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ABSTRACT

Treatment with broadly neutralizing antibodies (bNAbs) has recently proven effective against HIV-1
infections in humanized mice, non-human primates, and humans. For optimal treatment, susceptibility
of the patient’s viral strains to a particular bNAb has to be ensured. Since no computational
approaches are so far available, susceptibility can only be tested in expensive and time-consuming
neutralization experiments. Here, we present well-performing computational models (AUC up to 0.84)
that can predict HIV-1 resistance to bNAbs given the envelope sequence of the virus. Having learnt
important binding sites of the bNAbs from the envelope sequence, the models are also biologically
meaningful and useful for epitope recognition. Additional to the prediction result, we provide a motif
logo that displays the contribution of the pivotal residues of the test sequence to the prediction. As
our prediction models are based on non-linear kernels, we introduce a new visualization technique
to improve the model interpretability. Moreover, we confirmed previous experimental findings that
there is a trend towards antibody resistance for the subtype B population of the virus. While previous
experiments considered rather small and selected cohorts, we were able to show a similar trend for
the global HIV-1 population comprising all major subtypes by predicting the neutralization sensitivity
for around 36,000 HIV-1 sequences - a scale-up which is very difficult to achieve in an experimental
setting.

Keywords:  broadly neutralizing antibody, HIV-1 antibody resistance, support vector machine
visualization

INTRODUCTION

To date, there is neither a vaccine nor a cure available for infection with the human immunodeficiency
virus type 1 (HIV-1). With an incidence rate of around 2 million each year and 1.6 million deaths in
2012 (WHO, 2014), HIV-1 infections continue to be a major global health issue. Since humans seem
not to have natural immune mechanisms to clear the infection, infected individuals need to receive
lifelong antiretroviral treatment (ART). Due to the high mutation rate of the virus, drug resistances
emerge frequently, often requiring a change of drug targets. However, the number of available drug
target classes remains limited; this is why there is still a high demand for drugs addressing new
targets.

A currently investigated treatment option is the passive transfer of a combination of broadly
neutralizing antibodies (bNAbs) to HIV-1 patients. The advantage of these antibodies is that they
are very broad and potent. The potency of an antibody is defined as the antibody concentration
needed to inhibit HIV-1 infectivity by 50% (IC50), while the neutralization breadth of an antibody
is measured by the ability of the antibody to neutralize viruses from different subtypes. Upon the
advent of new single-cell based methods, an abundance of these new bNADbs has been isolated and
their higher neutralization potency and breadth have been shown in several studies (Walker et al.,
2009; Mouquet et al., 2012). The target of these antibodies is the HIV-1 spike, a trimeric heterodimer
of two viral envelope glycoproteins, gp120 and gp41. The successful binding of an antibody to this
spike blocks the two main functions of the spike, namely mediating host cell fusion and viral entry.
As a consequence, the corresponding virus cannot infect any new cell. So far, there are five known
epitopes on the envelope glycoprotein, which are targeted by a variety of bNAbs (given in brackets):
on gp120 the CD4 binding site (e.g., VRCO1, VRC-PG04, 3BNC117, NIH45-46) (Falkowska et al.,
2012; Wu et al., 2010; Scheid et al., 2011), the V1/V2 region (e.g., PG9 and PG16), and the V3
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loop (e.g., PGT128, PGT121, 10-996, 10-1074) (Walker et al., 2011, 2009); the membrane proximal
external region (MPER) on gp41 (e.g., 10E8) (Burton et al., 1994); and a newly identified epitope
comprising parts of gp41 and gp120 (e.g., 35022) (Huang et al., 2014).

