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ABSTRACT

In personalized medicine, one major goal is the identification of yet unknown patient subgroups with
specific gene or protein expression. Different subgroups can indicate different molecular subtypes of
a disease. These subtypes might correlate with disease progression, prognosis or therapy response,
and the subgroup-specific genes or proteins are potential drug targets. Using high-throughput
molecular data, the aim is to characterize the patient subgroup by identifying both the set of samples
that shows a distinct expression pattern as well as the set of features that are affected.
We present the new workflow FSOL for the identification of patient subgroups from two sample
comparisons (e.g. healthy vs. diseased). First, a pre-filtering based on the univariate score FisherSum
(FS) is applied to assess subgroup-specific expression of the features. FS outperforms competing
methods in several settings. Second, the selected features are compared regarding the samples
that form the affected subgroup. This step uses the OrderedList (OL) method that was originally
developed for the comparison of result lists from gene expression studies. We compare our workflow
FSOL to a reference workflow based on biclustering using real world and simulated data. On a
leukemia data set, a true biological subgroup can be detected with higher stability by FSOL. On
simulated data, FSOL shows higher sensitivity and accuracy compared to biclustering especially for
small to moderate differences. The exploratory approach FSOL may help in identifying yet unknown
mechanisms in pathologic processes and may assist in the generation of new research hypotheses.
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INTRODUCTION
A common research aim is the identification of novel diagnostic biomarker candidates from a
hypothesis-generating high-throughput omics study, where up to ten thousands of features are
measured simultaneously. Depending on the technique, features in the data set might represent
proteins, DNA copy numbers or mRNA transcripts. Most often, a differential analysis is conducted
on a two-group comparison, say healthy versus diseased, to deduce the most promising candidates.
For example, Student’s t-test or some moderated version of it might be used to compare the gene
expression in healthy and diseased subjects. A feature is considered a promising biomarker candidate,
if a significant shift between the distributions of both groups is detected, preferable with a large shift
and a small overlap of distributions. However, in a large number of applications the prerequisite of
homogeneity in both groups is actually not met. For a number of cancer types, e.g. breast cancer
(Slamon et al., 1987), lung cancer (Tockman et al., 1997), and prostate cancer (Shah et al., 2004),
the observed heterogeneity has been investigated and explained in more detail. It was found that an
important factor is the set of the involved oncogenes, i.e. the genes that promote tumour development
and growth. The knowledge about those tumour subtypes can directly affect diagnosis and prognosis
as well as assist in the development of new personalized therapies.

Besides cancer, there are other diseases that are known to be heterogeneous, e.g. the neurodegen-
erative disorders Parkinson’s disease or Alzheimer’s disease. Despite decades of research, previous
efforts and experiments did not succeed in the detection of a biomarker that is able to distinguish the
group of patients in early stages from healthy controls. New approaches are required to gain insights
into yet unknown subgroups in those diseases to hopefully overcome the period of stagnation.
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Especially in the context of gene expression microarray studies, several methods were proposed
that aim either at the detection of single features with a subgroup indicating expression pattern or at
the direct identification of subgroups of samples in a high-throughput data set along with the affected
features. Recently, we conducted a comprehensive comparison of different univariate measures for
the detection of patient subgroups (Ahrens et al., 2013) comprising real world data and extensive
simulation studies. Among others, outlier sum (Tibshirani and Hastie, 2007), profile analysis using
kurtosis (Teschendorff et al., 2006), and outlier robust t-statistics (Wu, 2007) were included in the
study. The FS method suggested by Ahrens et al. (2013) outperformed existing methods in many
settings.

The manuscript of Ahrens et al. (2013) closes with the recommendation to establish a workflow
that builds upon the univariate feature selection and additionally includes an appropriate method to
combine the selected features and depict the subgroup structure in the data. In the following, we
present such an extension that uses an algorithm for the comparison of ordered lists. The application
of this specific similarity measure applied to a set of features pre-selected based on FS ranking is the
key for the identification of small patient subgroups, even if the difference in expression levels is small.
We compare this new approach FSOL to a popular multivariate approach for this purpose, called
biclustering. Briefly, it is specifically designed to identify subsets of samples that show a similar
expression in a subset of features. Plenty of different biclustering algorithms have been proposed, but
here, we focus on a common choice for gene expression analysis (or the like), which is based on the
Plaid model by Lazzeroni and Owen (2002). For further reading on biclustering, we recommend the
work of Madeira and Oliveira (2004) where different approaches are described and compared. The
authors define different types of biclusters and show which methods are suitable for their detection.

