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Pharmacophagy in green lacewings (Neuroptera: Chrysopidae:
Chrysopa spp.)?

Jeffrey R Aldrich, Kamal Chauhan, Qing-He Zhang

Green lacewings (Neuroptera: Chrysopidae) are voracious predators of aphids and other
small, soft-bodied insects and mites. Earlier, we identified the first lacewing pheromone
from field-collected males of the goldeneyed lacewing, Chrysopa oculata Say;
(1R,25,5R,8R)-iridodial is released from thousands of microscopic dermal glands on the
abdominal sternum of males, along with comparable amounts of nonanal, nonanol and
nonanoic acid. Iridodial-baited traps attract C. oculata and other Chrysopa spp. males into
traps, while females come to the vicinity of, but do not usually enter baited traps. Despite
their healthy appearance, normal fertility and usual amounts of C, compounds, laboratory-
reared C. oculata males do not produce iridodial. However, we observed that goldeneyed
lacewing males caught alive in iridodial-baited traps sometimes try to eat the lure, and in
Asia Chrysopa spp. males reportedly eat the native plant, Actinidia polygama (Siebold &
Zucc.) Maxim. (Actinidiaceae) to obtain the iridoid, neomatatabiol. These observations
prompted us to investigate why laboratory-reared Chrysopa green lacewings do not
produce iridodial. Lacewing adult males fed various monoterpenes reduced carbonyls to
alcohols and saturated double bonds, but did not convert these compounds to iridodial.
Males fed the bicyclic iridoid aphid pheromone component, (4aS,7S,7aR)-nepetalactone,
converted ~75% to dihydronepetalactone, but did not produce iridodial; however, wild C.
oculata males collected in May often contained traces of dihydronepetalactone. On the
other hand, adult males fed the second common aphid pheromone component,
(1R,4aS,7S,7aR)-nepetalactol, converted this compound to iridodial. In California the peak
late-season attraction of green lacewings to nepetalactol (the lactone is unattractive)
occurs at least a month earlier than the peak in aphid oviparae (the pheromone producing
morph of aphids), consistent with the hypothesis that Chrysopa males feed on oviparae to
obtain nepetalactol as a precursor to iridodial. Adult males from laboratory-reared C.
oculata larvae fed nepetalactol failed to produce iridodial, and wild C. oculata males
collected early in the spring produce less iridodial than males collected later in the season.
Therefore, we further hypothesize that Asian Chrysopa eat A. polygama to obtain iridoid
precursors in order to make their pheromone, and that other iridoid-producing plants
elsewhere in the world must be similarly usurped by male Chrysopa species to sequester
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pheromone precursors. Whether or not sequestration of iridodial precursors from oviparae
and/or iridoid-containing plants is truly the explanation for lack of pheromone in
laboratory-reared Chrysopa awaits further research .
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ABSTRACT

Green lacewings (Neuroptera: Chrysopidae) are voracious predators of aphids and other
small, soft-bodied insects and mites. Earlier, we identified the first lacewing pheromone
from field-collected males of the goldeneyed lacewing, Chrysopa oculata Says;

(1R ,28,5R 8R)-iridodial is released from thousands of microscopic dermal glands on the
abdominal sternum of males, along with comparable amounts of nonanal, nonanol and
nonanoic acid. Iridodial-baited traps attract C. oculata and other Chrysopa spp. males
into traps, while females come to the vicinity of, but do not usually enter baited traps.
Despite their healthy appearance, normal fertility and usual amounts of C, compounds,
laboratory-reared C. oculata males do not produce iridodial. However, we observed that
goldeneyed lacewing males caught alive in iridodial-baited traps sometimes try to eat the
lure, and in Asia Chrysopa spp. males reportedly eat the native plant, Actinidia polygama
(Siebold & Zucc.) Maxim. (Actinidiaceae) to obtain the iridoid, neomatatabiol. These
observations prompted us to investigate why laboratory-reared Chrysopa green lacewings
do not produce iridodial. Lacewing adult males fed various monoterpenes reduced
carbonyls to alcohols and saturated double bonds, but did not convert these compounds to
iridodial. Males fed the bicyclic iridoid aphid pheromone component, (4aS,7S,7aR)-
nepetalactone, converted ~75% to dihydronepetalactone, but did not produce iridodial;
however, wild C. oculata males collected in May often contained traces of
dihydronepetalactone. On the other hand, adult males fed the second common aphid
pheromone component, (1R ,4aS,7S,7aR)-nepetalactol, converted this compound to
iridodial. In California the peak late-season attraction of green lacewings to nepetalactol

