberger et al. (2015) on K+ channels, the parameter bK can be thought of

as shifting the location of the S4 segment in K+ channels to in the inner (bK < 1/2) or the outer portion of
the membrane (bK > 1/2), respectively.
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Figure 2: Fluxes for K-electrodiffusion for bK ∈ {0.1, 0.5, 0.9} and their cubic approximations. Inward rectification
occurs for bK < 1/2 and outward rectification for bK > 1/2 and qrKNK = 1.

2.5.2 Primary active transport.

The Na-K ATPase is a primary active transporter that uses the energy from the hydrolysis of one molecule
of ATP for the uphill transport of Na+ and K+ (Weer et al., 1988). The kinetics of the Na-K ATPase can
be assumed to translocate 3 Na+ ions outward and 2 K+ ions inward (ηNaK = 1) with a reversal potential
vNaK = vATP + 3vNa − 2vK (see Table 1) in a single transport event (Chapman, 1973; Gadsby et al.,
1985; Garrahan and Glynn, 1967; Post and Jolly, 1957). Importantly, the transport kinetics of the Na-K
ATPase and by extension, the current, reverse for potentials smaller than vNaK (Weer et al., 1988).

The current-voltage relationships recorded from Na-K ATPases in guinea pig ventricular cells are
shaped as hyperbolic sines (Gadsby et al., 1985). Those currents would be fit with bNaK ≈1/2, yielding
currents of the form

iNaK(v) = 2qrNaK sinh

(
v − vNaK

2vT

)
. (25)

The voltage-dependence of the Na-K ATPase currents is reported to approach a plateau as v increases
past the reversal potential for the current in response to steroids like strophandin (Nakao and Gadsby,
1989). In such cases, the Na-K ATPase current can be assumed to be inwardly rectifying and fit with
values of bNaK ≈ 0, so that,

iNaK(v) = qrNaK

[
1− exp

(
vATP + 3vNa − 2vK − v

vT

)]
, (26)

or alternatively,

iNaK(v) = qrNaK

[
1−

(
[Na]0
[Na]1

)3(
[K]1
[K]0

)2

exp

(
vATP − v

vT

)]
. (27)

The rectification for the Na-K pump ATPase has also been reported to occur in small neurons of the dorsal
root ganglion in rats (Hamada et al., 2003). The alternative expression (27) also explains qualitatively
different behaviors of the Na-K current as a function of the transmembrane concentrations of Na+ and K+.
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For instance, if either [Na]1 or [K]0 increase and v > vNaK, then the amplitude of iNaK would increase,
but at a smaller rate of change in comparison to when v < vNaK, which grows exponentially in size. This
is also in line with reports of non significant changes in the transport by Na-K ATPases in response to
elevated intracellular Na+ during heart failure (Despa et al., 2002).

2.5.3 Secondary active transport.

An example of a pump that mediates secondary active transport is the Na-Ca exchanger, which takes 3
Na+ ions from the extracellular compartment in exchange for one intracellular Ca2+ ion, in forward mode
(Pitts, 1979; Reeves and Hale, 1984). The reversal potential for the current is vNaCa = 2vCa − 3vNa, with
ηNaCa = 1. Assuming bNaCa = 1/2 gives

iNaCa(v) = 2qrNaCa sinh

(
v − vNaCa

2vT

)
(28)

The driving force v − vNaCa could reverse in sign if the intracellular concentration of Ca2+, or if the
membrane potential increases enough. As a result, the current could have a dual contribution to the
change in transmembrane potential, as predicted by some theoretical models of cardiac pacemaker activity
(Rasmusson et al., 1990a,b).

2.5.4 Electrodiffusive transport

Consider transmembrane electrodiffusive transport of a single ionic type x, with zx and vx representing
the valence and the Nernst potential for x-ions, respectively. In this case,

vo = nx(cx − dx)zxvx = ηxvx,

and the generic expression (20) can be rewritten as

ix(v) = qηxrx

{
exp

[
ηxbx

(
v − vx
vT

)]
− exp

[
ηx(bx − 1)

(
v − vx
vT

)]}
. (29)

In the absence of rectification (bx = 0.5),

ix(v) = 2qηxrx sinh

(
ηx
v − vx

2vT

)
. (30)

For calcium channels,

iCa(v) = 4qrCa sinh

(
v − vCa

vT

)
. (31)

See ?? Table 1 for other examples.

