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The resource-constrained project scheduling problem has received broad attentions and

was evolved into various sub-problems such as resource-constrained discrete time-cost

tradeoff problem. The resource leveling problem was proposed to reduce the resource

fluctuation and was always studied independently with RCPSP. This research proposed a

new model which integrates the resource leveling problem and resource-constrained time-

cost tradeoff problem. The evolutionary multi-objective optimization technique, strength

Pareto evolutionary approach II (SPEA II) was applied to calculate the Pareto front of time

and cost. The resource leveling measured by the metric, resource release/re-hiring, was

converted to resource cost. The analysis of the time complexity of the model showed that

the runtime of the algorithm was polynomial times of the number of activities. The results

of case testing showed that the model was reasonably accurate in comparison with a

proposed baseline model.
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Abstract: 
The resource-constrained project scheduling 
problem has received broad attentions and was 
evolved into various sub-problems such as 
resource-constrained discrete time-cost tradeoff 
problem.  The resource leveling problem was 
proposed to reduce the resource fluctuation and 
was always studied independently with RCPSP. 
This research proposed a new model which 
integrates the resource leveling problem and 
resource-constrained time-cost tradeoff problem. 
The evolutionary multi-objective optimization 
technique, strength Pareto evolutionary approach 
II (SPEA II) was applied to calculate the Pareto 
front of time and cost. The resource leveling 
measured by the metric, resource release/re-
hiring, was converted to resource cost. The 
analysis of the time complexity of the model 
showed that the runtime of the algorithm was 
polynomial times of the number of activities. The 
results of case testing showed that the model was 
reasonably accurate in comparison with a 
proposed baseline model.  
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1  Introduction 
The widely used critical path method (CPM) 
does not consider resource availability. 
Resource-constrained project scheduling 
problem (RCPSP) was proposed to optimize 
scheduling under resource constraints [1]. 
RCPSP was defined from three aspects of 
characteristics: resource environment; activity 
characteristics; and objective function [2].  
 
The RCPSP can be further divided into the 
single-mode and the multi-mode RCPSPs in 
terms of the number of modes in which resources 
are used or consumed [2]. Simulation has been 
used to solve building design and construction 
problem [3, 4].When the activity durations 
become variable in different modes, the 
combination of different modes generates varied 
costs. In this sense, the RCPSP may be evolved 
into a discrete time-cost tradeoff problem, which 

can be subdivided into the deadline problem and 
the budget problem [5]. The deadline problem is 
to minimize resource cost within the limit of the 
maximum project duration while the budget 
problem is to minimize the project duration 
within a maximum cost [6]. 
 
The methods for solving the discrete time-cost 
tradeoff problem are mainly divided into two 
categories: exact algorithms and heuristic 
algorithms. Since the RCPSPs are combinatorial 
problems in nature, the exact algorithms, such as 
branch and bound algorithm, use mathematical 
programming to find the optimum solutions [7].  
However, the exact algorithms are inefficient in 
the case of relative large projects with many 
activities or variables because the time-cost 
tradeoff is a NP problem that is hard to solve [8]. 
Heuristic methods and machine learning 
techniques have been successfully used to solve 
building and construction problems [9, 10]. 
 
Metaheuristic algorithms, especially genetic 
algorithms (GAs), were widely applied to solve 
the building design and project scheduling 
problems [4, 11]. The objective function of the 
GA were usually set to minimizing the project 
duration [12-14]. The chromosome 
representation of GAs could be permutation 
based, priority rule based and priority value. 
Serial and parallel scheduling techniques were 
adopted to convert the chromosome into the 
actual schedule [11, 15, 16].   
 
The time-cost tradeoff problem can be divided 
into two types: continuous and discrete. The 
second type is also a sub-problem of the RCPSP. 
Early researches did not consider resource 
constraints when developing GA based 
approaches to solve time-cost tradeoff problems 
[17-19]. In recent years, some researchers tried 
to investigate multi-mode discrete time-cost 
tradeoff using GAs [20-22].  
 
Resource fluctuation is mainly studied in the 
scope of the resource leveling problem, which 
describes the process of reducing the fluctuations 
in resource usage over the project duration. 
Undesired resource fluctuation may cause 
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inefficient and costly implementation of 
construction, for example, frequently rehiring 
and releasing workers, lowering productive level 
and interruption of learning curve effects [23], 
incurring indirect costs for training cost of new 
workers [24]. These implicit costs incurred by 
undesired resource fluctuations may account for 
a large amount of resources costs. Exact methods 
and heuristic methods were used to solve this 
problem [24]. However, the exact methods are 
still inefficient for addressing projects with a 
larger number of activities. Heuristic algorithms, 
such as particle swarm optimization (PSO) and 
GA were adopted to solve leveling problems 
under different circumstances [23-27]. The 
algorithms search possible locations of 
noncritical activities to smooth the resource 
usage. The objective is usually to achieve 
uniform resource consumption. However, the 
resource leveling metrics proposed in these 
models measured and penalized the difference 
between fluctuating resource consumption and a 
predefined desirable shape [23]. Alternative 
shapes of resource profiles which may have more 
efficient resource utilization may be penalized. 
Thus, in El-Rayes and Jun [23], the authors 
developed two innovative metrics without 
predetermining the shape of the resources, 
release and re-hire (RRH) and resource idle days 
(RID). The RRH metric can be useful when the 
release and rehire of resource are allowed in 
projects while the RID metric may be used where 
additional idle resources are required to kept on 
site during low demand periods. 
 