(the lactone is unattractive) occurs at least a month earlier than the peak in aphid oviparae
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(the pheromone producing morph of aphids), consistent with the hypothesis that
Chrysopa males feed on oviparae to obtain nepetalactol as a precursor to iridodial. Adult
males from laboratory-reared C. oculata larvae fed nepetalactol failed to produce
iridodial, and wild C. oculata males collected early in the spring produce less iridodial
than males collected later in the season. Therefore, we further hypothesize that Asian
Chrysopa eat A. polygama to obtain iridoid precursors in order to make their pheromone,
and that other iridoid-producing plants elsewhere in the world must be similarly usurped
by male Chrysopa species to sequester pheromone precursors. Whether or not
sequestration of iridodial precursors from oviparae and/or iridoid-containing plants is
truly the explanation for lack of pheromone in laboratory-reared Chrysopa awaits further

research.

INTRODUCTION

With ~ 6000 living species, Neuroptera is one of the smaller orders of insects (Winterton
et al. 2010), but most larval neuropterans are predacious, often in agricultural systems,
lending added importance to this group (Tauber ef al. 2009). Of foremost agricultural
importance are the green lacewings (Chrysopidae), particularly Chrysoperla and
Chrysopa species, whose larvae are voracious predators of aphids and other soft-bodied
insects and mites (McEwen et al. 2007). The meticulous illustrations of male-specific
dermal glands in Chrysopa (Principi 1949) by the grande dame of neuropterists, Maria
Matilde Principi (Pantaleoni 2015), inspired our identification of the first pheromone for
green lacewings (Zhang et al. 2004).

Field-collected male goldeneyed lacewings, Chrysopa oculata Say, release
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(1R ,28,5R 8R)-iridodial with comparable amounts of nonanal, nonanol and nonanoic acid
(Zhang et al. 2004); iridodial-baited traps attracted C. oculata males into traps and
females to the vicinity of baited traps (Chauhan et al. 2007). Subsequently, we found that
the same iridodial stereoisomer similarly attracted adults of C. nigricornis Burmeister in
the western U.S. (Zhang et al. 2006a), and C. septempunctata Wesmael in China (Zhang
et al. 2006b). However, our efforts to pursue pheromone research of exotic chrysopids
was thwarted by the discovery by one of us (JRA) that, despite their healthy appearance,
normal fertility and usual amounts of C, compounds, laboratory-reared C. oculata males
produced no iridodial (unpublished data). Furthermore, an observation by another of us
(Q-HZ) that C. nigricornis males caught alive in traps baited with iridodial tried to eat the
lure (unpublished observation), combined with previous reports of Chrysopa
septempunctata eating the iridoid-containing plant known as silver leaf, Actinidia
polygama (Siebold & Zucc.) Maxim (Actinidiaceae; native to Asia) (Hyeon et al. 1968)
(Supplemental Figure 1, compounds S and 6), prompted us to pursue the feeding studies

reported herein in an effort to explain this phenomenon.

MATERIALS AND METHODS

Chemical standards

(Z,E)-nepetalactone [= (4aS,7S,7aR)-nepetalactone] was prepared from catnip oil,
dihydronepetalactone was from hydrogenation of the lactone, (Z,E)-nepetalactol [=

(1R A4aS,7S,7aR)-nepetalactol] was from reduction of the lactone, and 1R,2S,5R.8R-
iridodial was derived from the (Z,E)-nepetalactone as previously described (Chauhan et

al., 2004). The standard of 8-hydroxygeraniol was a gift from Dr. Wilhelm Boland
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93  (Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena,
94  Germany). Geranyl and farnesyl pyrophosphates were from Sigma-Aldrich (Saint Louis,
95  MO) as were the following volatile standards (> 95%) geraniol, citronellol, citronellal,

96  linalool, citral, 6-methyl-5-hepten-2-one, 8-hydroxycitronellol, and 8-hydroxycitronellal.