The remainder of this work is organized as follows. First, we explain our new workflow FSOL
that aims at the detection of patient subgroups and affected molecular features in high-throughput
omics data. Second, we outline a reference workflow based on biclustering, that will be compared to
FSOL using real and simulated data. After introducing the real data example, we describe the design
of the simulation study for subgroup detection, list the different parameter settings and explain the
quality criterion we chose to compare both methods. Afterwards, we present and discuss the results
of the real data analysis and of the simulation study before we close with a short outlook.

METHODS
FSOL: Novel workflow for subgroup detection
Briefly, the new workflow FSOL for the detection of patient subgroups (SGs) in high-throughput data
comprises three steps, namely:

1. pre-selection of features according to univariate FS ranking,
2. grouping of features with respect to the indicated subgroup,
3. nomination of samples for potential subgroup.

Each step will be elucidated individually in the following paragraphs and Figure 1 lists the most
important parameters along with the default values that are used in the simulation study.

Step 1. Pre-selection of features according to univariate FS ranking
The idea behind FS is described by means of a comparison of diseased subjects D and control subjects
C. For each feature in the data set, all observations are first centered around the respective median
of C. Then the cutoff value q, which defaults to the 90 percent quantile of the centered values of D
(denoted D′), is determined. FS equals the difference of the summed values in D′ and C′, respectively,
above the cutoff q:

FS = w ∑
d′∈D′,d′>q

d′− ∑
c′∈C′,c′>q

c′,

where d′ and c′ are the centered expression values in C and D. Owing to the centering, the score
captures absolute differences between the highest values and the remaining data irrespective of the
location (expression level). The weight w is used for adjustment in case of unbalanced designs. In
this work, we only present comparisons with equal sample sizes, and w is set to 1. w also works as
a penalty parameter on so-called non-disease-specific (nds) subgroups. Those nds subgroups show
a distinct up-regulation not only in the diseased (or experimental) group, but in the control group.
As they do not assist in the specific characterization of the sample subgroups in one of the groups
(usually the diseased group), the features that indicate nds subgroups are usually not of interest in the
subgroup detection setting. In this work, we use a one-sided version of FS searching for up-regulated
subgroups. For down-regulated subgroups, one may proceed analogously by selecting features with
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Important default parameters for FSOL workflow
1. Pre-selection of features according to univariate FS ranking

univariate ranking FS
number of features for Step 2 T = 50

2. Assessment of similarity structure of features w.r.t. the indicated subgroup
OL weights α = 1.1
number of permutations to estimate pOL nperm = 1000

3. Nomination of samples for potential subgroup
Scoring of feature groups
threshold for pOL tOL = 0.01
splitting in graph elements components
minimum feature group size minG = 1
feature group ranking by median FS
Nomination of samples
mode average
minimum proportion p > 0.5

Figure 1. Details on FSOL including the default values of FSOL used for the presented simulation
studies. See text for description of parameters and possible adaptations.

a subset of expression values that are lower than in the remaining samples. This is easily done by
switching signs of centered data before computing the FS score. A more complex way is to consider
both directions in the same analysis: For each feature, both FS versions (up- and down-regulation)
are computed, and the higher absolute score is assigned to the feature and used for the pre-selection
ranking. In the assessment of similarity of features, one would then use the two-sided version for
OrderedList (see Yang et al. (2008) for details). In that case, two features are considered similar,
if the same set of samples is found in either tail of the two compared lists, e.g. five samples show
highest expression values in feature A and lowest expression values in feature B.

