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ABSTRACT

Dysfunctional protein complexes are often associated with diseases. To develop effective treatments
it is essential to understand the composition, formation and functionality of protein complexes. Novel
techniques like complexome profiling give an overview of possible protein-protein interactions in
an entire sample. In this approach intact protein complexes are separated using blue-native elec-
trophoresis. The migration patterns of thousands of proteins are then uncovered using quantitative
mass spectrometry and compared to find co-migrating proteins. Here, we present the concepts of
our visualization approach for large complexome profiling datasets using our software NOVA. In
agreement with recent literature we show that the protein NDUFA4, a previously known subunit of
complex I of the mitochondrial respiratory chain, is instead a subunit of complex IV.
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INTRODUCTION
Proteins are very versatile and carry out a variety of functions. They preserve the structural integrity of
cells, catalyze metabolic reactions, enable motion, transport of all kind of ions and molecules and are
a major part of the organismic defense systems. To facilitate these diverse functions, proteins interact
with each other, forming macromolecular assemblies that contain multiple proteins. These protein
complexes can form highly organized structures, so-called super-complexes. Prominent examples
are the mitochondrial complexes I - V of the oxidative phosphorylation (OXPHOS). Their main
task is to produce ATP, the energy source for most processes in cells. Because of their important
functionality, it is unsurprising that dysfunction of these complexes is associated with diseases. For
instance, defects of OXPHOS complexes I and II are involved in human neurodegenerative diseases
like Parkinson’s (Tretter et al., 2004; Swerdlow et al., 1996) or Huntington’s disease (Benchoua et al.,
2006). To treat these diseases it is crucial to understand the composition, formation and functionality
of protein complexes.
To identify the interaction partners of specific proteins, techniques like immunoprecipitation and
tandem affinity protocols in combination with western blotting and mass spectrometry are commonly
used. These approaches are limited to detect specific interactions. The recently introduced complex-
ome profiling (Heide et al., 2012) has been developed to overcome these limitations. Complexome
profiling uses blue-native electrophoresis to separate complex protein mixtures by size while leaving
protein complexes intact. With quantitative mass spectrometry the migration pattern of each measured
protein in the native gel is uncovered. Proteins with similar migration pattern, so–called migration
profile, are likely to be part of the same protein complex. Typical complexome datasets contain
thousands of such protein migration profiles. These large datasets give two major challenges for the
researchers. Firstly, a suitable visual representation of the data is needed that allows easy comparison
and interpretation. Secondly, an automated method for the comparison of the migration profiles is
required.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1303v1 | CC-BY 4.0 Open Access | rec: 13 Aug 2015, publ: 13 Aug 2015

P
re
P
rin

ts



Cluster analysis and visualization techniques for large datasets in complexome profiling

Since none of the existing software solutions provided the functionality desired by the researchers we
developed a ”tailor-made” user-oriented software which is easy to use and provides an appropriate
visualization and methods to analyze these large datasets. Here, we describe the challenges we
faced and our approach to large data visualization in our software NOVA (Giese et al., 2015). We
demonstrated the usefulness of NOVA for the analysis of complexome data, using a case study, in
which we correctly assign a previously falsely predicted protein to a protein complex.

METHODS
Complexome Profiling
Complexome profiling (Heide et al., 2012) uses blue-native gel electrophoresis (BNE) to separate
complex protein mixtures (see Figure 1 step 1 - 2). BNE separates intact proteins and protein
complexes up to a molecular weight of 10 MDa (Schägger and Jagow, 1991; Wittig et al., 2006).
Larger protein complexes up to 60 MDa (Strecker et al., 2010) can be separated using special large
pore gels (LP-BNE). After the electrophoresis the gel lane is cut into 60 gel slices of equal size (see
Figure 1 step 3). Each slice is then separately analyzed by mass spectroscopy (LC-MS/MS) to identify
the contained peptides. Using the Mascot search engine, the peptides are evaluated to identify the
proteins they most likely originated from. Label-free LC-MS-based protein quantification is applied
to compute the relative amount of each protein over all slices. The semi-quantitative information is
used to create migration profiles for all proteins (see Figure 1 step 4). The migration profile for each
protein is given by 60 values which indicate the amount of protein in the 60 gel slices. For easier
visual inspection the resulting data matrix can be represented as a colored heat map (see Figure 1 step
5), where each row stands for one protein and each column for one slice. The abundance of a protein
is then color-coded. We used black for slices in which no abundance was detected and a gradient
from yellow to red for low to high abundance values, see Figure 1.