Resource leveling and resource-constrained 
project scheduling problems are inherently 
interrelated. A certain schedule having a higher 
resource cost may have a lower resource 
fluctuation. However, the two problems were 
usually studied independently [26].  Only a few 
integrated models were developed to solve two 
problems simultaneously [28]. In Chan and Chua 
[25], authors presented a commercial GA 
package Genesis which was formulated to 
consider both the problems. The objective was to 
minimize the deviations of required resources 
from the available resource profiles. Resource 
leveling was addressed by calculating the 
resource underutilization and overutilization.  
The paper Hu and Flood [2] developed an 
integrated scheduling method to minimize the 
project duration and resource fluctuation by 
using the strength Pareto evolutionary approach 
II (SPEA II) which outperformed several other 
multi-objective optimization techniques in 

solving the resource-constrained project 
scheduling problem.  In Hu and Flood [2]Hegazy 
[27], authors combined resource allocation and 
leveling by using a GA technique. The objective 
was to minimize the total project duration under 
resource constraints and the appropriate 
moments of selected resources important to 
resource leveling. In Leu and Yang [29], authors 
integrated time-cost tradeoff, resource constraint 
and resource leveling based on GA. The sum of 
the absolute differences between actual resource 
usage and average resource usage was used as a 
metric of measuring the resource leveling. The 
ideal resource profile was predefined as a 
rectangular shape. In Lucko [30] the authors used 
GA for optimizing linear scheduling project. 
Only project duration was address.  
 
The literature review shows that PCPSP has not 
been fully explored in the integrated models. The 
researches mainly used a single objective 
function to minimize project duration, cost, or 
deviation between resource usage and the 
defined value. Resource leveling tended to be 
address in these models by adding a constraint. 
In addition, only single-mode RCPSP was 
integrated with the resource leveling problem. 
Therefore, this research aimed to develop a 
model that could solve the resource leveling 
problem and multi-mode RCPSP (more 
specifically, resource-constrained discrete time-
cost tradeoff problems) simultaneously by using 
a multi-objective optimization technique in order 
to achieve the optimum solutions.  
 
2  Problem description 
The mathematical description of the problem was 
defined in this section. The problem was defined 
from three characteristics: resource environment, 
activity characteristics and objective functions. 
Activities are subject to precedence constraint. 
The start time (ST) of an activity should be 
larger than the finish time (FT) of the preceding 
activities. dil denotes the duration of an activity i  
in a mode l. The total resource set K includes all 
the resource types of a project. The capacity of a 
resource type km ∈ K per time period is set to Rm. 
The quantity of resource m used by an activity i 
in a time period is riml if the activity is performed 
in a mode l.   
 
The problem is solved based on a multi-objective 
optimization technique whose objective 
functions are to minimize the resource cost and 
the total project duration. The cost is split up to 

2 
 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1299v1 | CC-BY 4.0 Open Access | rec: 13 Aug 2015, publ: 13 Aug 2015

P
re
P
rin

ts



 

two parts: resource usage cost (RUC) and 
resource fluctuation cost (RFC).  
 

2.1 Resource usage cost (RUC) 

The resource usage cost (RUC) is defined as the 
cost of resources used by all the activities in a 
given activity modes. For a multi-mode RCPSP, 
an activity may have different modes each of 
which would require varied duration and 
resource amount. RUC denotes the total resource 
cost in the project duration T (see Eqs. (1) and 
(2)). mC  denotes the unit cost of the resource m. 

,m tRU  is used to calculated amount of resource 
m used at a particular time t. tZ  is equal to 1 if 
an activity i is performed at a time period t and o 
otherwise.  
 

,
1

T

m t m
t

RUC RU C
=

= ×∑
 

(1)
 

,
1

( )
n

m t t iml
i

RU Z r
=

= ×∑
 

(2) 

2.2 Resource fluctuation cost (RFC)  

When resources are newly added or dismissed, 
additional costs will incur. Such costs may 
include training, transportation and bidding costs.  
El-Rayes and Jun [23] proposed two metrics: 
release and re-hire (RRH) and resource idle days 
(RID), to measure the level of the resource 
fluctuation. The RRH and RID are calculated 
using Eqs. (3) and (4) [23]. 
 

1

1 1 1 1 2
1

1 ( , ,..., )
2

T

t T T
t

RRH H MRD r r r r Max r r r
−

+
=

 = − = × + − + −  
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  Eq. (3)
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1

( , ,..., ), ( , ,..., )
T

t t t T t
t

RID Min Max r r r Max r r r r+
=

= −  ∑
   Eq. (4)

 Where: 
H=total increases in the daily resource demand;  
T=total project duration; 
rt = resource demand on day t;  
MRD=maximum resource demand during the 
entire project duration. 
 
The two metrics are agreeable though they are 
used in different circumstances. In this research, 
the metric of measuring the resource leveling 
RFC was calculated based on the metric RRH. 

RFC is calculated by Eq. (5). UHCm denotes the 
unit cost of hiring and releasing a resource type 
m and  RRHm denotes the amount of a hired or 
increased resource m. The cost of MRD is alse 
added to the RFC to minimize the resource 
demand.  
 

mm mRFC UHC RRH C MRD•= +

  
   Eq. (5)

  
3  Model development 
The model consists of four modules: the 
evolutionary multi-objective optimization 
(EMO), the project scheduling, the resource 
leveling and the local search modules (see Fig. 1). 
The model begins and ends with the EMO 
module. The fitness values of the EMO are 
calculated based on time and cost fed into by the 
project scheduling and resource leveling modules. 
The local search module is to further optimize 
the results calculated by the EMO module. 
 