Since these specific binding sites of bNAbs on the envelope protein are not accessed by any
available drug, a therapy with bNAbs would offer a new effective treatment option for patients with
resistance to all current therapies or boost therapy combinations with few active drugs. The efficacy
of a treatment with a combination of these broad and potent neutralizing antibodies has been first
shown in HIV-1 infected humanized mice and non-human primates (Klein et al., 2012; Barouch et al.,
2013), followed by a phase 1 clinical trial this year that confirmed the effective suppression of viremia
in HIV-1 infected humans treated with the bNAb 3BNC117 (Caskey et al., 2015). An advantage
in comparison with the daily intake of existing drugs is the longer half-life of bNAbs, which can
control viral load for more than 28 days in humans after administration. As the envelope protein
is the sole target of bNADbs, high sequence variation of the viral envelope sequence together with a
glycan shielding of more conserved regions on the envelope often allow the virus to escape immune
recognition (Taylor et al., 2008). Thus, for treatment success, neutralization resistances of the patient’s
viral strains to the given bNAbs must be detected beforehand. Up to now, the neutralization sensitivity
of a virus to an antibody can only be determined in time-consuming and expensive experiments,
so-called neutralization assays.

In this study, we present prediction models for 11 different bNAbs (VRCO1, VRC-PGO04,
3BNC117, NIH45-46, PG9, PG16, PGT121, PGT128, 10-996, 10-1074, and 35022) that auto-
matically learn discriminant signals (amino acids or patterns of amino acids) in the envelope sequence,
which influence the neutralization sensitivity to the particular antibody. For the learning process, the
models were trained on data sets from three previously published neutralization assays (Doria-Rose
et al., 2009; Mouquet et al., 2012; Huang et al., 2014) that in total contain neutralization sensitivity
information (IC50 values) for 115 to 220 HIV-1 isolates covering all major HIV-1 subtypes. Having
learnt the discriminant signals, the models can predict the neutralization sensitivity of an unseen
viral sequence to the considered bNAbs. To predict resistance to a particular antibody, we used two
different approaches. On the one hand, we built classifiers with support vector machines (SVM) based
on the biological threshold that determines resistance by an IC50 value above 50 ug/mL. On the other
hand, in order to provide more fine-grained information, we directly predicted the IC50 value using
support vector regression. Since prediction models are often seen as black boxes, we traced back
what each classifier learnt from the data and show that many of the learnt discriminant signals are
known to play an important role for the binding success of the antibody. In addition, we introduce
a new visualization technique that displays the interrelations between the train and test data in the
potential high-dimensional feature space. For a better interpretation of the classification decision
(resistant or susceptible), we offer motif logos that illustrate which and up to what extent amino acids
in the tested sequence contributed to the particular classification result. Apart from their ability to
support treatment decisions, we used the prediction models to analyze how neutralization sensitivity
changes in the HIV-1 population over time.

Correlating neutralization sensitivity and the variation in the viral envelope sequence has so far
only be used to identify potential epitope sites of bNAbs (West et al., 2013; Lacerda et al., 2013).
After learning so-called epitope networks of bNAbs, Evans et al. (2014) also predicted neutralization
sensitivity to validate these epitope networks. However, the prediction performance was assessed on
the same data on which the epitope networks were learnt.

MATERIALS AND METHODS

Data

To learn the neutralization susceptibility of HIV-1 strains to broadly neutralizing antibodies (bNADbs),
we trained our prediction models on data from three previously published neutralization assays
(Doria-Rose et al., 2009; Mouquet et al., 2012; Huang et al., 2014). Depending on the neutralization
assay, IC50 titers for 115 to 220 HIV-1 isolates were available for each of the analyzed 11 bNAbs
(VRCO1, VRC-PG04, 3BNC117, NIH45-46, PG9, PG16, PGT121, PGT128, 10-996, 10-1074, and
35022). Since the sole target of antibodies is the envelope glycoprotein of HIV-1, we used for
each considered HIV-1 isolate the corresponding viral envelope sequence from the Los Alamos HIV
sequence database and aligned the sequences using HIVAlign (Foley et al., 2013).

Prediction models
Following neutralization assay protocols, we use an IC50 value above 50 pg/mL as a threshold to

determine neutralization resistance of a virus towards a particular antibody. Applying this threshold,
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we built binary classifiers to distinguish between HIV-1 resistance and susceptibility to a bNADb based
on the envelope sequence of the virus. Since there are differences in potency between the antibodies,
it is also of interest to know how strongly a bNAb neutralizes the virus. For this reason, we also
built regression models that directly predict the IC50 value from the envelope sequence of the virus,
thereby enabling more fine-grained results.