Subunits of the same protein complex co-migrated through the gel, and therefore are expected to
show similar migration profiles. To identify the subunits of a protein complex the migration profiles
are compared. A manual processing of all migration profiles, typically, hundreds to thousands, is not
feasible. Statistical analysis techniques like cluster analysis are required to process such datasets.
Using hierarchical clustering, groups of co-migrating proteins can be automatically recognized,
indicating the composition of quaternary structures and functional complexes (Wessels et al., 2009;
Foster et al., 2006; Andersen et al., 2003). Complexome profiling has been successfully applied to
analyze mitochondrial complexes in rats (Heide et al., 2012) and humans (Wessels et al., 2013) as
well as to explore complex formation in plants and bacteria (Takabayashi et al., 2013).

Hierarchical Clustering
The premise of complexome profiling is that co-migrating proteins are likely to have similar migration
profiles. Manual comparison of several thousands of profiles is not efficient. Therefore, we need
automated strategies for this task. Clustering is a useful tool for the comparison of large datasets. We
used agglomerative hierarchical clustering. For a given dataset E containing m migration profiles
e ∈ E we define C = {c1,c2, . . . ,cn} as a partition of E into disjunct subsets, ci ⊆ E, i = 1,2, . . . ,n.
A synonym for each element c ∈ C is cluster and C is called the set of clusters. To calculate the
dissimilarity between clusters a function D is used:

D : C×C→ R+ .

D assigns any two clusters ci,c j ∈C to a positive real number representing the distance between the
clusters. If ci = {ei},c j = {e j} are singleton clusters a distance function d:

d : E×E→ R+

is used to calculate the distance. For singleton clusters, the measure of dissimilarity, D, is defined by:

D(ci,c j) = d(ei,e j) . (1)

For clusters of larger size, i.e., for |ci| > 1 and/or |c j| > 1, we have to choose a so-called linkage
function, l,:

l : C×C→ R+

to compute the measure of dissimilarity, D,:

D(ci,c j) = l(ci,c j) . (2)
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Figure 1. For complexome profiling, a protein mixture is separated by BNE (1-2). The gel lane is
cut into 60 gel slices of equal size (3) and the protein content of each slice is analyzed by mass
spectroscopy (LC-MS/MS). The semi-quantitative information on the abundance of proteins in each
slice is then used to create migration profiles for all proteins (4). The migration profile for each
protein is given by 60 values which indicate the amount of protein in the 60 gel slices. For easier
visual inspection, the data matrices are displayed as a heat map (5). Here, we used black for values of
zero and a gradient from yellow to red for the smallest to the highest values in a profile.

Distance function
To compute a measure of dissimilarity for singleton clusters, we have to choose a suitable distance
function d. An example for a distance function is the Euclidean distance. Another commonly used
distance function is the Pearson distance. It is based on the Pearson correlation coefficient, r, which
calculates the correlation between two vectors. For defined vectors x and y, |x|= |y|= n the Pearson
correlation is defined by:

r =
1
n

n

∑
i=1

(
xi− x

σx

)(
yi− y

σy

)
(3)

with means

x =
1
n

n

∑
i=1

xi, y =
1
n

n

∑
i=1

yi

and standard deviation

σx =

√
1
n

n

∑
i=1

(xi− x)2, σy =

√
1
n

n

∑
i=1

(yi− y)2 .

The Pearson correlation coefficient is in the interval [−1,1]. Using r, we compute the Pearson distance
by the following equation:

dp(x,y) = 1− r . (4)

The resulting distances are in the interval [0,2]. For the vectors x and y, rx,y = −1, the distance is
maximal dp(x,y) = 2.
In a previous study (Giese, 2012) we have evaluated the Euclidean and Pearson distance functions
as well as several other distance functions for the ability to correctly compute the distance between
migration profiles. We have found preferable results by applying Pearson correlation.
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Linkage method
We implemented various linkage functions as, e.g., the single–, complete–, and average–linkage
function. According to our experience the average–linkage in combination with the Pearson distance
performs best on complexome profiling datasets. For a given distance function, d, the average–linkage
function, l, is defined as:

l(ci,c j) =
1

ni n j
∑
p∈ci

∑
q∈c j

d(p,q) . (5)

The numbers of elements in ci ∈ C and c j ∈ C are given by ni = |ci| and n j = |ci|, respectively.
Agglomerative clustering using this average–linkage technique is commonly referred to as UPGMA
(Unweighted Pair Group Method with Arithmetic Mean).