3.1 The EMO module 

This module searches the solution space to find 
the Pareto optimal. If the objective is to 
minimize Fi(x), a point (i.e., a solution), x’ ∈  X, 
is Pareto optimal if there does not exist another 
point, x ∈  X, such that F(x) ≤  F(x’), and Fi (x) 
<Fi (x’) for at least one function. This definition 
is illustrated in Fig. 1. The objective functions 
are to minimize the F1 and F2, and the solid dark 
points denote Pareto optimal (i.e., 
nondmoninated). The white points are non Pareto 
optimal (i.e., dominated) points because at least 
one dark points have larger values in terms of F1 
and F2.  

 

F1

F2

nondominated dominated

 
Fig. 1 Illustration of Pareto optimal 
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SPEA II [31] was developed based on the natural 
evolutionary principle. SPEA II conducts 
crossover and mutation as shown in Fig. 1. 
Unlike the single-objective GA algorithm, SPEA 
II uses the environmental selection scheme to 

preserve the Pareto optimal. Pareto-based fitness 
assignment is used to identify nondominated 
vectors from the current population. The three 
high level goals are achieved in SPEA II [32]. 
 

1. Generate an initial 
population P and an 

empty set E

8. Last 
Generation?

Yes

3. Copy nondominated 
soluations in P and E to E

6. Use dominated 
individuals in P to fill E. 

4. Is the capacity of E 
exceeded?

7. Execute binary tournament 
selection with replacement to fill the 
mating pool and apply crossover and 

mutation

5. Use truncation 
operator to remove 

elements from E

No

Yes

No

2. Are Ctotal and T 
calculated?   

Yes

No

1. Define three sets: scheduled, 
eligible, and decision sets

4. Are all the activities moved 
to the scheduled set?

2.1 Move the eligible activities 
from decision set to eligible set

3. Move the activity with the 
highest priority from the eligible 

set to the scheduled set

No

5. Calculate TF and determine  
noncritical activities (TF>0)

1. Remove the noncritical activities 
from the schedule

2. Place the noncritical activities in 
the schedule to achieve the largest 

reduction of RFC

4. Are all the noncritical 
activities added into the 

schedule?

3. Update preceding and 
succeeding activities 

5. Calculate the total cost of the 
defined schedule

1. Input the final population genes 

2. Conduct the GA algorithm to 
minimize RFC 

Yes

No

Start

End

EMO module
Project Scheduling 

module

Resource leveling 
module

Local search module

 
Fig. 2. Flow of the model 
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(1) Preserving nondominated points at each 

generation. 
(2) Generating the known Pareto front and 

determining the nondominated sets and 
converging to the true Pareto front. 

(3) Generating a uniform distribution across 
the Pareto. 

The line in Fig. 2 can be imagined as a Pareto 
front line. The EMO algorithm needs to ensure 
known Pareto optimal is evenly distributed along 
the Pareto front line and to avoid cluster. SPEAII 
uses an external archive containing 
nondominated solutions previously found (Goal 
1). Nondominated individuals are copied to the 
external nondominated set (see Steps 4-6 in the 
EMO module of Fig. 1). SPEA II has an 
enhanced archive truncation method that ensures 
to preserve the boundary solutions. The fitness 
assignment strategy (see Step 2 in Fig. 1) and 
GA operations (Step 7 in Fig. 1) considers both 
closeness to the true Pareto front (Goal (2)) and 
even distribution of solutions (Goal (3)). The 
nondominated points are also preserved based on 
the fitness values.  
 
Application of the SPEA II algorithm into this 
research requires specifying some parameters 
and variables. The following sections introduced 
methods of generating the initial population (see 
Step 1 in Fig. 1), calculating the fitness values 
(see Step 2 in Fig. 1), and defining crossover and 
mutation strategies (see Step 7 in Fig. 1).  
 
3.1.1 Initial population 
The scheme of chromosome representation 
should be first defined before generating the 
initial population.  There are three encoding 
methods: permutation based, priority value based 
and priority rule based methods [14]. Hartmann 
[33]  applied permutation based encoding 
method into the multi-mode RCPSP.  In the 
permutation based method, each individual is 
given by a sequence of activity. In the beginning, 
the dummy start activity is added into the 
schedule, and then each activity is added into the 
schedule with earliest start time according to the 
activity sequence specified by the individual. For 
priority value based methods, each activity is 
given by a unique priority value and each time a 
precedence feasible activity with the highest 
priority value is selected to add into the schedule. 
Both the permutation based and priority value 
based methods can the serial scheduling scheme 
to convert the chromosome to genotype (i.e., 
schedule). 

 
Because this problem defined in this research has 
a broader scope than the classic RCPSP and the 
resource leveling module also needs to employ 
the gene representation, the priority based 
encoding approach was adopted.  
 
The specific encoding approach is illustrated in 
Fig. 3. The first section of chromosome denotes 
the priority values which are unique integers in 
the range from 1 to n (i.e., the total number of 
activities). The second section denotes the mode 
of activities. When the two sections are specified, 
chromosome gene values would be fed into the 
resource leveling module to generate genotype 
(i.e., schedule).  
 