2.5.5 Lower order approximations to the generic formulation and conductance based
models

Conductance-based currents (Hodgkin and Huxley, 1952) are linear approximations of the generic current
from equation (20), around the reversal potential vo/η. To see this, rewrite the generic current from
equation (20) as a series around vo using Taylor’s theorem so that

i = qηr

[(
ηv − vo
vT

)
+

(
b− 1

2

)(
ηv − vo
vT

)2

+

(
3b2 − 3b+ 1

3!

)(
ηv − vo
vT

)3

+ ...

]
.(32)
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Truncation of the series to first order gives

i ≈ g
(
v − vo

η

)
, (33)

where g = η2qr/vT is in units of nS/µm2, which is the form of the conductance-based current used in the
Hodgkin and Huxley (1952) model. For instance, the linear approximation for the current through an open
sodium channels around vNa in equation (33) gives gNa = qrNa/vT, and vo = ηNavNa, with ηNa = −1,
so that iNa ≈ gNa(v − vNa).

The applicability of the general formulations described above is illustrated next with models of cardiac
and neuronal membrane potential.

3 Dynamics of transmembrane potential

To show the application of the general formulations discussed earlier, let us build a model of transmembrane
potential dynamics with currents generated by N different electrogenic transport mechanisms. For
simplification purposes, consider only one such mechanism, labeled as l, with plNl active sites, where Nl
is the number of membrane sites where the lth transport mechanism is found, pl is the proportion of such
sites (might be voltage or ligand dependent). Then the total current mediated by the lth mechanism can
be written as alplϕl(v) with al = qNlrl (in pA/µm2), and

ϕl(v) = exp

[
bl

(
ηlv − vl
vT

)]
− exp

[
(bl − 1)

(
ηlv − vl
vT

)]
. (34)

where vl/etal is the reversal potential for the lth current, l ∈ {1, ..., N}. The transmembrane potential
can then be assumed to change according to the equation

cM∂tv = −
N∑
l=1

alplϕl(v), (35)

where cM is a constant that describes the change in charge density around the membrane, as a function
of v, in units of pF·µm2 (Everitt and Haydon, 1968; Golowasch et al., 2009). An equivalent version of
equation (35) can be obtained after multiplication of both sides by the membrane area, A. This may be
convenient when trying to fit measurements of the membrane capacitance CM = A cM taken directly
from experimental recordings. The area can also be infered given CM and cM . A typical value for cM is
0.01 pF/µm2.

3.1 Cardiac pacemaking in the sinoatrial node

The pacemaking dynamics of cells in the rabbit sinonatrial node can be modeled with low dimensional
dynamical systems based on K+ and Ca2+ transmembrane transport (Herrera-Valdez, 2014; Herrera-
Valdez and Lega, 2011) (Fig. 3). To do so, assume that transmembrane currents are mediated by
electrodiffusion and pumping mechanisms: L-type Cav13 channels (Mangoni et al., 2003), delayed-
rectifier voltage-activated channels (Shibasaki, 1987), Na+-Ca2+ exchangers, and Na+-K+ ATPases
(Herrera-Valdez and Lega, 2011).

The temporal evolution of the system can then be described by equations of the form

CM∂tv = −INaK(v)− INaCa(v, c)− ICa13(v, w, c)− IKD(v, w), (36)

where CM is the membrane capacitance (pF), F is Faraday’s constant (C/Mol), and kc is a constant that
controls the impact of the Ca2+ current on the free intracellular Ca2+ concentration. The proportion of
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Figure 3: Central sinoatrial node pacemaking dynamics using the system (36)-(44). A. Transmembrane potential and
the reversal potential vNaCa as a function of time. B,C. Dynamics of large currents and small currents, respectively.

activated K+ channels and the proportion of inactivated Ca2+ channels are both represented by a variable
w (Av-Ron et al., 1991; Herrera-Valdez and Lega, 2011). The activation for the L-type Ca2+ channels is
assumed to be at its voltage-dependent steady state (Herrera-Valdez and Lega, 2011). One important
element to consider is that the activation phase of currents recorded in voltage-clamp experiments often
displays sigmoidal time courses. Hodgkin and Huxley and others (??) have reported sigmoidally shaped
whole cell currents in voltage-clamp as a function of time (see Fig. 3 in Hodgkin and Huxley, 1952), for
some of the voltage commands, especially the ones for lower voltages. In line with the gating dynamics
displayed in experiments like those described above, the activation and inactivation profiles of currents
recorded in voltage-clamp can be described by solutions to equations from the family

∂tw = w [Fw(v)− w]Rw(v), (37)

The change in the intracellular Ca2+ concentration can be modeled with a variable c exhibiting linear
dynamics that in the absence of Ca2+ fluxes converge to a steady state c∞, with increases proportional
to the total transport of Ca2+ ions via L-type channels and Na+-Ca2+ exchangers (Fig. 3).