In theory, p-values can be obtained by simulating the distribution of FS under the assumption of
the null hypothesis. However, for FSOL the features with largest FS values are selected for the second
step of the procedure irrespective of their significance. This is motivated by the idea, that the evidence
for a true SG is increased if different features indicate this subgroup, even if the single features are
non-significant. The details on this combination of features are described in the next paragraph.

Step 2. Assessment of similarity structure of features w.r.t. the indicated subgroup
A number of already proposed approaches that are based on univariate feature ranking only presented
the independent interpretation of highly ranked features by means of biological knowledge. Indepen-
dent of the chosen method for the univariate assessment of features, we propose an additional step
where the pre-selected features are grouped according to the sample subgroups that they indicate. This
aims at an increase of evidence for the indicated sample subgroup and its biological relevance:
Assume that a single feature shows a distinct up-regulation of only three samples. The small number
of potential subgroup samples might raise doubt about the biological meaning and one may be more
prone to suspect outlier values due to technical issues. However, if the same subgroup shows an
up-regulation in additional features the risk of a false positive nomination of the subgroup is reduced.
For example, in the analysis of gene expression microarrays, this increase of evidence is especially
true if the features are annotated with different genes, that might be known to be involved in the same
pathway. In case the ’supporting’ feature is a probe set, that is annotated with the same gene, this
might not add to the interpretability of the subgroup by pointing out possibly involved pathways,
but it does help diminish the concerns of solely technical issues in the measurement of the feature.
Furthermore, the grouping of features offers an additional benefit in the context of subgroup detection.
It helps to condense the sample set that is taken into account for the subgroup nomination (see Step 3
below for details) which further increases evidence for the nominated sample SG.

However, we want to point out an important issue with regard to the interpretation of evidence:
While the indication of a sample subgroup by multiple features does increase the evidence for the
subgroup, one should not disregard single features with a distinct subgroup pattern out of hand. A
simple explanation for missing confirmation by additional features might be that these were not
among the top T features, but were assigned to slightly lower ranks. This is relevant if either multiple
SGs are present in the data set or if few SGs affect a large number of features.
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Original application:
gene lists: rank features by p-value

r gene list 1 gene list 2 Or
1 feature A feature Z 0
2 feature E feature A 1
3 feature C feature C 2
4 feature F feature H 2
. . . . . . . . . . . .

→

FSOL: Feature similarity w.r.t. subgroups:
features: rank samples by expression values

r feature 1 feature 2 Or
1 sample a sample z 0
2 sample e sample a 1
3 sample c sample c 2
4 sample f sample h 2
. . . . . . . . . . . .

Table 1. Illustration of the switch in interpretation to utilize OrderedList algorithm for the
assessment of feature similarity with respect to the indicated sample subgroup.

Application of OrderedList to assess similarity of features
For the grouping of features according to the sample subgroup they indicate we make use of an
already existing method that was originally developed in order to compare ordered result lists from
gene expression studies. The algorithm is called OrderedList and is implemented in the eponymous R
package Yang et al. (2008). Assume two lists that result from different experiments. Let both lists
contain the identical set of features but in possibly different orders. This order might be determined
by the rank of a p-value from a differential analysis, for example. Two lists are considered similar
if a similar set of features is among the top ranks of both lists. The first step in the computation of
OrderedList’s similarity score is to determine the number of shared entries among the top r ranks
of both lists, i.e. the size Or of the overlap of top ranks (see Table 1 for short illustration). This
information is summarized in a weighted overlap score

wos = wα ∑r Or, wα = exp(−αr)

assigning larger weights to the tails of the list. The choice of the parameter α directly influences the
number of top ranks considered for the similarity assessment as well as the individual weights of
those ranks. Thus, α should be chosen according to the expected size of the unknown subgroup(s) in
the data. For example, our default value of α = 1.1 corresponds to ranks 1 to 10 being taken into
account. The significance of the observed similarity can be assessed by empirical p-values (pOL) that
are obtained via permutation. To this end, one of the lists is shuffled nperm times and the empirical
distribution of the observed weighted overlap scores is determined. Then, pOL is the proportion of
iterations with a higher observed similarity.