A1 ... An

n:The number of activity

M1 ... Mn

Priority values

Mode of Activities

 
Fig. 3 Chromosome structure of GA 

module 
 

 
3.1.2 Fitness assignment 
SPEA II calculated fitness using Eq (9) [31]. R(i) 
is the function of “strength” S(j) calculated by 
considering for each individuals that the number 
of individuals which it dominates to and that the 
number of individuals which it dominates. The 
values of S(j) can be derived from cost and 
project duration. SPEA II uses a nearest neighbor 
density estimation technique to calculate D(i) in 
the fitness values and to ensure the points are 
evenly distributes along the know Pareto front 
and to avoid cluster.  
The fitness values of the nondominated 
individuals are less than 1. 
 

( ) ( ) ( )F i R i D i= +    
 Eq. (6) 

( ) ( )
t tj P P

R i S j
∈ +

= ∑     

 Eq. (7) 
1( )

2k
i

D i
σ

=
+

     

 Eq. (8) 
 
Where: 
F(i) = Fitness value for solution i 
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R(i) = Raw fitness value calculated by 
summation of the strength values S(j) of all the 
individuals j that dominate the individual i. S(j) 
is equal to the number of individuals that  the 
individual  j dominates.  
D(i) = Density estimator calculated by inverse of 
the distance to the k-th nearest neighbor k

iσ  
 
3.1.3 Crossover and mutation operations 
The crossover method of the activity mode uses 
the standard crossover method. However, for the 
activity priority values, the standard one-point 
crossover method cannot be used because the 
priority values should be kept unique in different 
gene positions. The crossover method developed 
by Hartmann (1998) was adopted to implement 
the crossover operation of the first section of the 
chromosome. The method starts with selecting a 
random point in the parent chromosome. Then 
scan the parent genes to select unique priority 
values that do not exist in the child chromosome 
[14]. For instance, in Fig. 4, the left part of the 
gene values in child 1 comes from parent 1 and 
the right part is from the parent 2 by left-to-right 
scan. The scan makes the right part of child 1 
takes the first three gene values which are 
different from the left part of child 1. Similarly, 
the left part of child 2 takes genes from parent 2 
and the right part of genes are taken from parent 
1 by scanning different genes.  

 
1 2

4 3 52 3 1 4 5

1 2 3 4 5

2 3

4 3 5Parent 1

Parent 2

Child 1

Child 2

 
Fig. 4  Crossover of the first section of a 

chromosome 
 

The mutation of the priority values of activities is 
achieved by swapping two randomly selected 
genes in a chromosome. For the second section 
of the chromosome, the mutation operator 
modifies modes at each position with an equal 
probability. If a position is selected, a random 
value within the range of the total number of 
modes is selected.  
 

3.2 The project scheduling module 

When the activity and mode lists are fed into the 
module. The schedule would be built up in the 
project scheduling module.  Activities are 
scheduled according to the serial scheme 
scheduling approach [15].  Three activities sets 
are established, i.e., scheduled set, eligible set 

and decision set (see step 1 in Fig. 1). At first, all 
the activities are placed in the decision set. The 
decision set contains all the activities to be 
scheduled. The scheduled activity set contains 
activities that have already been scheduled (i.e., 
starting and finishing time is determined).The 
activities whose precedent activities are 
scheduled and included in the scheduled set are 
then moved to the eligible set from the decision 
set. The eligible set contains all the activities that 
are allowed to be scheduled because the 
precedent activities have been added into the 
schedule chart. Several activities are moved to 
the eligible set simultaneously. Only the activity 
in the eligible set showing the largest priority 
value is selected to be moved to the scheduled 
set from the eligible set. This activity is added to 
the project schedule chart and the starting time is 
adjusted to meet the resource constraint. This 
process is repeated until all the activities in the 
decision set are moved to the schedule set. This 
whole process is also called the forward pass.  
 
The above-mentioned process starts from the 
first activity. The resource and precedent 
constraints are kept feasible in this process. On 
the other hand, it is possible to start from the last 
dummy activity. An activity is moved from 
decision set to eligible set when its succeeding 
activities are added to the schedule set. This 
process is regarded as backward pass. 
 
The last task is to calculate the total float (TF) 
for each activity.  The following method is used: 
the backward pass is used to ensure the activities 
to finish as late as possible. Then, by deducting 
the latest finish time by the earliest finish time, 
the TF of each activity is then calculated. This 
process may lead to the change of the total 
project duration. The reason is that some 
activities are constrained not only by the 
precedence but also resource availability. 
Shifting an activity would possibly cause an 
activity in the critical path to become a 
noncritical activity. Therefore, the final project 
duration should be re-calculated at the end of the 
resource leveling module by deducting the finish 
time of the last dummy activity by the start time 
of the first dummy activity.  
 

3.3 The resource leveling module 

This module would calculate the time and cost 
needed by the fitness calculation of the EMO 
module. The first task is to adjust the noncritical 
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activities (i.e., activities whose TF is larger than 
zero) to reduce the RFC. Where to locate these 
noncritical activities in the schedule is the critical 
work in the process of reducing RFC.  
 
Reducing RFC can be done by the reduction of 
RRH + MDR.  The noncritical activities were 
removed from the schedule and formed a 
noncritical activity list (see Step 1 in Fig. 1). In 
the subsequent steps, in terms of the priority 
values of the free activities, each activity will be 
added into a location where the maximum 
reduction of RRH + MRD should be achieved. 
After a noncritical activity is added to the 
schedule, the start and finish time of other 
noncritical activities are thus updated. Following 
this process, all the noncritical activities would 
be added to the schedule.  
 