For the learning process we used kernels in conjunction with large-margin based methods: support
vector machines (SVMs) for the classification, and support vector regression for the regression
analysis. The underlying kernel for both tasks should preferably fulfill three properties: to allow
for positional uncertainty to account for the high mutation rate of the virus, to be able to identify
consecutive patterns of amino acids reflecting the shape of some epitopes, and to learn multivariate
signals in order to model the fact that epitopes might consist of residues that are not consecutive in
the sequence. String kernels that capture positional information such as the oligo kernel (Meinicke
et al., 2004) or the weighted degree kernel with shifts (WDKS) (Ritsch et al., 2005), match these
requirements and therefore might lead to better performances than conventional kernels like the
polynomial (Poly) or the Gaussian RBF kernel. To validate this hypothesis, we compared the
performances of models based on each of these kernels. The comparison was conducted by 10 runs
of a 5-fold nested cross-validation using AUC and Pearson Correlation Coefficient as performance
measure for the classification and regression task, respectively. For the polynomial and Gaussian
RBF kernel the amino acid sequences have to be transformed to a real-valued input. We used
one-hot encoding to represent the sequence information for the polynomial kernel, i.e., each amino
acid a;,i € {1,...20} is transformed into a 20-dimensional vector, where only the i-th entry is 1,
and the others are 0. For the Gaussian RBF kernel, we encoded the sequence information using
physico-chemical properties based on Atchley et al. (2005) (RBF1) and Braun and Venkatarajan
(2001) (RBF2).

Understanding the classifier

Visualizing the samples’ interrelations in the reproducing kernel Hilbert space

Since non-linear dependencies in the data can exist, disregarding them by simply using a linear
method might lead to worse performances. Transforming the data from the linear input space in to a
space ¢, in which those dependencies are better represented, can lead to a better separability of the
data. Support vector machines that only need dot products of the samples can take advantage of those
non-linear dependencies using kernels, which correspond to dot products in the space 7. However,
the interpretation of the learnt non-linear models and the predicted results remains a challenge,
which might explain why non-linear SVMs are less often used than advisable despite their good
performances. So far, few methods exist that address this disadvantage of non-linear SVM classifiers
using graphical representation (Caragea et al., 2001; Wang et al., 2006). These methods are usually
neither generally applicable (only for certain kernels or restricting the data to be low-dimensional)
nor simple (requiring additional optimization steps).

In this study, we propose a general method that displays the interrelations between the training
and the test samples in the reproducing kernel Hilbert space (RKHS) without explicitly using the
feature mapping function ®. Euclidean distances between the samples in the RKHS, representing the
interrelations, can be expressed with the help of the kernel function (Shawe-Taylor and Cristianini,
2004)

d(®(x),P(x)) = | P(x) — D(x) ||2 = k(x,x) — 2k(x,x") + k(x',x'). )

To provide a user-friendly representation, we visualize the pairwise feature space distances in a
three dimensional space using multi-dimensional scaling (MDS) (Kruskal and Wish, 1978). Multi-
dimensional scaling preserves the between-samples distances to the magnitudes of the variables’
interrelationships while projecting the data into a D-dimensional space. This way, highly similar
variables are spatially closer. Analyzing the stress for MDS with D in a range from 1 to 10, reveals
that a three-dimensional space is sufficient to represent the data for all bNAbs (data not shown).
Visualizing the feature space distances with MDS offers new information on the interrelations
between the used training data in the RKHS. Furthermore, it can be used to investigate the represen-
tation of the test sample x with respect to the training samples x; with i € {1,...,N} in the feature
space. Upon the MDS step, we include the class label and the contribution of the training points to
the classifier via a color scheme into the MDS visualization (cf. Fig. 2). The two classes were colored
in two different colors (blue and orange) where the color intensity was assigned by o;k(x;,x) with ;
being the weight of sample i in the classifier. Thus, the color intensity of each training point increases
with growing similarity to the test sample as well as with larger influence on the classification result.
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The labels of the close-by neighborhood of the test sample provide the user additional information on
the prediction result.