The OL algorithm is directly applicable for the assessment of feature similarity assessment in
FSOL: Two features are regarded similar in our context if a similar set of samples has the highest
expression values in both features. The direct comparison of the interpretation in the original context
and in FSOL is shown in Table 1. The results of Step 2 are gathered in a matrix MOL, where entry
(i, j) is the OrderedList p-value pOL for the comparison of those features with ranks i and j in the FS
ranking. Thus, if T = 50 features have been pre-selected, the similarity structure is summarized in
the matrix MOL of size 50×50.

Step 3. Nomination of samples for potential subgroup
The final step in the FSOL workflow is the actual nomination of samples that belong to the indicated
sample subgroup(s) based on the feature grouping results in MOL. We here present the workflow as it
is used in the simulation study presented later. Options for a more flexible analysis can be found in
the result section on the ALL data.

In order to define feature groups that are ’sufficiently’ similar in terms of the subgroup they
indicate, a threshold tOL = 0.01 is defined. Similarity of features is then binarized in the following
way: Two features are considered similar (with respect to the indicated subgroup) if their pairwise
comparison yields a p-value pOL below tOL. This grouping result is summarized in an adjacency
matrix A, with Ai, j = 1 if the features with FS ranks i and j are regarded similar, and 0 otherwise. The
matrix A enables a graphical representation of the splitting of features in distinct groups (see result
section on ALL for an example, Figure 3, panel B). The connected groups of features are so-called
components, which can be subdivided into maximal cliques, i.e. feature groups where each pair is
considered similar according to tOL. The simulations are based on splitting in components, but for
single data sets, we suggest to compare both splitting approaches. An advantage of maximal cliques
over components is the higher coherence of groups since the similarity measure is not transitive.

Suppose the splitting results in g feature groups G1, . . . ,Gg. The detected feature groups are
ranked by means of the median FS score of the individual features in the respective group to determine
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the one with the highest subgroup evidence. Additional information may be gained if the indicated
subgroups are determined not only for a single feature group but for all g groups, as different groups
might indicate the same sample set.

Let G0 denote the selected feature group of interest. In order to be consistent with the similarity
measure, we take into account the number of top ranks rmax that are considered in the computation
of pOL when nominating the sample subgroup. This parameter should be adjusted with regard to
the overall sample size and the size of the sample subgroup that is considered interesting for further
evaluation. A sample is nominated by a feature group G0 if it is among the top rmax ranks for
a pre-defined number nnom of features in G0 (thus nnom ∈ {1, . . . , |G0|}). We suggest a moderate
nomination criterion with a minimal proportion of p = 0.5, such that the nominated sample is among
the top rmax ranks in more than half of the features in G0 (i.e., nnom = bp · |G0|c+1). Alternatively,
one could choose a liberal criterion using nnom = 1 or the conservative option nnom = |G0|.

Set-up of the comparison of FSOL to a reference workflow
We now provide all means necessary for a comparison of FSOL to the traditional biclustering approach.
First, we give some details on the chosen biclustering algorithm. Then, we introduce a real data set
that is used to demonstrate the usefulness of FSOL. It also helps to illustrate the high variability in
biclustering results, which we consider a major drawback for practical application. As the comparison
based on a single real data set is not very conclusive, we also conducted a simulation study. We
explain its design and list the different parameter settings before we define an appropriate criterion to
assess each methods accuracy in the detection of sample subgroups.

Biclustering using the Plaid model
We give a brief idea of the biclustering algorithm used in this work. We make use of the R package
biclust (Kaiser et al., 2015) that provides an implementation for the Plaid model biclustering as
described in Turner et al. (2005). In the Plaid model, the matrix Y of expression values is considered
a sum of so-called layers, that are basically linear models in the form of

θi jk = µk +αik +β jk

for layer k, where i indicates the feature and j the sample (i.e. row and column of Y , resp.) A greedy
algorithm adds individual layers to the background layer, if a sum of squared residuals are reduced
’sufficiently’. For K layers, the expression value yi j of sample j in feature i is modeled as

yi j = θi j0 +∑
K
k=1 θi jkρikκ jk + εi j,

where ρik and κ jk indicate whether feature i and sample j, respectively, are included in layer k. Each
sample and each feature can be included in different layers, but can also be included in no layer at all.
Each fitted layer corresponds to a so-called bicluster.