Where to place the noncritical activities can be 
achieved by aligning a newly added noncritical 
activity to existing activities in the schedule. An 
example is shown in Fig. 5. The grey highlighted 
bar denotes the resource usage of the existing 
activities in the schedule. Two new activities 
with oblique lines are added to the schedule. To 
achieve the maximum reduction of RFC, the two 
activities should be aligned with the edge of 
existing activities. Thus, if the first activity may 
be located at P1, the reduction of RRH is R1 and 
if the second activity is added at the position P2, 
the reduction is R2 + R3.  
 
After added to the existing schedule, the two 
activities are merged to the existing schedule. 
The next noncritical activity is added based on 
the newly generated schedule where the 
maximum reduction of RFC could be achieved. 
This approach uses the greedy algorithm which 
makes the locally optimal choice at each stage 
with the hope of finding the global optimum. 
Therefore, each noncritical activity is added to 
the schedule one by one. The sequence of adding 
noncritical activities depends on the priority 
values of these noncritical activities. For all 
available noncritical activities, an activity with 
highest priority value will be chosen first to add 
the existing schedule to achieve the maximum 
reduction of RRH + MDR. However, this 
method cannot guarantee the final reduction of 
RRH + MDR attains maximum because the 
greedy algorithm only finds the locally optimum 
at each step without considering previous steps. 
This issue is discussed in the validation section. 
In the end, the total cost and project duration 

would be calculated in this module and returned 
to the EMO module. 
 

3.4 The local search module 

The calculated results by the EMO module are 
further optimized by searching for the possible 
positions of the noncritical activities to ensure 
the maximum reduction of RRH + MRD. For 
each individual, the activity priority value and 
mode are determined. Then, apply the project 
scheduling module to calculate the total float and 
free float based on the generated schedule by 
using backward pass. Then to further minimize 
RRH + MRD, El-Rays’ method is applied to 
search the potential positions of the noncritical 
activities [23]. El-Rays used a GA technique to 
search the possible locations of noncritical 
activities.  From the “right” to “left” in the 
schedule chart, the most right noncritical activity 
(i.e., latest finish time) is shifted first by the 
calculated value in Eq.(13) [23].  After shifting 
this activity, update the FF and TF of preceding 
activities. In this way, each noncritical activity is 
shifted. One difference from the original El-Rays’ 
method is that the shifting process should keep 
the resource feasible. 

*
*

1
1

/

i
i i

i

i

FFS M
TF

M P N

+ = × + 
=

    

   Eq. (9) 
*iS  = Actual shift-day for the activity i*. 

Mi= Possible shift-day of the activity i*. 
FFi* = Free Float of the activities i* when 
resource constraints are considered. 

iTF  = Total Float of the activity i calculated by 
CPM without consideration of resource 
constraints. 
Tmax= Specified maximum project duration.  
    = Fraction truncation. 
P = priority value of activity i 
N = the total number of activity. 
 
Each individual of the population calculated by 
the EMO module would use the local search 
algorithm. If 30 individuals are finally generated 
by the EMO module, thus, the GA algorithm 
would run 30 times. Since the local search 
cannot guarantee finding the global optimum 
location, the results may be not necessarily better 
than results calculated by the EMO module. 
Therefore, the results calculated by the local 
search module will be compared with the results 
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of the EMO module. The better results would be 
recorded as the final results. 
 

3.5 Additional consideration 

RRH and RID are agreeable though each of them 
may have different applications. A strategy was 
proposed to reduce the cost incurred by both of 
the release/rehiring cost and idleness cost of 
resources. Here RIC is defined to measure the 
cost of resource idleness and RIC = unit cost for 
idle resource * RID. RHC has the same 
definition as RFC. In Fig. 6, when the resource 
level is maintained at the level 2, the total cost = 
RIC* + RHC* (see (a) in Fig. 6). RIC* is equal 
to the area indicated by the oblique lines. RHC* 
is equal to the length of the two arrow lines.  The 
change of resource level may lead to different 
RIC and RHC. 
 
In (b) of Fig. 6, assume the resource level 
increased to the resource level 2 from the level 1, 
RHC is reduced while RIC is increased. To keep 
the total value of RHC and RIC minimum, the 
resource amount at the level 2 should be selected 
because the increasing of RIC below the level 2 
is smaller than the decreasing of the RHC. This 
strategy may apply after the final calculation and 
allow users to select the resource level that 
reduce both of RHC and RIC.  
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Fig. 5  Reduction of RHC and RIC 

 
4  Model validation 
The model validation includes the analyzing 
runtime, estimating the expected RFC error due 
to the proposed chromosome representation, and 
testing the effectiveness of the model through 
computational experiment.  

4.1 Time complexity analysis 

The time complexity is adopted to evaluate the 
runtime of the model in terms of the number of 

the activities. The local search module is 
independent of the number of activity and thus 
the time complexity analysis is not conducted for 
this module.  
  
Zitzler and Laumanns [31] analyzed the time 
complexity of the SPEA2 algorithm. The runtime 
is mainly composed of two parts. (a) Fitness 
assignment. This runtime is dominated by the 
density estimator (O(M2logM)), where M is the 
sum of the population and archive sizes. (b) 
Environment selection. The worst run-time 
complexity of the truncation operator is O(M3), 
however, the average runtime is lower than 
O(M2logM). For the project scheduling module, 
the time complexity is O( 2n K ) where n is the 
number of activities and K is the number of 
resources [34].  
 