During the clustering process the two clusters with the smallest distance are joined into one cluster
in each step. No further steps are possible after n = |E|−1 steps because all elements, e ∈ E, will be
united in one single cluster. For real–life datasets, the final partition, i.e., all elements in one cluster,
will not be optimal in terms of intra-cluster homogeneity and inter-cluster heterogeneity. Therefore,
many implementations provide a stop condition which determines when an optimal partition is
reached. For our implementation we adopted another approach. NOVA performs the complete
clustering and the user can interactively cut the cluster tree to choose a partition of interest.

RESULTS AND DISCUSSION
In the beginning, we visualized the migration profiles as heat maps, using Microsoft Excel. To
cluster complexome profiling data, experimental scientists applied the software Cluster 3.0 (de Hoon
et al., 2004; Eisen et al., 1998). For the visualization of the cluster tree, the software Java Treeview
(Saldanha, 2004) was used. Though these tools are in general suitable to each of the assigned tasks,
transferring data from one tool to another, was time consuming and a potential source for errors.
We were looking for a single software that combines the needed functionalities. Additionally, the
software should enable the users to quickly create subsets of the data, compare multiple heat maps of
various experimental conditions and allow for an easy visual inspection of migration profiles in e.g. a
line chart. Because of the poor results of our search and the rather specific demands, we decided to
develop our own software NOVA.

NOVA
We designed NOVA to be easy to use especially for scientists with no background in bioinformatics,
mathematics, or computer science. Moreover, NOVA can handle a variety of file formats like xlsx,
xls and csv. The format of most csv files can be recognized automatically. Results can be exported to
files or as images.

Analysis
For the analyses of complexome profiling data, hierarchical clustering was implemented. Although
averag–linkage gives good results, several other linkage methods, including single–, complete–, and
Ward’s–linkage, are provided. A variety of distance functions, including Pearson correlation-based
distance functions can be selected for the clustering procedure. For faster performance, we applied
a fast clustering approach which uses a queue to quickly find the closest clusters for the clustering
implementation. The values of each migration profile can be normalized by a variety of normalization
techniques, e.g. maximum and unit-vector normalization.

Visualization
For the visualization of migration profiles, we decided to use heat maps (see Figure 2 A). Each row of
the heat map displays the profile of an individual protein. Rows and columns can be selected to, e.g.,
create subsets of the data according to the specific application or a specific hypothesis.
It is impossible to display a heat map with thousands of rows and still be able to distinguish each
particular row on a PC monitor. Even if we draw each row with a height as less as one pixel we can
only display a little more than thousand profiles on an average display with a resolution of 1920 x
1080 pixels. Furthermore, showing all the data on the screen, allows the user to see the larger picture,
but, it also makes it difficult to identify subtle differences between profiles. To solve this, we made
the heat map zoomable, allowing the user to see large parts of the data if they zoom out and also to
focus on areas in more detail by zooming in. Once the data is clustered, the rows of the heat map are
rearranged according to the cluster hierarchy. So, migration profiles of higher similarity are directly
adjacent to each other (see Figure 3). Compared to the number of elements in the entire dataset,

4/8

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1303v1 | CC-BY 4.0 Open Access | rec: 13 Aug 2015, publ: 13 Aug 2015

P
re
P
rin

ts



German Conference on Bioinformatics 2015 (GCB’15) GCB 2015

Figure 2. NOVAs graphical user interface (GUI): Displayed in the GUI is a clustered
complexome profiling dataset from rat hearth mitochondria (Heide et al., 2012). (A) Gel migration
profiles are represented as a colored heat map. Each row shows the profile of an individual protein. A
label at the end of each row identifies the protein. The background color of the label indicates a
known membership of the protein to a complex, e.g., yellow and red labels mark subunits of
respiratory complex C I and C III, respectively. A mass scale on the top of the heat map shows the
expected mass of proteins assembled in the gel slices. The migration profiles are clustered, here, the
Pearson correlation-based distance and average–linkage were used. Left, the corresponding cluster
subtree is aligned to the heat map. A cluster of proteins in the cluster tree is highlighted in red,
corresponding to the selected rows of the heat map. (B) A line chart displays the migration profiles of
the selected proteins. Each peak of the consensus profile corresponds to a protein assembly,
functional complex, or super-complex. These assemblies are identifiable by their distinct masses.
Here, the selected proteins are members of the respiratory homodimeric complex III2, the complex
assembly III2IV, and the series of super-complexes S0 – S3. (C) The complete cluster tree is shown in
the tree viewer. It allows to navigate through the heat map and to explore migration profiles of
subgroups of proteins.

clusters of interest usually contain much fewer elements. Thus, the need to see all profiles decreases
when the focus shifts onto particular clusters.