Real data example: ALL
To illustrate the application and the benefit of FSOL on a real world data set, it is advisable to choose a
supervised setting, where a truly existing sample subgroup is known. This allows the valid assessment
of the detection accuracy of the applied method. Therefore, we use the ALL data set, which is
provided in the identically-named R package by Li (2009). The data set contains Affymetrix chip data
and corresponding clinical data of 128 patients diagnosed with acute lymphoblastic leukemia (ALL
for short). The given expression matrix contains normalized expression values of 12,625 features.
More details can be found in the ALL manual.

To construct an appropriate data set, the covariates BT and mol.biol were used. The first one
indicates if the patient suffers from a B or T cell leukemia and the latter one specifies the molecular
biology of the tumour. The homogeneous group (’controls C’) comprises only B-cell leukemia with
the same assigned molecular biology (labeled NEG), while the heterogeneous group (’diseased D’)
consists of B-cell patients that mainly express the BCR/ABL fusion gene but also a subgroup of five
patients with a different fusion pattern (E2A/PBX1). This results in the comparison

42 NEG vs. (37 BCR/ABL + 5 E2A/PBX1)

For simplicity, this subset of the ALL data set will be refered to as ALL data throughout this work.
While the true SG is known by ’spiking in’ the third molecular subtype, we do not know the exact set
of features that is affected by this subgroup. Aside from that, we cannot rule out the possibility of
additional patient subgroups, e.g. within the BCR/ABL group. Notably, the plot of the first principal
components does not indicate any sample subgroups (see Figure 2, Panel A).
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parameter description values
nsg sample size of subgroup 5,10
δ shift in mean for SG 1.5,2,3,4,6

Table 2. Overview of simulation parameters for the comparison of FSOL and biclustering. In all
cases, psg = 5 out of p = 1000 features in total are affected by the SG in a group of n = 40.

Design of the simulation study
In addition to the ALL data example that demonstrates how FSOL enables the detection of patient
subgroups, we present a systematic comparison of FSOL with the biclustering approach by means
of a simulation study. In contrast to the real data example, not only all true sample subgroups are
known, but also the exact feature set that they might affect. For each setting, we compare the methods
with respect to their sensitivity to detect the existing subgroup as well as their accuracy in the actual
nomination of the samples for the subgroup.

In each simulation run l, l = 1, . . . ,L = 500, we first draw a data set of size p×2n from N(0,1),
i.i.d. (independent, identically distributed). We choose p = 1000 as the number of features in the
data set and n denotes the sample size per group. The first n columns represent the samples in the
diseased (heterogeneous) group, the remaining n columns the control samples (homogeneous group).
Then, a subgroup of nSG samples is induced, which is reflected in the replacement of a submatrix
of size pSG×nSG that contains random numbers from a shifted distribution N(δ ,1). Thus, the shift
parameter δ controls the extent of up-regulation in the subgroup. Table 2 lists the values of simulation
parameters in the study.

Assessment of detection accuracy using the Jaccard index
To comprehensively assess the performance of a subgroup detection workflow both the true sample
subgroup and the true set of indicating features should be known. This is the case for the simulation
studies, but only to a limited extent in the real data example. An appropriate measure to assess and
compare the performance of different SG detection workflows is given by the Jaccard index J:

J(A,B) = |A∩B| / |A∪B|,

where A and B represent the sets of nominated and true SG samples, respectively. For further analyses,
also the accuracy of both methods with respect to (w.r.t.) the accuracy in detected feature groups
could be compared. However, here we focus on the identification of sample subgroups.