∂tc = rc (c∞ − c)−
kc
F

[ICa(v, w)− INaCa(v, c)] . (38)
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The transmembrane currents are given by

INaK (v) = aNaK ϕNaK(v), (39)

INaCa(v, c) = aNaCa ϕNaCa(v, c), (40)

IKD (v, w) = aKD w ϕKD(v), (41)

ICa13 (v, w, c) = aCa13T (1− w)Fm13(v) ϕCa13(v, c), (42)

with ϕx as defined above, for x ∈ {NaK,NaCa,KD,Ca13}. The steady state for the activation of
voltage-dependent channels is described by the function

Fu(v) =
exp

(
gu

v−vu
vT

)
1 + exp

(
gu

v−vu
vT

) , u ∈ {m,w} (43)

which has a graph with sigmoidal shape as a function of v, with steepness controlled by gu and a half-
activation potential vu, for u ∈ {m,w}. The activation rate for K+ channels is a voltage-dependent
function of the form

Rw(v) = rw

[
exp

(
bwgw

v − vw
vT

)
+ exp

(
(bw − 1)gw

v − vw
vT

)]
. (44)

The parameter bw represents a bias in the conformational change for activation. Values of bw close to 0
represent a bias in favor of deactivation and bw close to 1 a bias toward activation. Notice that the function
Rw has the shape of a hyperbolic cosine when bw is 1/2.

The solutions of equations (36)-(44) reproduce important features of the membrane dynamics observed
in the rabbit’s central sinoatrial node, including the period, amplitude, and maximum speed of the action
potentials (Zhang et al., 2000). One interesting behavior that is shown in the solutions to the system is
that the Na-Ca current reverses when v = vNaCa (Fig. 3A, blue line). In this example, vNaCa < v and
iNaCa > 0 during the initial depolarization and until the maximum downstroke rate, approximately, which
means extrusion by the Na-Ca exchanger occurs only for a brief period of time during the downstroke and
the initial recovery after each action potential (Fig. 3C, blue line).

The time course of the Ca2+ current shows a partial inactivation with a double peak (Fig. 3B) around a
local minimum, as previously reported in different studies involving spiking dynamics (Carter and Bean,
2009; Rasmusson et al., 1990a,b). The local minimum occurs at the peak of the action potential, as
the total current passes through zero (Fig. 3B, linea gris). The double peak in the Ca2+ current is
in agreement with data from voltage-clamp experiments (Mangoni et al., 2006). The Ca2+ channel
inactivation presented here is also the activation of the K+ channels (Herrera-Valdez and Lega, 2011), an
assumption not present in other more complicated models that show the double activation of the L-type
Ca2+ channels (Mitchell and Schaeffer, 2003). Such models include extra assumptions like a second
activation variable, or the multiple terms in the steady state gating, or in the time constant for activation or
inactivation (see Rasmusson et al., 1990a,b). That is not the case in the model presented here.

It is important to remark that the dual role played by w is not the cause of the double activation, since
it can also happen for non-inactivating Ca2+ channels (Fig. 4A, linea gris). The double activation also
happens in models in which activation of K+ channels and inactivation of Ca2+ or Na+ channels are
represented by different variables (Rasmusson et al., 1990a) and in dynamic voltage clamp experiments
on neurons in which there are transient and persistent sodium channels (Carter and Bean, 2009).

The first peak for the Ca2+ current occurs when v reaches the maximum depolarization rate (Fig. 4B).
The Ca2+ current starts to decrease as w increases and until v reaches its maximum. After the peak of
the pacemaking oscillation, the Ca2+ current increases again, reaching a second peak shortly before the
K+ current is maximally activated; that is, shortly before w reaches its highest value and the decrease in
v is at its maximum too.
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Figure 4: Calcium current dynamics and double activation. The joint behavior of the L-type Ca2+ current with respect
to the transmembrane potential (A, blue line) and for non-inactivating channels (A, gray line), and with respect to the
time-dependent change in v (B).