97

98 Lacewing collection and rearing

99  Adults of C. oculata for the laboratory colony were collected in May of 2008 by sweep
100  net from wild herbaceous vegetation bordering deciduous trees at the Beltsville
101  Agricultural Research Center (BARC), Prince George’s County, Maryland, USA. Quart
102  wide-mouth Mason® canning jars (Mason Highland Brands, LLC, Hyrum, UT) were used
103  to maintain the adult insects. The jars were positioned horizontally, and nylon organdy
104  cloth (G Street Fabrics, Rockville, MD) held in place by the screw-top rim used to seal
105  the jars. Jars were provisioned with live parthenogenic pea aphids [Homoptera: Aphidae:
106  Acyrthosiphon pisum (Harris)] (supplied by Dr. John Reese, Kansas State University),
107  eggs of the Angoumois grain moth (Gelechiidae: Sitotroga cerealella (Oliver); Kunafin
108  “the Insectary”, Quemado, TX), and a 10% honey solution. A 5 x 12 cm piece of
109  cardboard was used as a feeding platform. Honey solution was provided in a shell vial
110  with a loose-fitting sponge stopper (4 ml, 15 x 45 mm; Fisher Scientific, Pittsburgh, PA)
111  secured at one end of the cardboard with a rubber band. An adhesive strip of a Post-it®
112 paper (50 x 40 mm; 3M, St. Paul, MN) was gently applied to the Sitotroga eggs, and the
113 paper was glued (UHUstic®, UHU GmbH & Co., Biihl, Germany) to the other end of the
114  cardboard with the band of moth eggs exposed. The cardboard feeding platform thus

115  prepared was inserted in the bottom of the horizontal jar, and live pea aphid clones (up to
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116  several hundred) were added to the cage. Ten to twenty adults could be kept per jar,

117  adding fresh aphids and moth eggs every other day or so, and adding fresh honey solution
118  as needed. In jars used as mating cages (5-10 pairs/jar), a piece of light blue colored

119  paper (providing a color contrast to the green eggs that are laid singly on stalks) was

120  inserted inside the length of the jar as an oviposition substrate. Servicing of these jars was
121  accomplished by working in a cage (30 x 30 x 60 cm; BioQuip Products, Rancho

122  Dominguez, CA, USA) open at one end, and illuminated at the top of the other end by a
123  fluorescent light. Adults from mating jars were moved to new jars weekly, the food

124  platform was removed from the jar with freshly laid lacewing eggs, and the eggs that had
125  been laid were allowed to hatch. Using a camel hair brush, two first-instar larvae were
126  transferred to each plastic cup (3/4 oz., snap-on lids; Solo Cup Company, Urbana, IL)
127  with a layer of Sitotroga eggs in the bottom. Cups provisioned with only Sitotroga eggs
128  were usually sufficient for both larvae to complete all 3 instars and pupate; more than two
129  larvae per cup usually resulted in cannibalism. Lacewing pupae were transferred to the
130  bottom compartment of mosquito breeders (BioQuip Products) and, upon emergence, the
131  adults were removed from the top compartment. The colony was maintained in an

132  environmental chamber set at 25 °C, 72% relative humidity, and 16:8 h (L:D)

133  photoperiod.

134 In addition to chemical feeding trials, some C. oculata males were reared as

135  above with access to foliage of Nepeta cataria (Catnip) (Mountain Valley Seed Inc., Salt
136  Lake City, UT; lot #G2217); some were antennectomized 1-5 days after emergence; and
137  some larvae were reared as above, plus fed pea aphid clones. Lacewings are unusual

138  among insects in that adults have chewing mouthparts whereas larvae have
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piercing/sucking mouthparts (Tauber et al. 2009); therefore, some larvae were reared
with methylene blue dye in a preliminary experiment to verify that larvae ingested
materials from the honey water bottles, as did adults. Adult males from these treatments

were subsequently chemically sampled and analyzed as described below.