RESULTS AND DISCUSSION
First, we compare the suggested FSOL workflow and the biclustering approach by the example of
the ALL data set described earlier. Starting with FSOL, we explain the default workflow listed in
Figure 1, but also suggest some alternative options that may be helpful in the daily routine. Although
there is a stochastic component involved in FSOL in the simulation of the similarity p-values pOL,
the results of different repetitions are very similar (data not shown here). On the contrary, repeated
application of the biclustering algorithm generates significantly different results. In fact, the variation
between runs is so substantial, that a proper assessment of the biclustering performance is not feasible
for the real data example without additional summary methods. Second, we present the results of the
simulation study where we evaluate the performance of both methods and compare them directly.

Application of FSOL to ALL data
We here present some options for the exploration of individual data sets that are not applicable for
an automated analysis workflow that is required e.g. for the subsequently presented simulations.
However, in practice one might prefer this manner to get a more in depth view on the data.

Figure 2 shows a scatter plot of the first two principle components of the ALL data (panel A).
This illustration is commonly used as a first check for sample subgroups in a data set. Here, neither
the two large groups (tumour types NEG and BCR/ABL) do separate, nor is there any hint for the
smaller spiked-in E2A/PBX1 subgroup, which we aim to identify. In contrast, the visual inspection of
the heatmap of the pre-selected top 50 FS features clearly points out a sample subgroup in the data
(Figure 2, panel B): It contains the 5 true subgroup samples and one additional sample. 6 features
seem to be affected, among them PBX1, which is involved in the defining gene mutation (E2A/PBX1)
of the spiked-in subgroup samples. This shows that already Step 1 of FSOL may help in the detection
of sample subgroups and affected feature sets.
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Figure 2. Illustrations of ALL data set. A: Plot of first 2 principal components (proportion of
variance in parentheses). The true molecular subgroup (E2A/PBX1) is not separated from the other
groups. B: Heatmap based on expression values of top 50 FS features of ALL data, i.e. after Step 1 of
FSOL (hierarchical clustering, Euclidean distance, complete linkage). Columns correspond to
samples and are color-coded according to tumour type (see Panel A for legend). Rows represent
features and are labeled on the right with their FS rank. The most prominent (bright yellow) block is
marked by an oval and contains all samples of the SG of interest as well as the mutation defining
PBX1 gene.

Figure 3 (panel A) demonstrates the additional benefit of the usage of OrderedList to measure
similarity of pre-selected features w.r.t. the sample subgroups they indicate. For the graphical
representation of Step 2 of FSOL we provide two options (see Figure 3): The more flexible way is
to use the heatmap of the (− log10) p-values pOL to identify feature groups. Besides the group that
was already identifiable in Figure 2, there is now a larger number of feature groups recognizable, that
may point to different sample subgroups. For the analysis of a single data set, one would check for
known biological associations between the apparent features in each group of interest at this point.
Note that this procedure based on visual examination does not require a threshold for pOL in order
to characterize two features as similar or not. It is not feasible for an automated analysis like in our
simulation studies, where we set tOL to 0.01. The results of this approach are shown in panel B of
Figure 3.

The last step of the workflow is the identification of the sample set that is nominated as a
subgroup by a given feature group. Here, we have a closer look at one of the maximal cliques we
identified in this graph (again Figure 3, panel B, darker grey shading). As this exemplary group of
four features is a maximal clique, each pair of features has a pOL-value below 0.01. We consider a
sample being nominated for a potential subgroup by this feature set, if it is among the top 10 ranks
of at least 3 of the 4 the features. This is translated into rmax = 10 and p = 0.5 using the notation
introduced above. Application of these criteria yields a nominated subgroup of seven samples which
includes the five samples of the true E2A/PBX1 subgroup and two additional samples. This results in
a Jaccard index of 5/7 = 0.71.

