
Discrete time-cost tradeoff model for optimizing multi-mode
construction project resource allocation

The project scheduling and resource allocation problems have been studied using different

optimization methods. The resource leveling problem was proposed to reduce the resource

fluctuation and was always studied independently resource constraint problem. For

example, resource-constrained project scheduling problem (RCPSP) was proposed to

optimize scheduling under resource constraints. This research proposed a new model

which integrates the resource leveling problem and resource-constrained time-cost

tradeoff problem. The evolutionary multi-objective optimization technique, strength Pareto

evolutionary approach II (SPEA II) was applied to calculate the Pareto front of time and

cost. The resource leveling measured by the metric, resource release/re-hiring, was

converted to resource cost. The analysis of the time complexity of the model showed that

the runtime of the algorithm was polynomial times of the number of activities. The results

of case testing showed that the model was reasonably accurate in comparison with a

proposed baseline model.
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algorithm was polynomial times of the number of activities. The results of case testing showed that the model was 
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1. Introduction 

In building industry, simulation has been used to solve 

building design and construction. For example, a variety 

of building design tool has been proposed to improve the 

building design performance. Two problems should be 

considered in the integration of information system. One 

is how to solve the problems of information exchange and 

the other is the content of information, hierarchy and flow 

that information system needs to integrate [1]. 

During the construction phase, project resources are 

allocated according to site constraint and project schedule. 

However, the widely used critical path method (CPM) 

does not consider resource availability. Resource-

constrained project scheduling problem (RCPSP) was 

proposed to optimize scheduling under resource 

constraints. RCPSP was defined from three aspects of 

characteristics: resource environment; activity 

characteristics; and objective function [2].  

The RCPSP can be further divided into the single-mode 

and the multi-mode RCPSPs in terms of the number of 

modes in which resources are used or consumed. 

Simulation has been used to solve building design and 

construction problem. When the activity durations become 

variable in different modes, the combination of different 

modes generates varied costs. In this sense, the RCPSP 

may be evolved into a discrete time-cost tradeoff problem, 

which can be subdivided into the deadline problem and 

the budget problem [3]. The deadline problem is to 

minimize resource cost within the limit of the maximum 

project duration while the budget problem is to minimize 

the project duration within a maximum cost [4]. 

The methods for solving the discrete time-cost tradeoff 

problem are mainly divided into two categories: exact 

algorithms and heuristic algorithms. Since the RCPSPs are 

combinatorial problems in nature, the exact algorithms, 

such as branch and bound algorithm, use mathematical 

programming to find the optimum solutions [5].  

However, the exact algorithms are inefficient in the case 

of relative large projects with many activities or variables 

because the time-cost tradeoff is a NP problem that is hard 

to solve [6]. Simulation approach has been used to solve 

this problem. Simulation is not a new method for 

construction and has been already used to evaluate the 

project performance (e.g, design and scheduling), building 

control system [7, 8], and building design [9-11]. Due to 

the nature of the NP problem, the simulation runtime is 

relatively long in order to find the optimum solution.  

Therefore, some surrogate based methods can be used to 

find the optimum solutions. For example, Hu and Shen 

used surrogate model that was constructed by sampling 

points adaptively and generating approximation surfaces 

with fast computing time. The model can evaluate the 

influence of different risk factors of building energy usage 

[12]. 

Optimization methods such as genetic algorithms (GAs) 

and neural networks were applied to solve the building 

design and project scheduling problems [13, 14]. The 

objective function were usually set to minimizing the 

project duration [2, 15-17]. The chromosome 

representation of GAs could be permutation based, 

priority rule based and priority value. Serial and parallel 

scheduling techniques were adopted to convert the 

chromosome into the actual schedule [18, 19].  

The time-cost tradeoff problem can be divided into two 

types: continuous and discrete. The second type is also a 

sub-problem of the RCPSP. Early researches did not 

consider resource constraints when developing GA based 

approaches to solve time-cost tradeoff problems [20, 21]. 

In recent years, some researchers tried to investigate 

multi-mode discrete time-cost tradeoff using GAs [22-24].  