Scanning election microscopy

Live wild C. oculata males were anesthetized with CO,, mounted on copper specimen
holders (16 x 29 x 1.5 mm thick) with cryoadhesive, and immersed in liquid N,. The
frozen specimens were transferred to an Oxford CT1500 HF cryo-preparation system,
and examined using a low temperature scanning electron microscope (LTSEM; Hitachi
S-4100) operated at 2.0 kV (Erbe et al. 2003). Micrographs were recorded on Polaroid

Type 55 P/N film.

Chemical feeding, extraction of dermal glands, and chemical analysis

Each of the chemical standards listed above were individually fed to adult laboratory-
reared C. oculata males at 1 pg/ul in the 5% aqueous honey solution for ca. 4 days prior
to analysis. Abdominal cuticle extracts (segments 3—8) for chemical analyses of C.
oculata male-produced volatiles were prepared the same day as analysis as previously
described (Zhang et al. 2004). Wild males collected by sweep net, Beltsville MD, USA,
14 May — 1 June, 2009, were dissected in like manner the same day as collected.

Gas chromatography (GC) and coinjections were performed in splitless mode
using an HP 6890 GC equipped with a DB-5 column (0.25 pum film thickness, 30 m x

0.32 mm ID; J & W Scientific, Folsom, CA). Helium was used as the carrier gas,
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programming from 50°C/2 min, to 250°C at 10°C/min, then held for 10 min. GC-mass
spectrometry (GC-MS) analyses were performed with an Electron impact ionization (EI)
mass spectra were obtained at 70 eV with an Agilent Technologies 5973 mass selective
detector interfaced with 6890N GC system equipped with either an HP-5MS (30 mx0.25
mm 1.d.x0.25 pum film) column programmed from 50°C/2 min, rising to 230-C at
15°C/min, then held for 15 min, or using a DB-WaxETR column (0.25 pm film
thickness, 30 m x 0.25 mm ID; J &W Scientific, Folsom, CA) programmed at 50°C/2

min, rising to 230°C at 15°C/min, then held for 15 min.

RESULTS

In C. oculata adult males the dermal glands (Giisten 1996) are elliptical (~12 x 7.5 pum)
with a central slit (Fig. 1), and occur on the 3rd—8th abdominal sternites (~800, 2100,
2500, 2500, 2300 and 1500, respectively); corresponding dermal glands are absent in
females (Zhang et al. 2004). Similarly appearing male-specific dermal glands occur on
both abdominal tergites and sternites in C. septempunctata (Principi 1949), whose males
were abundantly captured in iridodial-baited traps in China (Fig. 2) (Zhang et al. 2006b).
Analyses of C. oculata revealed that nonanal and nonanol were abundant in
extracts of the abdominal sternites of males regardless of whether they were collected in
the wild or reared in the laboratory; however, iridodial was absent in extracts of
laboratory-reared C. oculata males (Fig. 3A and B; Table 1). Conspecific females did
not produce detectable amounts of the C, compounds or iridodial (data not shown).
Access of C. oculata males to catnip foliage did not stimulate production of iridodial, nor

did feeding geranyl or farnesyl pyrophosphates. Removing the antennae of C. oculata
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185  males had no effect on production of iridodial, and rearing C. oculata males in isolation
186  from conspecific males did not result in production of iridodial (data not shown).

187  Providing pea aphid clones to larvae during rearing yielded at most only traces of

188 iridodial in the ensuing adult males, although the methylene blue uptake by larvae

189  verified uptake from the honey water solution. In wild males collected by sweep netting
190 foliage in early spring (i.e. not from iridodial-baited traps) the mean iridodial percentage
191 relative to the abundances of nonanal and nonanol was 14.30 % (+SEM = 3.72) (Table
192  1). Analysis of one male caught in one iridodial-baited trap (14 May 2008, Beltsville,
193  MD) to which the captured males had access to the lure, showed that this male produced
194  more iridodial than the normal mean abundance for nonanol in wild-caught males (64 .42
195  +4.73; Table 1).

196 Feeding naturally common monoterpene alcohols and aldehydes to C. oculata
197  males did not stimulate production of iridodial (Table 2, experiment numbers 1-8).