Application of biclustering to ALL data
The inherent optimization of the biclustering algorithm is the reason for a substantial potential of
variability. To quantify this variability and assess the reproducibility of biclustering results, we apply
the algorithm 1000 times to the ALL data and count the number of biclusters found in each run, see
Table 3. Although this number ranges from 0 to 10 (part A of Table 3), results vary less if one focusses
on the first bicluster only (if any are detected). This is shown in parts B and C. In B, numbers of
features and samples from the first bicluster are listed. Part C tabulates in how many of the biclusters
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Figure 3. Options for the visualization of FSOL results. A: Application of traditional clustering
(again, Euclidean distance, complete linkage) to the matrix of − log10 pOL that contains (transformed)
p-values obtained from pairwise feature comparisons using OrderedList. (For computational reasons,
p-values equal to zero are set to the minimum positive p-value, here 0.001.) B: Representation of
FSOL grouping results suitable for automated analysis. Nodes represent features, where node
numbers reflect the feature ranking according to FS. Two nodes are linked by an edge if the observed
similarity w.r.t. the indicated subgroup is high. More precisely, an edge is drawn, if pOL < 0.01. The
light grey shading indicates an exemplary maximal connected component (path exists between each
pair of features), the darker shading highlights a maximal clique (edge between each pair of features).

the individual samples are included. Among the 14 samples involved, there are only two of the
spiked-in subgroup (with sample IDs 2 and 4), but as stated above, we cannot rule out the possibility
of additional true sample subgroups in the data that are detected by the biclustering algorithm.

Simulation study to compare FSOL and biclustering approach
Here, we present the comparison of FSOL and biclustering in detail for one of the parameter settings
defined above, while we briefly summarize the results for the other settings. For similarity to the ALL
example, we focus on the comparison with group size n = 40 and a true sample subgroup of size
nSG = 5, affecting pSG = 5 features.

First, we describe the results obtained by the biclustering approach. Table 4 A gives the numbers
of biclusters identified for different shifts δ . For small to moderate shifts, a strikingly large number of
runs results in no indication for the existing subgroup. This number of negative results decreases only
slowly with larger shifts. For an exploratory approach this lack of sensitivity might not be favorable.
The comparison of the samples involved in the best bicluster with the true sample subgroup shows
that only for large shifts a reasonable number of true subgroup samples is included in this bicluster.
However, for a large shift of δ = 6 the biclustering algorithm returns at least one bicluster in most
runs and the determined sample subgroup includes all five spiked-in samples in 390 of 500 runs.
Considering the corresponding Jaccard indices that are shown in Figure 4, we can state that only
for large shifts, biclustering yields perfect accuracy in a high proportion of runs. For comparison,
Figure 4 also contains the presentation of Jaccard indices for a subgroup of nSG = 10 within a group
of again n = 40. Here, we see that biclustering yields sufficient accuracy for a smaller shift of δ = 4
(instead of 6).

For the description of FSOL results, we first list the numbers of truly detected subgroup samples
before we directly compare the detection accuracy of FSOL to the accuracy of biclustering with
respect to the obtained Jaccard indices. The actual number of feature groups that results from the
grouping in Step 2 is much less informative (for minG = 1) than the number of biclusters, thus the
respective numbers are not tabulated here.

Note, that in contrast to biclustering, FSOL always reports a ’best’ feature group. This fact is only
advantageous if the best feature group indicates the true subgroup in a sufficiently high proportion
of cases. Table 5 shows that FSOL does indeed tend to nominate true subgroup samples in the
best feature group and the number of truly detected samples increases with the shift δ . To further
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A Number of biclusters (BC) found in 1000 repetitions
no. of BC found 0 1 2 3 4 5 6 7 8 9 10
frequency 6 138 161 158 153 127 86 65 46 31 29

B Number of features in best BC Number of samples in best BC
no. of features 85 290 none* no. of samples 7 10 none*
frequency 77 917 6 frequency 917 77 6

C sample ID 2 4 8 10 24 25 26 28 29 30 31 32 33 42 none*
frequency 917 917 77 917 917 77 77 77 994 994 77 994 77 77 6

Table 3. Assessment of bicluster (BC) stability observed in 1000 repetitions on ALL data (complete
feature set). The algorithm was applied to the heterogeneous group where we aim to find a subgroup.
A gives the frequencies of numbers of biclusters found in the different runs. B summarizes the size of
the best bicluster in terms of samples and features, and C tabulates the frequencies of samples to be
found in the best BC. B and C both refer to the respective best bicluster in each run, i.e. the first one
selected by the algorithm. Counts and IDs labeled ’none*’ indicate the runs where no BC was found.