The double peak in the Ca2+ current is reflected in the intracellular Ca2+ current (Figure 5, gray
line), and therefore, on the Nernst potential for Ca2+ (Figure 5, blue line), which displays two decreasing
phases, the first and faster one during the initial activation of the L-type channels, and a second phase
during the second peak of the Ca2+ current. By extension, the reversal potential for the Na-Ca exchanger,
vNaCa = 3vNa − 2vCa (Figure 5, orange line) also has two phases, this time increasing, related to the two
activations of the Ca2+ channels. Increases in the intracellular Ca2+ (Figure 5, gray line) concentration
decrease the Nernst potential for Ca2+ and viceversa. By extension, the reversal potential for the Na-Ca
exchanger, vNaCa = 3vNa − 2vCa increases if c increases. As already mentioned, Ca2+ enters the cell
in exchange for Na+ that moves out during most of the action potential (Figure 5).

4 Discussion

A generic, macroscopic model for transmembrane fluxes has been derived by directly calculating the
work required to transport molecules across the membrane. The derivation is based on a general
thermodynamic scheme that takes into account the rate, stoichiometry, and the direction in which the
molecules are transported across the membrane. These biophysical parameters are then combined to write
expressions for directional fluxes based on van’t Hoff (1884) and Arrhenius (1889) formulations, weighted
as in the Butler/Erdey-Gruz/Volmer equation (Butler, 1924; Erdey-Grúz and Volmer, 1930). The result is
a general description (equation 20) of the transmembrane molecular flux as a difference of exponential
functions, each describing the transport dynamics in the "forward" and "backward" directions, relative to
a source compartment. The two exponential functions depend on a common expression involving the
transmembrane concentrations of the molecules being transported, and possibly the transmembrane
potential.

Rectification in transmembrane currents mediated by channels is typically modeled modifying the
dynamics of the gating variables of the current. The general formulas for transmembrane transport include
a bias term b that controls the relative contribution of inward and outward components the transport.
Hence, different types of rectification can be described by favoring one of the directions for transport,
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Figure 5: Calcium dynamics during pacemaking. Time courses of the intracellular calcium concentration (gray, left axis),
the Nernst potential for Ca2+ (blue), and the reversal potential for the Na-Ca exchanger.

conceptually in line with the ”anomalous rectification" originally reported by Katz (1949) for K+ in muscle
cells. It is important to remark that non-rectifying currents with b = 1/2 are nonlinear functions of ∆G,
which shows that the nonlinearity of the current-voltage relationships is not the defining characteristic of
rectification; as argued in some textbooks (see Kew and Davies, 2010). It is also important to note that
the bias term is not part of any gating mechanism. Based on the work of Riedelsberger et al. (2015),
the inward (outward, respectively) rectification in K+ channels corresponds to a bias in the location of
the fourth transmembrane segment of the channel (S4) toward the intracellular (extracellular) portion
of the membrane (Riedelsberger et al., 2015). Therefore, the rectification term can be thought of as
representing a structural component of the transmembrane protein through which molecules move (Fig. 2).
Outward rectification in K+ channels can be explained, for instance, by biasing the flux of K+ the forward
(outward) direction (bK > 1/2). Instead, inward rectification can be obtained by biasing the transport in
the backward (inward) direction (bK < 1/2).

The formulation for transmembrane flux may be rewritten in different alternative forms that can be
found throughout the literature (see equations (18) and (19), Goldman, 1943; Johnston et al., 1995) that
can be useful for numerical calculations involving the concentrations of molecules of interest, like the
available ATP. Of particular interest, the widely used conductance-based models for current from the
seminal work of Hodgkin and Huxley (1952) turn out to be linear approximations of the generic current
described here (Herrera-Valdez, 2012). It can also be shown that electrodiffusive transmembrane currents
derived from the Nernst-Planck equation (Nernst, 1888; Planck, 1890), turn out particular cases of the
generic formulation presented here (see also Herrera-Valdez, 2014, for details). Examples include the
constant field approximation (Clay et al., 2008; Hille, 1992; Johnston et al., 1995), the non-rectifying
currents proposed by Endresen et al. (2000), and more general electrodiffusive currents that includes a
bias term accounting for rectification (Herrera-Valdez, 2014; Johnston et al., 1995). Of possible interest
to mathematicians working on bifurcation theory, a third order approximation (equation (32)) resembling
the Fitz-Hugh equations (Fitz-Hugh, 1966; FitzHugh, 1955, 1961), can be used to construct models that
give very close approximations to the full model, while keeping biophysical characteristics like rectification.
Further, the third order approximation opens the possibility of expanding on the analysis of dynamical
systems based on these generic formulas to study normal forms and bifurcations.