198 However, this series of feeding trials did reveal that males evidently possess reductase
199  and saturase enzymes capable reducing aldehydes to alcohols, and of saturating double
200  bonds in these molecules. These reactions appeared to be unidirectional; for example,
201  geranial was completely converted to geraniol (Table 2, experiment number 4), whereas
202  geraniol was slightly isomerized to nerol but aldehydes were not produced (Table 2,

203  experiment number 6). Furthermore, the abundances of C, compounds were not affected;
204  nonanal, nonanol and nonanoic acid occurred in ratios within their ranges for wild-caught
205  males for all experiments shown in Table 2. Feeding 8-hydroxygeraniol did not stimulate
206  production of iridodial, nor did feeding geranyl or farnesyl pyrophosphates (data not

207  shown).
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Feeding male goldeneyed lacewings the common aphid pheromone components,
(4aS8,7S,7aR)-nepetalactone and (1R 4aS,7S,7aR)-nepetalactol, produced more positive
results. While feeding nepetalactone did not result in production of iridodial, about 75%
of this lactone was converted to the dihydronepetalactone (Table 2, experiment number
9). Interestingly, dihydronepetalactone was detected at low, but unequivocal levels in
some samples from wild C. oculata males (Supplemental Figures 2 and 3). Chrysopa
oculata males fed (1R 4aS,7S,7aR)-nepetalactol converted this compound to
(1R ,25,5R 8R)-iridodial (82.7%; Table 2, experiment number 10; Fig. 3C), with two later
eluting 168 MW compounds accounting for 17.3% of the other newly appearing
components, as well as (Z)-4-tridecene from the defensive prothoracic glands (Fig. 3C,
compound c¢) (Aldrich et al. 2009). Two additional feeding experiments were conducted
as for experiment 10 (Table 2) except the GC-MS analysis used a 30m HP-5 column; one
of these experiments (N = 4 males) resulted in 100% conversion to (1R,25,5R.8R)-
iridodial, while the second (N = 9 males) showed 54.90% conversion to (1R,25,5R,8R)-
iridodial with two later eluting 168 MW components (14.70% and 30.40%, respectively).
The mass spectra of the 168 MW compounds from experiment 10 (Table 2; Fig. 3C) did
not match the spectra of the later eluting 168 MW compounds seen in the latter

experiment using 9 males analyzed using the HP-5 column.

DISCUSSION

Coincidence of male-specific dermal glands with extraction of (1R,2S5,5R 8R)-iridodial

from the 3"-8" abdominal sternites strongly implicates these glands as the pheromone
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231  source (Zhang et al. 2004). Surprisingly, only males are caught in traps baited with this
232  iridodial (Zhang et al. 2004; Zhang et al. 2006a; Zhang et al. 2006b); however, females
233  are drawn to the vicinity of, but seldom enter, iridodial-baited traps (Chauhan et al.

234 2007), presumably because the close-range substrate-borne vibrational signals to which
235  females are ultimately attracted are disrupted by trapping males (Henry 1982). The C,
236  compounds are unattractive to C. oculata, quantitatively much less variable than

237  iridodial, and inhibitory to iridodial attraction, suggesting these compounds play a role
238  independent from that of iridodial (Zhang et al. 2004).

239 Previous laboratory rearing studies with Chrysopa oculata showed that males
240  produced fertile matings when fed only sugar and water, whereas females needed to feed
241  on pea aphid clones in order to mate and produce fertile eggs (Tauber and Tauber 1973).
242 Our results support these finding, but also make it clear that C. oculata males are unable
243  to make pheromone on this feeding regimen. Iridodial production in C. oculata males
244  was not stimulated by 1) antennectomy of sexually mature C. oculata males, which in
245  some group-reared insects stimulates pheromone production (e.g. Dickens et al. 2002); 2)
246  providing access to catnip plants, Nepeta cataria, containing the nepetalactone aphid
247  pheromone component (Pickett ef al. 2013); or 3) rearing C. oculata males in isolation,
248  which in some insects is required for maximal pheromone production (Ho et al. 2005;
249  Khrimian ef al. 2014).

250 Feeding monoterpene alcohols and aldehydes to C. oculata males did not

251  stimulate production of iridodial either, but this series of feeding trials revealed that

252  males are capable of reducing aldehydes to alcohols and of saturating double bonds.