The runtime of the project leveling module is 
mainly consumed by calculating TF, adding and 
deducting the free activities, and calculating the 
RRH. The runtime of calculating the total float is 

about O(
1

n

i
i

TF
=
∑ ) where TFi is the total l float of 

the activity i. Since TFi should be less than D 
denoting project duration). The maximum value 

of 
1

n

i
i

TF
=
∑  is nD.  The runtime of the second 

part, adding and deducting the free activity is 

O(
1

( * )
n

i i
i

TF d
=
∑ ) where di is the duration of 

activity i. Each location between ES and FS of an 
activity should be checked to make sure the 
resource constraint is not violated and checking 
each location requires a runtime of O(di) to add 
or deduct the resources. The third part, 
calculation of RFC, takes O(D) where D denotes 
the total project duration. Together, the total 
runtime of the resource leveling module is 

O(
1

( )
n

i i
i

TF d D
=

+∑  ). 

 
The total runtime for the three modules was thus 
calculated by summation of the runtime of each 
module. For each individual in the EMO module, 
the runtime is the sum of the project scheduling 
and resource leveling modules, i.e., 

O( 2

1
( )

n

i i
i

d TF D n K
=

+ +∑   ). There are a total 

of  G P individuals where G denotes the 
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generations and P denotes the population size for 
one generation. By adding the runtime of 
environmental selection, the total runtime of the 
worst case is 

O( 2 3

1
{[ ( ) ] }

n

i i
i

d TF D n K P M G
=

+ + +∑     ). 

Thus, the runtime shown here is acceptable 
because it is polynomial times of the number of 
activities.  
 
The testing of the total runtime of the model was 
done in a laptop with configuration of Windows 
7 OS, 2.0 GHz CPU, 2G RAM. The EMO 
module is coded by C language while the other 
modules are coded in MATLAB. The total 
runtime of the three modules is about 30s for a 
project with ten activities.  
 

4.2 RFC error analysis 

The arrangement of noncritical activities in the 
resource leveling module uses greedy algorithm 
as indicated in Section 3.3. It is known that the 
sequence of adding noncritical activities to the 
schedule affects the value of RFC. However, 
even by checking all possible combinations of 
these noncritical activity sequence (the 
maximum number is n!), the greedy algorithm 
cannot still guarantee finding the maximum 
reduction of RFC. All the possible combinations 
of activity sequence (i.e., the priority values in 
the chromosome) would represent the search 
space of the EMO module. The EMO module 
searches the space to find the maximum 
reduction of RFC (i.e., minimum of RFC) in the 
space. However, the EMO module cannot find 
the global optimum of RFC. Two reasons may 
cause this result. One reason is that EMO can 
only find the near-optimum solutions as other 
evolutionary algorithms. The second reason is 
that the global optimum is not located in the 
search space of the EMO module and therefore 
the EMO module cannot find the global optimum 
of RFC even if searching the whole space. This 
section would address two issues related to the 
second reason: (a) when the global optimum is 
located in the search space; (b) if the global 
optimum is not located in the search space, what 
the expected error is. 
 
To allow the EMO module to find the globally 
optimum of RFC, the greedy algorithm must add 
the noncritical activities in terms of the activity 
sequence which represents one point in the 

search space of EMO, to the schedule. The key 
problem here is whether to find an activity 
sequence (i.e., priority values of activities) in 
which the noncritical activities can be added to 
the globally optimum locations of the noncritical 
activities by using the greedy algorithm. Only if 
the globally optimum locations of the noncritical 
activities can be found by the greedy algorithm 
can the global optimum of RFC also be found by 
the EMO module. The globally optimum 
locations of the noncritical activities can be 
found by the greedy algorithm if satisfying one 
of the following two conditions: (1) no more 
than two noncritical activities are adjacent to 
each other, or at least one most outside edge of 
the adjacent noncritical activities is not adjacent 
to any of the critical activities (see (a) and (b) in  
Fig. 7); or (2) if the globally optimum location of 
noncritical activities violates the condition (1), 
the global optimum is still located within the 
search space if there exists an activity sequence 
in which the noncritical activities could be added 
to the same locations as those optimum locations 
of noncritical activities are located (see (c) in Fig. 
7) 
 

2
1

1
2

2

1

12 R4

R5

R1
R2

R3

(a) (c)

P2

P1

P2

P1

2 1

(b)

P2P1

(d) (e)

 
Fig. 6  Illustration of conditions (1) and (2) 

 
The conditions (1) and (2) are illustrated in Fig. 7. 
The grey activities are noncritical and the 
activity 1 and the activity 2 are added to the 
schedule in order. According to the greedy 
algorithm, activity 1 should be added at position 
P2 and activity 2 at position P1 (see (a) and (b) in 
Fig. 7). This sequence of adding the two 
noncritical activities could lead to the maximum 
reduction of RFC. For (b) in Fig. 7, activities 1 
and 2 are adjacent to each other but the right 
edge of the activity 2 is not adjacent to the 
critical activity. Thus, both (a) and (b) meet the 
condition (1). In (c) Fig. 7, the condition (1) is 
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violated. However by adding activity 1 and 
activity 2 in order, the global optimum reduction 
of RFC can still be achieved. Thus, (c) also meet 
the requirement of the condition (2). The 
arrangement of noncritical activities in (d) of Fig. 
7 shows the globally optimum locations of 
activities 1 and 2. The total reduction is 
R1+R2+R3 (see (d)). However, if the greedy 
algorithm is applied, the locally optimum 
locations of the two activities are shown in (e) of 
Fig. 7. The reduction is R4+R5, which is less than 
the value of R1+R2+R3. 
 