Profiles selected in the heat map can be displayed as a line chart (see Figure 2 B). This view
allows a more detailed comparison of the migration profiles. A required feature for the comparison
in the line chart was the one versus many comparison. While a line chart is particular suitable to
compare a few profiles it can be crowded and confusing if several profiles are compared. The feature
was mostly required to compare a specific profile against the entire ensemble of profiles in a cluster.
Based on that, we integrated the option to assign profiles to a reference profile. The reference profile
is the average of all profiles that are assigned to it. It is always displayed in the line chart even if the
profiles assigned to it are not selected in the heat map. This enables the user to quickly select any
other profile and compare it against the reference profile.

To visualize the assembly of the clusters, the cluster tree is displayed on the left side of the
heat map (see Figure 2 A). Parts of the tree can be selected which in turn selects the associated
profiles in the heat map. The tree can be cut interactively. Additionally, the tree can be explored
in a separate viewer (see Figure 2 C). The viewer provides the same functionality and additionally
supports zooming. This is particular useful for very large trees.

For some experiments multiple complexome profiling datasets need to be compared, for example,
to compare the wild type vs. a knock-out type. To facilitate this, heat maps of multiple complexome
profiling datasets can be displayed side by side with the heat map of the initial dataset, the reference
heat map. The arrangement of the profiles in the other heat maps is synchronized to the reference
heat map.

Case study
To test our implementation, we reprocessed the dataset used by Heide et al. (2012) in their original
publication with NOVA. The dataset was a complexome profiling of rat heart mitochondria and
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Figure 3. On the left side, an unclustered complexome profiling dataset is displayed as a heat map
in the NOVA software. Though many profiles seem to have similar profiles, no clear patterns can be
recognized. On the right side, the same dataset is displayed after hierarchical clustering was applied.
Structures of high similarity are revealed. The cluster tree is displayed on the left side of the heat
map.

contained more than 500 migration profiles. We reduced the dataset to about 80 by selecting only
migration profiles of proteins that are known subunits of the OXPHOS complexes. To easily identify
proteins which are part of a certain complex, we assigned colors to the labels of the proteins. We
assigned yellow for subunits of complex I, orange for complex II, red for complex III, green for
complex IV and purple for complex V (see Figure 4 A). The data was then hierarchically clustered,
using UPGMA and the Pearson correlation distance. The cluster tree is displayed on the left side of
the heat map in Figure 4 A and B. On a first glance, we can see that proteins of the same complex are
nicely grouped together. A closer look at the cluster tree reveals that though the overall arrangement
is good there are some outliers. Here, we will focus on one of them, a protein called NDUFA4. To the
best of our knowledge, the function of NDUFA4 is still unknown. To get an idea of its functionality,
it is important to know which protein complexes contain NDUFA4. Though NDUFA4 is marked as a
subunit of complex I (yellow label), it clearly grouped with complex IV. We took a closer look at the
profile of NDUFA4 in comparison to the profiles of complex I and complex IV. Judging from the
profile comparison, it is evident that NDUFA4 matches the migration profile of complex IV much
better than complex I. This suggested that NDUFA4 might have been falsely classified as a complex I
subunit. The assumption was validated by independent work of Balsa et al. (2012).

Conclusion and outlook
From out test study and extensive feedback from external testers, we concluded that NOVA is a very
useful tool for the evaluation of complexome profiling data. Intermediates of protein complexes can
be measured using complexome profiling. Thus the results of this type of analysis can not only be
applied for the assignment of proteins to a complex, but also give insight into protein assembly.

Researchers have been combining complexome profiling with other techniques. For example
Pulse-SILAC (stable isotope labeling with amino acids in cell culture) with complexome profiling has
been used to study turnover of single proteins within protein complexes. For such new approaches,
suitable visualization and analysis methods need to be developed and integrated into NOVA.
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Figure 4. A: A clustered selection containing only known subunits of OXPHOS complexes of a
complexome profiling dataset from rat heart mitochondria (Heide et al., 2012). The labels of the
proteins are colored according to the complex they belong to. Proteins of complex I are yellow,
complex II orange, complex III red, complex IV green and complex V purple. B: Most of the
complex I subunits are clustered together. NDUFA4 a, previously known subunit of complex I,
clusters with complex IV rather than complex I (Balsa et al., 2012).
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