253  Feeding 8-hydroxygeraniol, which is a precursor to biosynthesis of iridodials in some
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254  insects (Hilgraf et al. 2012), did not stimulate production of iridodial, nor did feeding 8-
255  hydroxycitronellol. On the other hand, males fed the common aphid pheromone

256  component, (4aS,7S,7aR)-nepetalactone, converted ~75% to dihydronepetalactone, and
257  males fed the other common aphid pheromone component, (1R ,4aS,7S,7aR)-nepetalactol,
258  converted this bicyclic iridoid to (1R ,2S,5R ,8R)-iridodial. Interestingly, analyses of wild
259  C.oculata males collected in May often revealed the presence of dihydronepetalactone.
260 One interpretation of these data is that C. oculata males must eat aphid oviparae
261  to obtain nepetalactol in order to make their pheromone. Indeed, in northern California
262  the peak late-season attraction of green lacewings to nepetalactol (nepetalactone is

263  unattractive) occurs at least a month earlier than the peak in aphid oviparae (Symmes
264  2012), consistent with the hypothesis that Chrysopa males feed on oviparae to obtain
265  nepetalactol as a precursor for iridodial. These dynamics indicate there is sufficient time
266  for Chrysopa males to feed on oviparae, produce iridodial, mate, and have conspecific
267  females’ offspring reach the prepupal overwintering stage (Uddin et al. 2005). However,
268  adult males from laboratory-reared C. oculata larvae fed nepetalactol still failed to

269  produce wild-type levels of iridodial even though wild C. oculata males collected early in
270  the spring produce less iridodial than do males collected later in the season (Zhang et al.
271  2004). Although some aphids produce oviparae under stressed conditions in summer
272  (Hardie 1985), it seems unlikely that these oviparae are a reliable or abundant enough
273  source to sustain Chrysopa male pheromone production. Therefore, we further

274  hypothesize the raison d'étre that Asian Chrysopa eat fruit and foliage of silver leaf (A.
275  polygama) is to obtain iridoid precursors necessary to make their pheromone; other

276  iridoid-producing plants (e.g. Hilgraf et al. 2012; Prota et al. 2014) elsewhere in the
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277  world must be similarly usurped by male Chrysopa species to sequester iridoid

278  pheromone precursors.

279 Thus, Chrysopa spp. lacewings, whose adults are predacious distinguishing them
280  from closely aligned green lacewings in the genus Chrysoperla whose adults are not

281  predacious (Tauber et al. 2009), appear to exhibit pharmacophagy: that is, they “search
282  for certain secondary plant substances directly, take them up, and utilize them for specific
283  purpose other than primary metabolism” (Boppre 1984). A prime example of

284  pharmacophagy are male Bactrocera fruit flies (Tephritidae) that feed on plants to obtain
285  their pheromone precursor, methyl eugenol (Tan and Nishida 2012). Indeed, males of
286  certain lacewings [i.e. Ankylopteryx exquisite (Nakahara) (Pai et al. 2004), and Mallada
287  basalis (Walker) (Oswald 2015; Suda and Cunningham 1970)] are also powerfully

288  attracted to methyl eugenol for unknown reasons (Tan and Nishida 2012). In addition,
289  certain chrysomelid beetle larvae discharge iridoid allomones that may be synthesized de
290 novo, which is considered ancestral, or produced via the more evolutionarily advanced
291  mechanism, sequestration from plants (Kunert et al. 2008). Increasingly, pharmacophagy
292  1is being recognized as a widespread phenomenon in insects, and Wyatt (2014) has

293  extended the concept of pharmacophagy to include molecules produced by bacteria that
294  are used as pheromones, such as locust phase-change pheromones produced by gut

295  bacteria. If male Chrysopa spp. lacewings actually do seek out aphid oviparae to obtain
296  nepetalactol as a precursor to iridodial, and in this regard it should be noted that only
297  Chrysopa males are attracted to nepetalactol (Koczor et al. 2015), then the concept of
298  pharmacophagy must be further extended to include this type of predator/prey interaction.

299  Whether or not sequestration of iridodial precursors from oviparae and/or iridoid-
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containing plants is truly the explanation for lack of pheromone in laboratory-reared

Chrysopa awaits further research.