Condition (1) is briefly proved here. Assume the 
globally optimum locations of all noncritical 
activities are known, and then a noncritical 
activity with the smallest reduction of RFC can 
be first removed from the schedule while the 
optimum locations of the other noncritical 
activities are kept unchanged in the schedule 
chart, that is to say, these noncritical activities 
have larger RFC reduction in their original 
positions. All the noncritical activities can be 
removed from schedule in this way until only the 
critical activities are remained. Then if all the 
noncritical activities are added into the schedule 
(with only critical activities) in the reverse order 
by using greedy algorithm, the final locations of 
the noncritical activities would achieve the same 
reduction as the previous globally optimum 
locations of the noncritical activities.  
 
When condition (1) is violated, the expected 
error is calculated to estimate the difference 
between the locally optimum locations found by 
EMO and the globally optimum locations. This 
can be shown in (c) and (d) of Fig. 7. If there are 
two activities are adjacent, the reduction is 
R4+R5 if the greedy algorithm is applied while 
the global optimum reduction should be 
R1+R2+R3. The difference (or, error) is about 1/3 
of the globally maximum reduction if the values 
of R1, R2, R3. R4 and R5 are assumed to be close. 
Similarly, if there are three activities adjacent 
(i.e., violating condition (1)), the error is ¼ of the 
globally maximum reduction of RFC. If there are 
i activities adjacent, the error is 1/(i+1). Assume 
the average reduction of RFC for each 
noncritical activity is t, and each noncritical 
activity has an equal possibility of meeting or 
violating the condition (1). In other words, from 
the perspective of the expectation, there are a1 
noncritical activities that are not adjacent to 
noncritical activities and critical activities in the 
schedule chart (i.e, just like (a) in Fig. 7, meeting 
condition (1)), the error is 0%; also there are a1 

free activities that are only adjacent to one 
noncritical activity and critical activities (i.e., 
violating condition (1)) and the error is about 
(a1/2) x (1/3) because two noncritical activities 
are adjacent to form only one whole block (as 
seen from (e) of Fig. 7); similarly, there are a1 
free activities that are only adjacent to i 
noncritical activities and critical activities and 
the error is (ai/i) x [1/(i+1)]. The total noncritical 
activities would be a1 x i. Since the assumption is 
made that each noncritical activity has an equal 
possibility of adjacent to different number of 
other noncritical activities, the expected error can 
be calculated by Eq. (14). 
 

1 1 1
1 1

1 1 1 1 10% ... / ( )
2 3 3 4 1 1 2
a a ae a a i

i i i i
 = × + × + × + + × × = − + + 

  Eq. (10) 
 
If i is equal to 2 or 3, e would be about 8%, and 
if i becomes larger, e would become smaller. In 
addition, if the second condition (2) is considered, 
the value of e should be even smaller. Thus, it is 
concluded that the greed algorithm adopted in 
this research is reasonably accurate to ensure the 
locally optimum value of RFC calculated by the 
EMO module is close to the globally optimum 
reduction if it is assumes the EMO module has 
the ability to find the global optimum in the 
search space. 
 

4.3 Computational experiment 

The developed model except the EMO module 
was coded in MATLAB Version 7.9 in a laptop 
with a 2.0 GHz CPU, 2G RAM under Windows 
7 OS. The EMO module was coded by C 
language to improve the computation efficiency. 
The external interface feature of MATLAB 
enables users to call C functions as MATLAB 
built-in functions. The dataset of the test cases 
came from PSPLIB developed by Kolisch and 
Sprecher [35].  Ten cases from the dataset 
“j10.mm” (note: this dataset was created 
originally for the multi-mode RCPSP) were 
selected. The case number selected are 1, 50, 100, 
150,…. 450. The model developed in this 
research introduces some new capacities and is 
not used to solve the multi-mode RCPSP. Thus, 
a baseline model is proposed for comparison 
with the developed model. 
 
4.3.1 Baseline model  
The baseline model has two phases each of 
which would use the GA algorithm. In the first 
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phase, the minimum project duration was 
generated. In the second phase, the minimum 
total cost was selected based on the schedule 
generated in the first phase. The local search 
module was used to search the minimum RFC 
based on the calculated individuals in the first 
phase. 
 
The objective of the first phase was to minimize 
the project duration only. This could be regarded 
as a standard multi-mode RCPSP.  A number of 
similar researches were done in this topic [21, 33, 
36]. The chromosome representation is the same 
as the tested model (i.e., the model developed by 
this research) mentioned in Section 3.1.1 and 
3.1.2. In addition, an external archive was 
developed similar just like SPEA2. This archive 
was used to record the individuals that generated 
small project durations. In other word, during the 
GA running, the individuals that could generate 
the smaller project durations were store in the 
archive. In the end, the archive contained the 
individuals that could generate smaller project 
durations than other individuals. The capacity of 
archive was set to 30 initially. The individuals in 
the archive were ranked in order, which means 
the 1st individual generated the smallest duration 
while the 30th individual generated the largest 
duration. If additional individuals that were not 
included in the archive could generate the same 
duration as the 30th individual, the capacity of the 
archive would be increased to incorporate these 
additional individuals until 60. However, if there 
are still other individuals, a strategy similar with 
the SPEA II would be conducted to select those 
individuals that could generate the even 
distribution along the Pareto front.   
 