We present not only a general meaningful graphical representation of the complex feature space,
but also a tool to further investigate and interpret the prediction outcome.

Identifying learnt discriminant signals of the classifiers

In general, the learnt signals of a classifier can be traced back, if the kernel incorporates positional
information such as the weighted degree kernel with shifts (WDKS) (Ritsch et al., 2005) or the oligo
kernel (Meinicke et al., 2004). Both kernels compute the similarity between two sequences x and
x' of same length L by comparing the co-occurrences of their substrings within a certain distance.
While the oligo kernel considers only the substrings of length [ with 1 <[ < L, the WDKS takes
into account the co-occurrences of every substring up to a length /, thereby adjusting for potential
overlapping signals of lower order (< /). For the WDKS, the significance of each oligomer can be
identified using positional oligomer importance matrices (POIMs) (Sonnenburg et al., 2008). Due
to better performances, we used in this study the oligo kernel to build the the prediction models
(cf. Section Results and Discussion). The oligo kernel defines each sequence by the occurrences
of its /-mers, which are encoded via so-called oligo functions. The oligo function u, encoding all
occurrences p € xg of a particular /-mer ® in a sequence x, is defined as

Uo(t) = Z exp (—2;_2 (t—p)2> , )

PEX®

with the continuous position variable ¢ € [1,L] and o2 controlling the positional uncertainty. As
described in Meinicke et al. (2004), the corresponding learnt weight of the classifier for each oligomer
@ at each position 7 can be retrieved by

N

lwe (1) = \Z%’yiﬂé)(tﬂa 3)

i=1

where i € {1,...,N} denotes the i-th training sample with o; > 0 and y; € {—1, 1} being the learnt
weight and classification label of the i-th sample.

Understanding the classification result

Additional knowledge on the classifiers such as the provided interrelationships of the training and
test data in the kernel feature space or the discriminant signals learnt by the classifiers, leads to
interpretable prediction models. The classification decision for each test sample remains however
elusive. In this paper, we offer for each classification of a test sequence, a motif logo - a representation
of the test sequence - that shows those residues in the test sequence that contributed the most to the
classification result.

Using the kernel feature representation of the oligo kernel, we retrieve the contribution for each
residue of the test sequence x* to the classification result. Since the residue at a certain location ¢ of
the test sequence is fixed, there exists only one oligomer @ containing this residue as starting point
whose contribution is calculated as

N .
So() =Y o4yi < iy (1), gy (2) >, ©))
Z

14

with p;, being the oligo function of /-mer @ of the test sequence. For /-mers > 1 the computed
contribution is assigned to all amino acids of the oligomer. Since showing the contribution of each
residue of the test sequence might rather be confusing than improving the interpretability of the
classification result, we limit the motif logos to only represent the most discriminant residues of the
test sequence. This is possible, since we could show that models using only the strongest p% signals
with p € {1,3,5,7,10,15,20,25} do not have a significantly worse performance compared to models
using the full envelope sequence as information (data not shown). To generate the motif logos we
used Weblogo 3.0 (Crooks et al., 2004).

RESULTS AND DISCUSSION

Kernel preselection
To validate the hypothesis that string kernels such as the oligo kernel or the weighted degree kernel

with shifts might be more suitable for this application than commonly used kernels such as the
Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1304v1 | CC-BY 4.0 Open Access | rec: 13 Aug 2015, publ: 13 Aug 2015

4/11



German Conference on Bioinformatics 2015 (GCB’15) R

Gaussian RBF or the polynomial kernel, we compared the corresponding prediction performances
with each other for both, the classification and the regression task. Here, we show the performances
of the classifiers for the bNAbs PG9, PG16, 10-996, 10-1074, PGT121, VRCO1, and VRC-PGO04 as
listed in Table 1.