One question of interest because of its possible impact on the interpretation of results from existing
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Table 2: Parameters for the cardiac SAN pacemaker model.

Parameter Value Units Description

CM 20 pF Membrane capacitance
aCa 1 pA Maximum amplitude for the L-type Ca2+ current
aK 700 pA Maximum amplitude for the K+ current
aNaK 1 pA Maximum amplitude for the Na+-K+ current
aNaCa 2.5 pA Maximum amplitude for the Na+-Ca2+ current
vATP -420 mV Potential ATP hydrolysis
vNa 60 mV Nernst potential for Na+

vK -89 mV Nernst potential for K+

vNaK = 3vNa − 2vK + vATP -62 mV Reversal potential for the for Na+-K+ ATPase current
vNaCa = 2vCa − 3vNa – mV Reversal potential for the for Na+-Ca2+ current (vCa

depends continuously on [Ca]i)
vm13 -17 mV Half-activation potential for Cav13 L-type Ca2+-current
vw 0 mV Half-activation potential for the transient K+-current
gm13 4 – Activation slope factor for the Cav13 L-type Ca2+-

current
gw 3 – Activation slope factor for the K+-current
rw 0.07 s−1 Activation rate for the cardiocyte K+-current
bw 0.35 – Activation slope factor for the K+-current
bNaK 0.5 – Non-rectification bias for the Na+-K+-current
bK 0.5 – Rectification for the transient K+-current
bNa 0.5 – Non-rectification bias for the transient Na+-current
bCa 0.5 – Non-rectification bias for the Cav13 L-type Ca2+-

current
c∞ 0.1 µM Minimal (resting) intracellular Ca2+-concentration
rc 0.02 ms−1 Ca2+ removal rate
kc 2 – Conversion factor between Ca2+ current and intracel-

lular Ca2+ concentration

modeling studies, how does the excitability and the resulting dynamics in a model of membrane dynamics
change when using the thermodynamic transmembrane currents or their approximations? The question
has been addressed in a study in which two simple neuronal models with currents mediated by Na+ and
K+, each equipped with the same biophysical gating properties and the same relative contributions for the
currents, but one with currents as in equation (21), the other with conductance-based currents. The two
models display a number of qualitative and quantitative differences worth considering for the choice of a
model in future theoretical studies (Herrera-Valdez, 2012). For a start, the two models are not topologically
equivalent across many ratios of the relative contributions of K+ and Na+ channels (Herrera-Valdez, 2012);
as would be expected by the fact that conductance-based formulations are only linear approximations of
the generic currents. One of the most notable differences is the contribution of the nonlinear, high order
terms from (20), which results in more realistic upstrokes for action potentials and an overall increased
excitability; in this case characterized in terms of the minimum sustained current necessary to produce
at least one action potential. The increased excitability of the membrane is due, in part, to the large,
exponential contribution of the Na+ and Ca2+ channels to the change in the transmembrane potential
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near rest. The time course of the Na+ current during the upstroke of the action potential with the generic
model is much sharper than that of the conductance-based formulation, resulting in a faster upstroke of
the action potential; and in better agreement with observations in cortex and other tissues (Naundorf et al.,
2006). It is important to remark that the sharper increase in the change of the membrane potential is a
consequence of the nonlinear driving force terms of the current (the flux term in the generic formulation)
and not in the activation dynamics for the transient Na+ current.

The generic formulation for both passive and active transmembrane transport can be thought of as a
recipe to build a toolbox that facilitates the construction and analysis of models of membrane potential
dynamics. The generality and versatility of the thermodynamic transmembrane transport formulations is
illustrated with a model of the dynamics of cardiac pacemaking (equations (36)-(44)); another example
with a model for a fast spiking interneuron can be found in the appendix A. The ion fluxes in the model
are assumed to be mediated by two different types of voltage-gated channels and two different types of
pumps, all represented with the same functional form (see DiFrancesco and Noble (1985); Herrera-Valdez
and Lega (2011); Rasmusson et al. (1990b) for examples in which that is not the case).