If all the individuals that could generated the 
minimum schedule T were included in the 
archive in the first phase, and the GA algorithm 
could find the minimum cost C based on the 
schedule in the second phase, then some points 
(T, C) should be located in the Pareto front line. 
The points (T,C) would be compared with 
solutions calculated by the tested model. Four 
cases may occur after the comparison (see Fig. 8): 
“dominated”, “nondominated”, “dominate” and 
“equal”. The black solid point denotes (T, C) that 
is calculated by the baseline model. The white 
points denoted the solution calculated by the 
tested model. P1 dominates the point (T,C) and 
P2 is dominated by (T, C). P0 may dominate 
many points Pi, thus, the average point is 
calculated and then the percentage difference E 
is calculated by Eq. (15). In Fig. 8, the grey point 

denotes the average position of the two points. In 
the case of existing many points like P0, the 
average E would be calculated. 
 

0

0

/iP n P
E

P
−

= ∑
 

Eq. (11) 

 

Time
C

os
t

(T, C)

Dominated

Dominate Nondominated

Nondominated

P1

P2 P3

P4

P0

∑ Pi/2

 
 

Fig. 7  Comparison of (T, C) and calculate 
solutions. 
 
4.3.2 Experimental results 
Two groups of resource unit cost were tested. 
The absolute number of unit cost is not important. 
The ratio between the two unit costs does matter. 
Thus, the resource unit cost is set to 10 all the 
time and the unit hiring/releasing cost (UHC) is 
set to 10 and 20, respectively. Preliminary tests 
were conducted to determine the simulation 
parameters. The test results showed that the 
mutation rate was set to be 0.05, which was the 
same as that recommended by Hartmann [14], 
the population and archive sizes were set to 30. 
The testing cases which had errors are shown in  
Table 1. Only cases #1 and #2 have errors 
calculated by Eq (15). If using the local search 
method, the errors were decreased significantly. 
Further analysis showed that the reason why 
most of the errors were zero was that for all the 
ten cases, more than 80% of the points generated 
by the tested model dominated the points 
generated by the baseline model. As shown in 
Fig. 8, most of the calculated points are located 
in the lower left corner of the coordinator system. 
This testing also showed that the most of points 
calculated by the baseline model only belonged 
to weak Pareto optimal. The reason is either that 
some individuals that could lead to the global 
optimum were missing in the archive in the first 
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phase of the baseline model or the GA only 
found the near-optimum solutions. The testing 
also showed that the RFC costs took up about 15% 
and 30% of the total cost for each group, 
respectively.  Though the experiment could not 
justify the points generated by the tested model 
were located in the Pareto front line, the test still 
showed that the tested model had the potential of 
generating relative good results, and at least had 
much accurate results calculated by the baseline 
model. 
 
Table 1 Errors for cases #1 and #2  

 
 
The time and cost of case #2 is shown in Fig. 9. 
The figure (a) indicates a minimum duration of 
17 days while the figure (b) shows a minimum 
duration of 16 days. When UHC = 10, the 
resource usage cost had a larger effect on the 
total cost and thus the increase of duration would 
lead to the greater decrease of the total cost. The 
results indicated that the RFC took up about 20% 
of the total cost when UHC was set to 10 and 25% 
when UHC was set 20. The minimum duration 
was the same as that calculated by the baseline 
model, which can be seen from Table 1. When 
the duration was increased by about 12% from 
the minimum duration, the total cost was 
decreased by 12% (UHC = 10) and 15% (UHC = 
20), respectively.  
 

Fig. 8  Time and cost for case #2 
 
5  Conclusion 
This research proposed a time-cost tradeoff 
model based on the SPEAII to optimize the 
project duration and resource cost by integrated 
consideration of the resource-constrained project 
scheduling and resource leveling. Resource 
rehiring/releasing cost was proposed to measure 
the resource fluctuation. The impact of resource 
fluctuation was thus converted to costs which 
could be added into the resource cost as an 
objective function.  
 
The analysis of the time complexity of the model 
showed that the runtime was acceptable and had 
polynomial relationship with the number of 
activity. It took 30s to calculate the result for a 
ten-activity project. In additional, the model was 
evaluated in terms of the potential errors of 
resource fluctuation cost to justify the 
effectiveness of the chromosome representation. 
Ten testing cases were selected to evaluate the 
accuracy of the model. The test showed that in 
two out of the ten cases the model calculated 
some points that were dominated by the points 
calculated by baseline model. The errors were 
around 1%.  In most cases, the model had a much 
better performance than the proposed baseline 
model and more than 80% of the solutions 
calculated by the model dominated those 
calculated by the baseline model. The 
performance of the model in the computational 
experiment indicated that the model was 
reasonably accurate.  
 
However, due to the limitations of the baseline 
model, the developed model was not adequately 
validated. In addition, this model assumes the 
cost information such as unit cost of resource 
rehiring and releasing can be predetermined. In 
reality, it is sometime difficult to estimate all the 
cost information. Thus, the users have to run 
many times to compare the results if this cost 
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information is uncertainty. Future work can be 
done by introducing the stochastic cost model to 
develop a more realistic model. 
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