CONCLUSIONS

Goldeneyed lacewing males, Chrysopa oculata (Neuroptera: Chrysopidae), produce

(1R 28 5R 8R)-iridodial as an aggregation pheromone from specialized dermal glands on
the abdomen; however, seemingly normal laboratory-reared males of C. oculata do not
produce iridodial. Feeding studies with C. oculata showed that males of these predatory
insects fed one of the common aphid sex pheromone components, (1R 4aS,7S,7aR)-
nepetalactol, sequester this compound and convert it to the stereochemically correct
lacewing pheromone isomer of iridodial. These data, combined with literature accounts
of other Chrysopa species from the Oriental region that feed on iridoid-producing plants,
suggest these (and some other) lacewing species must obtain precursors from aphid
oviparae and/or certain plants containing iridoids in order to make pheromone. The
phenomenon, known as pharmacophagy, whereby an insect searches for certain
secondary plant substances and sequesters the chemicals for a specific purpose other than
primary metabolism, is widespread among phytophagous insects but, to our knowledge,
is unknown among lacewings or other predacious insects. Our findings, if verified, have
significant implications for lacewing-based biological control of aphids and other small

arthropod pests.
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Figure 1 Scanning electron micrographs of the male-specific dermal
glands of Chrysopa oculata. Low temperature scan (Erbe et al., 2003) with
insert showing close-up of two dermal glands.
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Figure 2 Male Chrysopa septempunctata captured in pheromone-baited
trap, Shengyang, China (Zhang et al., 2006). Chrysopa females come to the
vicinity of iridodial-baited traps, but are seldom caught (Chauhan et al., 2007).
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Figure 3 Total ion chromatograms of abdominal cuticular extracts of male
Chrysopa oculata; A) field-collected, B) laboratory-reared and, C) laboratory-
reared fed (1R .45 .4aR.,7S,7aR)-dihydronepetalactol (see Table 2). (Column =
30m DB-WAXetr: a = nonanal ; b = nonanol ; ¢ = (Z)-4-tridecene; 1= (1R,2S5,5R,
8R)-iridodial; d & e = 168 MW isomers.)
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Table 1 Volatiles from abdominal cuticle of field-collected and laboratory-
reared Chrysopa oculata males. Wild C. oculata males were collected by

sweep net, Beltsville, Maryland, and C. oculata laboratory-reared males (see text
for details) were sampled for comparisons. Abdominal cuticle (segments 3—-8) for
chemical analyses were prepared as described previously (Zhang et al., 2004).

Compound (%)

Source / Date N* Nonanal | Nonanol | Iridodial® | % Y ¢
Field / 14 May 2009 4 13.06 80.68 2.35 96.09
Field / 18 May 2009 2 15.81 80.16 2.12 98.09
Field / 22 May 2009 1 10.31 4201 38.13 90.45
Field / 28 May 2009 1 30.09 50.06 16.11 96.26
Field / 28 May 2009 1 13.56 67.55 16.19 97.30
Field / 28 May 2009 1 8.84 74 .88 14.06 97.78
Field / 1 June 2009 1 32.24 54.82 9.94 97.00
Field / 1 June 2009 1 13.69 65.20 15.53 94 .42

Mean: | 1395 64.42 14.30 95.92

+SEM: 3.81 4.73 3.72

Lab /27 June 2008° 8 21.28 76.26 0 97.54
Lab / 13 Aug 2008* 5 21.37 69.34 0 90.71
Lab / 24 Nov 2008° 6 11.20 86.12 0 97.32
Lab / 24 Nov 2008° 7 18.60 75.74 0 94 .34
Lab /5 Jan 2009° 5 16.58 79.42 0 96.00

Mean: | 17.81 77.38 0 95.18

| +SEM: | 1.88 1.73

* In samples where N>1, multiple males were pooled and analyzed as a single

sample by GC-MS on a 30 m DB-WaxETR column.

® (1R ,28,5R 8R)-Iridodial (Chauhan et al., 2004).

¢ Percentage of total volatiles; nonanoic acid (poorly resolved
chromatographically) accounted for the majority of non-included volatiles.