In general, the classifiers using the string kernels yield not a better performance compared to
the Gaussian RBF or the polynomial kernel. Only for the VRC-PG04 bNAD the classifier using the
oligo kernel performed better than all the other kernels. A reason for this might be the characteristic
binding site of VRC-PG04 on the envelope protein. The binding site of VRC-PGO04 is rather a large
consecutive sequence than single residues as for the others bNAbs. While all kernels are good at
identifying single residues, only the oligo and the weighted degree kernel with shifts are able to
capture substrings of length / (/-mers). In contrast to the oligo kernel, the weighted degree kernel
with shifts counts all co-occurrences of substrings of length </, thereby, adding a lot of noise the
higher the parameter / is set, if only the long k-mers are informative.

Table 1. Tested parameter ranges for each kernel together with the average AUC performance for
each bNAD classifier in the nested cross-validation: For VRC-PGO04 (in bold), the oligo kernel based
classifier performed better than the others.

Antibody
V1/V2 loop V3 loop CD4 binding site
Kernel | PG9 | PG16 | PGT121 | 10-996 | 10-1074 | VRCO1 | VRC-PG04
Poly 0.72 | 0.74 0.81 0.87 0.83 0.73 0.54
RBF1 0.69 | 0.70 0.79 0.85 0.82 0.70 0.52
RBF2 | 0.69 | 0.73 0.77 0.85 0.81 0.68 0.63
WDKS | 0.69 | 0.71 0.78 0.84 0.79 0.78 0.57
Oligo 0.67 | 0.71 0.79 0.84 0.81 0.71 0.69

Parameter settings for the models

Upon kernel comparison, the oligo kernel was selected for all bNAbs to predict the neutralization
susceptibility to each bNAD for unseen viral strains. Table 2 presents the final parameters settings for
the classifiers for the bNAbs PG9, PG16, 10-669, 10-1074, PGT121, VRCOI1, and VRC-PGO04 fitted
by a 5-fold cross-validation (cf. Table 2) and the corresponding performances (cf. Figure 1).

For the PGT121 and VRC-PGO04 classifier an /-mer of length 6 led to the best performance whereas
the [-mer length for the other antibodies was comparatively small (2-mers for VRCOI1 and single
positions for the remaining antibodies). The length differences of the /-mers for different epitope
classes supports the knowledge gained from experimental findings. For the N-glycan dependent
antibodies, a single glycan site is the most important residue for a successful binding. The N332-
linked (V3-loop-directed) antibodies PGT121, 10-1074, and 10-996 need in the first instance an
asparagine at position 332 for successful binding (Julien et al., 2013). The N160-linked antibodies
PG9 and PG16 bind in a hammerhead-like way to the virus, building contacts with two glycans (160
and 156 or 171) (Louder et al., 2011). For the CD4 binding site (CD4bs), which forms a cavity, it is
only known that it is sterically not easy to bind to for antibodies (West et al., 2014) . Longer /-mers
led to the best prediction results for the CD4bs classifiers which is likely due to the fact that the
CD4bs-directed bNADbs target a larger epitope compared to the other bNADbs.

Identified discriminant signals

Using the oligo kernel properties as described in the Methods section, we examined the 15% strongest
learnt signals for each classifier. Among this set of signals, several residues were learnt by the
classifiers that are also supported by literature (Lacerda et al., 2013; West et al., 2012). In Table 3 we
present the confirmed learnt signals of the classifiers for the bNAbs PG9, PG16, 10-669, 10-1074,
PGT121, VRCOI, and VRC-PG04 as an example.

Most of the found discriminant signals for the N-glycan dependent antibodies, that is, for the
V1/V2-loop- and V3-loop-directed antibodies, contain the amino acids asparagine (N), serine (S) and
threonine (T). These amino acids are also part of the pattern N-X-[S or T], which defines potential
N-glycosylation sites (PNGS) (Marshall, 1974). The classifiers for the CD4bs antibodies identified
known required residues for CD4-binding as reported in West et al. (2012). The fact that all classifiers
learnt some known discriminant position, further support the reliability of the prediction models in
addition to the provided prediction performances. Additionally to the already known epitope sites,
we also found other discriminant residues that might be interesting for follow-up structural studies.
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10 i ] Table 2. The selected parameter settings for
_ i - ’ the oligo kernel classifier for each bNAD.
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g o051 PG9 1 1
VIN2Zloop | b 1 0.4
g PGT121 6 1.6
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Figure 1. The AUC performances for the best
parameter setting for each bNADb classifier using
the oligo kernel.