A
# biclusters found

δ 0 1 2 3 4 5 6
1.5 489 11 0 0 0 0 0

2 492 8 0 0 0 0 0
3 479 21 0 0 0 0 0
4 386 102 10 2 0 0 0
6 22 373 75 24 3 2 1

B
# true samples

δ 0 1 2 3 4 5
1.5 5 3 2 1 0 0

2 4 2 1 0 1 0
3 2 2 4 7 3 3
4 2 2 8 19 22 61
6 1 0 11 23 53 390

Table 4. Simulation results for biclustering approach. Table A gives the numbers of identified
biclusters in 500 runs for each of the different shifts δ . For those runs where at least one bicluster
was found, the right table B gives the number of true subgroup samples in the best bicluster.

assess the accuracy in the nominated subgroups, we again refer to Figure 4 where the Jaccard indices
of both methods are compared directly for increasing shifts. According to the simulation results,
FSOL outperforms the biclustering approach considerably in terms of sensitivity and accuracy of the
subgroup detection for small to moderate shifts. Only for very large shifts and for a subgroup of 5
samples in a group of size 40, biclustering shows better accuracy.

# true samples
δ 0 1 2 3 4 5

1.5 155 175 99 35 27 9
2 115 137 81 42 62 63
3 37 47 19 8 65 324
4 13 12 3 2 13 457
6 12 11 4 1 2 470

Table 5. Number of true SG samples among the sample set nominated by the best feature group in
FSOL.

To sum up, the suggested workflow FSOL is more sensitive in the detection of small subgroups
than the biclustering approach. This is especially true if the shift amount is small as well. Only for
certain combinations of large shifts and/or large subgroups the performance of both approaches can
be comparable. An important factor in the explanation of this observation is given in the following:
the biclustering algorithm selects a combined set of features and samples as a bicluster only if the
impact on a global score that is minimized during the computations is ’sufficiently’ large. It is thus
influenced by the size of the submatrix involved (number of features times number of samples in the
bicluster), more precisely by the proportion of the submatrix to the complete data matrix analysed, as
well as by the shift amount. On the other hand, the ability of FSOL to pick up small shifts in smaller
subgroups is easily explained by the combination of the univariate pre-selection based on FS, where
features with the largest subgroup potential (i.e. highest FS score) are chosen for Step 2, even if the
differences are small. The subsequent grouping of those subgroup indicating features according to
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 Jaccard indices in best feature group
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Figure 4. Comparison of FSOL (left boxplots per shift, blue) and biclustering (right boxplots, red)
w.r.t. obtained Jaccard indices in different simulation settings. For 500 runs per setting and shift δ ,
the Jaccard indices of the best feature group of FSOL and of the best bicluster, respectively, are
plotted. In both panels group size n equals 40 and subgroup size nSG is 5 in panel A and 10 in panel
B, respectively. Note, that in many runs there were no biclusters found at all (see also Table 4), which
per definition yields a Jaccard index equal to zero.

the indicated subgroups with a specific similarity measure involves only small variations, yielding
reproducible results. The idea behind FSOL is easily comprehensible and provides an understandable
graphical representation.

OUTLOOK
An important goal for the future is to apply FSOL to additional real data sets e.g. generated from
different omics technologies such as NGS-based DNA-Seq or RNA-Seq data to underpin its benefit
for the detection of unknown patient subgroups in different fields. This may also help to assess
the need for adjustments in the default parameters of FSOL in future applications, e.g. for different
sample sizes. Also the influence of additional filters such as minimal feature group size could be
investigated.

Regarding biclustering, the results obtained with the basic Plaid model are too unstable to be
useful in practice. To overcome this high variability, ensemble clustering methods have been proposed
and implemented (e.g. in the R package superbiclust (Khamiakova, 2014)). Those methods
aim at the condensation of different biclusters that are resulted in repeated runs, but also within an
individual run, as in the Plaid model used here, samples and features can be included in different
biclustern in the same run. In future studies, this extended biclustering approach should be compared
to FSOL to quantify the improvement over biclustering results.
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