¢ Reared singly as adults.

‘Reared in a group as adults.
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Table 2 Compounds produced by laboratory-reared Chrysopa oculata males fed
various exogenous terpenoids. Sampling and rearing methods described in text; 1 ug/ul
test compound in honey water, analyzed by gas chromatography-mass spectrometry using
a 30 m DB-WaxETR column.

Compound Compound(s) produced from treatment (%)
No. | N* fed" a b c d
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* Number of males pooled for analysis.

® Sources of standards listed in text; 1) 3,7-dimethyl-1,6-octadien-3-ol (linalool), 2)
(Z/E)-3,7-dimethyl-2 ,6-octadienal (citral: 43% Z-isomer, neral + 57% E-isomer,
geranial), 3) 6-methyl-5-hepten-2-one, 4) 2,6-dimethyl-5-heptenal (citronellal), 5) 2,6-
dimethyl-5-heptenol (citronellol), 6) (E)-3,7-dimethyl-2 ,6-octadien-1-ol (geraniol), 7)
(E)-3,7-dimethyl-8-hydroxy-6-octen-1-al (8-hydroxycitronellal), 8) (E)-2,6-dimethyloct-
2-ene-1,8-diol (8-hydroxycitronellol), 9) (4a§,7S,7aR)-nepetalactone and, 10)

(1RAS AaR .75, 7aR)-dihydronepetalactol. Purities of all standards (except for iridodial)
were > 95%; synthetic and natural iridodial analyzed by GC existed with two later eluting
168 MW isomers (Fig. 3; compounds d and e), here accounting for 10.2% and 7.1%,
respectively, of the 168 MW compounds.

¢ Abdominal cuticle (segments 3—8) for chemical analyses of C. oculata male-produced
volatiles were prepared as described previously (Zhang et al., 2004). Compounds
produced from fed precursors for which synthetic standards were available were verified
by coinjections: 2¢ & 6a) nerol; 2d, Sb & 6b) geraniol; 4a & Sa) citronellol; 9a)
(4aS,7S,7aR)-nepetalactone; 9b) (4aS,7S,7aR)-dihydronepetalactone and, 10a)

(1R ,28,5R 8R)-iridodial. Other compounds were tentatively identified by near matches to
mass spectra of compounds in the National Institute of Standards and Technology (NIST)
mass spectral library: 1a) 3,7-dimethyl-6-octen-3-ol (1,2-dihydrolinalool); 1b) (Z)-3,7-
dimethyl-2,6-octadien-1-ol; 1c) 2,6-dimethyl-7-octene-2,6-diol; 1d) (E)-2,6-dimethyl-

2,7-octadiene-1,6-diol; 2a & 3a) 6-methyl-5-hepten-2-ol; 2b) 3,7-dimethyl-6-octen-1-ol.
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Compound 7a and 8a yielded a less than a perfect match for 3,7-dimethyl-1,7-octanediol;
based upon previously seen glandular reactions, this compound is likely 2,6-dimethyl-

1,8-octanediol.
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Suppl. Figure 1 Structures of Chrysopa semiochemicals: 1: (1R,2S,5R,8R)-
iridodial, 2:(1R,4S,4aR,7S,7aR)-dihydronepetalactol, 3: (4aS$,7S,7aR)-
nepetalactone, 4: dihydronepetalactone, 5: (1R,4S,4aR,7S,7aR)-
dihydronepetalactol, 6: (1R,4R,4aR,7S,7aR)-dihydronepetalactol
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Suppl. Figure 2 GC and MS data of abdominal cuticular extracts from Chrysopa
Oculata males a) & b) collected 28 May, 2009, sweeping vetch, Beltsville, MD.
(4 = dihydronepetalactone (column = 30m HP-5; conditions described in text)
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Suppl. Figure 3 GC-MS data for dihydronepetalactone (4), 2 July 2014.
Analyzed on an HP 6890N GC coupled in series with an HP 5973 mass
selective detector using a 30m DB-5 capillary column (250 pum x 0.25 pm film
Thickness; Agilent Technologies, Wilmington, DE, USA), 50 °C for 5 min, to
280 °C at 10 °C/min, hold 3 min.
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