Table 3. Discriminant signals for each bNADb classifier that are supported by literature. Positive
signals are colored in blue, negative in

bNAb Amino Acid: Positions

PG9 N: 160, 301, ;S: 393, 613; D: ; K: 168, 169, 171

PG16 N: 136, 141, 160, 186, , 234,289, 356; S: 393; K: 169,171; D: 167; T: 138
VRCO1 N: 186, 276, 279, 280; G: 459; K: 232

VRC-PGO04 | N: 186, 276,279, 280; G 459; K: 232; R: 456; D: 368

10-996 N: 332, ;S: 334

10-1074 N: 332, ; S:334; T: s

PGTI121 QAHCN: 328-332; R: 332

Application of the visualization methods

To demonstrate the introduced visualization methods, we retrieved several HIV-1 envelope sequences
from the Los Alamos HIV sequence database (Foley et al., 2013) serving as test input for the classifiers.
We present here the test case for the sequence with the GenBank ID HM469973 and the PG9 classifier,
which classified the sequence as susceptible.

Visualizing the samples’ interrelations in the reproducing kernel Hilbert space (RKHS)

In general, the training samples form dense agglomerations (clusters) with respect to existent interre-
lations in the RKHS; exemplary shown for the PG9 classifier and the test sequence HM469973 in
Figure 2 (fitted to 2-dimensional space for better representation). By adding subtype information to
the plot, we observed that the clusters comprise mainly the sequences of the same subtype but not
exclusively (data not shown). This is an expected finding, since the arrangement of the points is only
based on the kernel similarities, which consider the whole sequence and not only the discriminant
positions. Due to the coloring scheme, the most visible close-by point to the test sample (+) is also the
most similar and influencing training sequence in the feature space offering the user more information
about the representation of the training samples in the classifier as well as a better understanding of
the classification result.

Motif logo for the test sequence

To provide the influence of each residue of the test sequence on its classification outcome, we
proceeded as described in the Methods Section. In Figure 3 such a motif logo is presented for the test
sequence HM469973 and the PGO classifier.

It can be observed that the test sequence has an asparagine (N) at position 160, which is known to
be decisive for a successful binding of the PG9 bNADb. In all three logos, this pivotal residue has the
most influence on the classification outcome compared to the other contributions. Considering the
contribution of the 1,3 and 5% learnt discriminant signals to the classification outcome of the test
sequence, it can be seen that more discriminant signals occurred in the test sequence that are linked
with neutralization susceptibility than with neutralization resistance.
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Figure 2. Visualization of the interrelationships
SO between the training and test samples in the PG9
oo ce classifier with the test input sample HM469973
[N projected into two dimensions using MDS. Train-
. ing samples that could be positively neutralized
by PG9 are colored blue, while neutralization re-
sistant training samples are colored . The
% e%al test input sample is displayed as a black cross. The
color intensities of the training points increase with
=R growing similarity to the test sample as well as with
larger importance of the training sample to the clas-
sification outcome. The arrangement of the feature
space distances is based only on the distances of

-1“0 —0‘,5 o“o 0‘,5 1_‘0 the support vectors.

L

160 717 160 171 269 677 717 154 160 171 208 269 373 636 677 717 845

(a)

Figure 3. Motif logo for the test sequence HM469973 using the PG9 classifier. The contribution
of (a) 1%, (b) 3% and (c) 5% of the strongest discriminant signals are considered. The height of the
letters depends on the proportional contribution. Amino acids of the test sequence that influence the
classification outcome towards neutralization susceptibility are displayed in capital letters and blue
color; lowercase letters and color if they contribute to neutralization resistance. For better
interpretability, the corresponding positions of the amino acids in the envelope sequence of the HIV
strain HXB2 are shown on the x-axis.