One important advantage of the generic formulation is that it includes the possibility of explicitly
estimating the number of channels or pumps mediating each of the transport mechanisms of interest.
This has proven to be useful to study the relative contributions of different currents to the excitability of
neurons (see Appendix A and Herrera-Valdez et al., 2013), cardiocytes (Herrera-Valdez, 2014), and
other different tissues (unpublished work). Another extension of possible interest to study physiological
processes within single cells is that of modelling the transmembrane transport between organelles and
the cytosolic compartment, which can be done by directly replacing the difference cs − ds in equation
(7) with 1 or -1, accounting for the direction of transmembrane motion of molecules relative to the outer
compartment. This and other generalizations enable the possibility of studying the interdependence
between electrical excitability across tissues and animal species (Herrera-Valdez et al., 2013), and its
cross-interactions with metabolism and other processes of physiological importance, all from a general
theoretical framework with common formulations.

Implications for experimentalists. One of the main advantages of the generic expressions is that
fits to ionic currents can be made straight from the voltage-clamp data without much effort, and without
having to calculate conductances, which amounts to imposing the assumption that the current to voltage
relationship is linear. Fits to experimental currents can then be directly put into equations describing the
change in the membrane potential, and model membrane dynamics of interest without having to make
many extra adjustments, as it is the case for most conductance-based models restricted to data. As
mentioned above, the idea of a "maximal conductance" is not quite as correct as the "maximal current"
in the models presented in previous sections (see Table 2 and section on linear approximations), in part
because of the inherent nonlinearity of the flux.

The model for current in equation (21) has been used to construct simplified models for the membrane
dynamics of different cell types, including motor neurons in Drosophila melanogaster (Herrera-Valdez et al.,
2013), pyramidal cells in the young and ageing hippocampus of rats (McKiernan et al., 2015), medium
spiny neurons in the mouse striatum (Suárez et al., 2015), rabbit sinoatrial node cells (Herrera-Valdez,
2014), and other types of excitable cells (McKiernan and Herrera-Valdez, 2012). In all cases the models
were adjusted with experimental data.

In sum, the theoretical descriptions of transmembrane transport derived and presented here provide a
unifying framework to model passive and active transmembrane transport, and make predictions that can
be tested experimentally (Shou et al., 2015).
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Table A1: Physical constants. The conversion factor f from pA to µM ·ms−1 = mM · s−1 implies
⇒M = f · 10−9 Coul. Then f = 109 M/Coul = 109 · 96485.3329/F ≈ 1014 M/Coul.

Constant Value Units Description

T0 273.16 degrees Kelvin Zero absolute temperature
NA 6.023 × 1023 molecules/Mole Avogadro’s number
q 1.60217733 ×10−19 Coulombs/molecule Elementary charge (electrical charge on the

electron)
k 1.381 ×10−23 Joules/oKelvin Boltzmann constant

8.62 ×10−5 eV/ oKelvin
F = qNA 96485.33289 Coulombs/Mole Faraday’s constant (the magnitude of electric

charge per mole of electrons)
R = kNA 1.987 cal/(Mole oKelvin) Gas constant

A Fast spiking interneuron dynamics

A simple model of the dynamics of a fast spiking (FS) striatal interneuron can be constructed using (35).
To do so, assume the transmembrane potential depends on three currents respectively mediated by Na-K
pumps, non-inactivating K+ channels, and Na+ channels with transient dynamics, with voltage-dependent
gating in both channels. It is also assumed that the proportion of activated K+ is represented by a variable
w ∈ [0, 1], which also represents the proportion of inactivated Na+ channels (Av-Ron et al., 1991; Rinzel,
1985). That is, 1−w represents the proportion of non-inactivated Na+ channels. The dynamics for w can
be assumed to follow a logistic scheme, capturing the behaviour of delayed-rectifier K+ currents typically
recorded in voltage clamp mode without adding extra powers to w (see for instance Hodgkin and Huxley,
1952, and the Appendix). It is also assumed that sodium channel activation is fast, described by its steady
state function of v.
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Figure A1: Rest to spiking transitions of FS interneuron under current clamp. The traces show responses
to current-clamp stimulation of different amplitudes. The transition between rest and spiking with a
rheobase occurs between 40 and 50 pA, as shown for some FS neurons in the mouse striatum (Orduz
et al., 2013). The traces correspond to stimulation amplitudes of 0 (gray dots), 40 (black dashed line), 50
(blue), and 80 pA (gray). Parameters can be found in Table A2.