0.0 0.5
1 1

Coordinate 2
-0.5

-15
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HIV-1 resistance trend analysis

Apart from predicting neutralization sensitivity of unseen viral strains, we used our models to
investigate whether neutralization sensitivity of HIV-1 to bNAbs has changed over time. For subtype
B variants, a continuous trend towards resistance has been already confirmed in certain cohorts
of the French and Dutch HIV-1 population (Bunnik et al., 2008; Bouvin-Pley et al., 2014, 2013).
Since evolving resistance towards antibody neutralization in the HIV-1 species would have major
implications on the antibody selection for current vaccine development, it is important to know
whether such a drift towards resistance also exists in the global HIV-1 population for all subtypes. In
contrast to an experimental setting, where expensive neutralization assays need to be performed for a
large number of viral strains, we can use our learnt prediction models to examine this question.

To model the global HIV-1 population over time, we used all available envelope sequences
from the Los Alamos database (~36,000) comprising viral isolates from all major subtypes over a
time interval from 1981 to 2013. We divided the given time interval into 5 time periods to account
for changes in HIV-1 treatment strategies: 1981-1986 before ART; 1987-1991 ART monotherapy;
1992-1995 ART combination therapy (cART); 1996-1999 cART with protease inhibitors; 2000-2005
cART with Lopinavir/Ritonavir; 2006-2013 cART with Maraviroc/Raltegravir. The neutralization
sensitivity of the samples to the 11 considered bNAbs was determined using our support vector
regression models to predict directly the IC50 value.

Taking all available samples into consideration, we observed a general trend to resistance over time
to all bNAbs except PG9 and PG16, for which the virus seems to become more susceptible (cf. Fig. 4).
Choosing the same time periods as in Bouvin-Pley et al. (2014, 2013) did not change the result. The
existence and significance of a trend was tested using the umbrella test and a Bonferroni correction
threshold of 0.05/22 adjusting for multiple testing. When considering only the subtype B variants, the
predicted IC50 values show a trend towards resistance for every bNAb confirming the results from

Bouvin-Pley et al. (2013). In the non-B subtype samples, a trend towards resistance was observed for
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all bNADbs, but PG9 and PG16 again; for PGT121 and PGT128 the trend was not significant anymore.
By predicting the coreceptor usage for all sequences with geno2pheno[coreceptor] (Lengauer et al.,
2007), we detected an increasing ratio of R5/X4-capable viruses over the time periods. Together with
the known R5-bias of PG9 and PG16 (Pfeifer et al., 2014) (better against RS, worse against X4),
this might lead to the observed trend towards susceptibility. In general, we could confirm that HIV-1
variants of subtype B show a trend towards antibody resistance (Bunnik et al., 2008; Bouvin-Pley
et al., 2014, 2013). By using our prediction models, we extended the analysis to the world wide HIV-1
population considering all major subtypes and thus, validating the hypothesis on a large scale, which
is very difficult to achieve in an experimental setting.

CONCLUSION

In this study, we showed that neutralization sensitivity of new HIV-1 variants to broadly neutralizing
antibodies (bNAbs) is predictable using existing neutralization assays. The performance of the
prediction models for the 11 considered bNAbs motivate their use in the selection of a bNAb
combination therapy as a recommendation tool. The credibility of the models were enhanced by
the finding that the prediction models learnt important binding sites for the bNAbs only based on
the envelope sequence. Hence, additional information such as structural binding site information is
unlikely to boost the performance. We increased the interpretability of the models, by offering the
user more information on the prediction outcome in form of a motif logo where the logo displays the
contribution of the pivotal residues of the test sequence to the prediction. In addition, we introduced
a new general method that enables to visualize the feature space interrelations of the SVM models,
providing thereby more information on the SVM classifiers.

Apart from their potential use as recommendation tool, the models can be used to analyze the
change in the neutralization sensitivity of HIV-1 over time. We could confirm previous results
suggesting a trend towards antibody resistance in the subtype B population (Bunnik et al., 2008;
Bouvin-Pley et al., 2014, 2013). Moreover, we scaled up the analysis to the global HIV-1 population,
showing that there is a general drift towards antibody resistance in the world-wide HIV-1 population.
These findings are relevant for the selection of suitable vaccine candidates; a combination of bNAbs
is however still very potent in neutralizing HIV-1 (Bouvin-Pley et al., 2014).
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