Explicitly, the dynamics of the system can then be captured by coupled differential equations of the
form

Cm∂tv = −(1− w)Fm(v)ANaT ψNaT(v)− wAKaD ψKaD(v)−ANaK ψNaK(v), (A1)

∂tw = w [Fw(v)− w]Rw(v), (A2)

where

Fu(v) =
exp

(
gu

v−vu
vT

)
1 + exp

(
gu

v−vu
vT

) , u ∈ {m,w} (A3)

is a function with sigmoidal shape that represents the steady state activation of the gating variables m and
w, respectively, and has sigmoidal shape as a function of v. The parameter gu controls the steepness of
the steady state as a function of v. The activation rate for K+ channels depends is a voltage-dependent
function

Rw(v) = rw

[
exp

(
(bw − 1)gw

v − vw
vT

)
+ exp

(
bwgw

v − vw
vT

)]
. (A4)

The parameter bw represents a bias in the conformational change for activation. Values of bw close
to 0 represent a rate of activation that is voltage-dependent with voltage-independent de-activation. In
contrast, bw close to 1 represents voltage-dependent de-activation, and a voltage-independent activation,
respectively. Notice that the function Rw has the shape of a hyperbolic cosine when bw is 1/2.

The functions in equation (A2) can be derived by considering the work required for voltage-dependent
gating, as previously described by Willms et al. (1999), Endresen et al. (2000), and Herrera-Valdez et al.
(2013), among others.

The dynamics of the system are such that, as v increases, w increases, but at a slower rate in
comparison to v. This is because the activation w is always moving toward its steady state value, which
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increases as v increases. Once w increases, the Na+ current tends to decrease and the K+ current
tends to increase, thereby causing a decrease in v. The slower dynamics in w relative to those in v
capture the delay between the amplification caused by the Na+ current and the recovery caused by the
K+ current. The current mediated by Na/K-ATPase acts as an extra attracting force toward vNaK that
increases nonlinearly as the distance between v and vNaK increases.

Striatal FS interneurons display maximum ∂tv between 100 and 200 V/s. In current clamp mode,
most neurons are silent, and show transitions between rest and repetitive spiking at a rheobase current
of approximately 90 pA, with initial firing rates between 50 and 60 Hz and a delay to first spike in the
transition that decreases as the stimulus amplitude increases (Fig.A1, parameters in Table A2).

To include these properties into the model, the membrane capacitance was specified first, then the
maximum ∂tv was adjusted by fitting the parameter aNaT, and then the contributions for the K+ channels
and the Na-K ATPase are set to obtain spiking and fit the rheobase.

The model in equations (A1)-(A4) reproduces dynamics observable in fast spiking neurons in CA1
(Erisir et al., 1999) or in the striatum (Orduz et al., 2013; Tepper et al., 2010).

Table A2: Parameters for the fast spiking interneuron model.
Parameter Value Units Description

Current amplitudes and capacitance for the neuronal membrane model
Cm 30 pF Membrane capacitance
āNaK 67 pA Maximum amplitude for the Na+-K+ ATPase current
āK 4400 pA Maximum amplitude for the delayed-rectifier K+ current
āNa 1400 pA Maximum amplitude for the transient Na+ current
vATP -430 mV Potential ATP hydrolysis
vNaK = 3vNa − 2vK + vATP -72 mV Reversal potential for the for Na+-K+ ATPase current
vK -89 mV Nernst potential for K+

vNa 60 mV Nernst potential for Na+

vmT -17 mV Half-activation potential for the transient Na+-current
vw -5 mV Half-activation potential for the transient K+-current
gmT 5 – Activation slope factor for the transient Na+-current
gw 4 – Activation slope factor for the K+-current
rw 2 s−1 Activation rate for the neuronal K+-current
bw 0.3 – Activation slope factor for the K+-current
bNaK 0.5 – Non-rectification for the Na+-K+-current
bK 0.5 – Non-rectification for the transient K+-current
bNa 0.5 – Non-rectification for the transient Na+-current
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