Resource fluctuation is mainly studied in the scope of 

the resource leveling problem, which describes the process 

of reducing the fluctuations in resource usage over the PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1299v3 | CC-BY 4.0 Open Access | rec: 20 Aug 2015, publ: 20 Aug 2015
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project duration. Undesired resource fluctuation may 

cause inefficient and costly implementation of 

construction, for example, frequently rehiring and 

releasing workers, lowering productive level and 

interruption of learning curve effects [25], incurring 

indirect costs for training cost of new workers [26]. These 

implicit costs incurred by undesired resource fluctuations 

may account for a large amount of resources costs. Exact 

methods and heuristic methods were used to solve this 

problem [26]. However, the exact methods are still 

inefficient for addressing projects with a larger number of 

activities. Heuristic algorithms, such as particle swarm 

optimization (PSO) and GA were adopted to solve 

leveling problems under different circumstances [25-27]. 

The algorithms search possible locations of noncritical 

activities to smooth the resource usage. The objective is 

usually to achieve uniform resource consumption. 

However, the resource leveling metrics proposed in these 

models measured and penalized the difference between 

fluctuating resource consumption and a predefined 

desirable shape [25]. Alternative shapes of resource 

profiles which may have more efficient resource 

utilization may be penalized. Thus, in El-Rayes and Jun 

[25], the authors developed two innovative metrics 

without predetermining the shape of the resources, release 

and re-hire (RRH) and resource idle days (RID). The RRH 

metric can be useful when the release and rehire of 

resource are allowed in projects while the RID metric may 

be used where additional idle resources are required to 

kept on site during low demand periods. 

Resource leveling and resource-constrained project 

scheduling problems are inherently interrelated. A certain 

schedule having a higher resource cost may have a lower 

resource fluctuation. However, the two problems were 

usually studied independently [28].  Only a few integrated 

models were developed to solve two problems 

simultaneously [29]. In Chan and Chua [30], authors 

presented a commercial GA package Genesis which was 

formulated to consider both the problems. The objective 

was to minimize the deviations of required resources from 

the available resource profiles. Resource leveling was 

addressed by calculating the resource underutilization and 

overutilization.  Hu and Flood [2] developed an integrated 

scheduling method to minimize the project duration and 

resource fluctuation by using the strength Pareto 

evolutionary approach II (SPEA II) which outperformed 

several other multi-objective optimization techniques in 

solving the resource-constrained project scheduling 

problem.  In [2, 27], authors combined resource allocation 

and leveling by using a GA technique. The objective was 

to minimize the total project duration under resource 

constraints and the appropriate moments of selected 

resources important to resource leveling. In Leu and Yang 

[31], authors integrated time-cost tradeoff, resource 

constraint and resource leveling based on GA. The sum of 

the absolute differences between actual resource usage 

and average resource usage was used as a metric of 

measuring the resource leveling. The ideal resource profile 

was predefined as a rectangular shape. In Lucko [32] the 

authors used GA for optimizing linear scheduling project. 

Only project duration was address.  

The literature review shows that PCPSP has not been 

fully explored in the integrated models. The researches 

mainly used a single objective function to minimize 

project duration, cost, or deviation between resource usage 

and the defined value. Resource leveling tended to be 

address in these models by adding a constraint. In 

addition, only single-mode RCPSP was integrated with 

the resource leveling problem. Therefore, this research 

aimed to develop a model that could solve the resource 

leveling problem and multi-mode RCPSP (more 

specifically, resource-constrained discrete time-cost 

tradeoff problems) simultaneously by using a multi-

objective optimization technique in order to achieve the 

optimum solutions.  

2. Problem description 

The mathematical description of the problem was 

defined in this section. The problem was defined from 

three characteristics: resource environment, activity 

characteristics and objective functions. Activities are 

subject to precedence constraint. The start time (ST) of an 

activity should be larger than the finish time (FT) of the 

preceding activities. dil denotes the duration of an activity i  
in a mode l. The total resource set K includes all the 

resource types of a project. The capacity of a resource 

type km K per time period is set to Rm. The quantity of 

resource m used by an activity i in a time period is riml if 

the activity is performed in a mode l.   

The problem is solved based on a multi-objective 

optimization technique whose objective functions are to 

minimize the resource cost and the total project duration. 

The cost is split up to two parts: resource usage cost and 

resource fluctuation cost.  

2.1 Resource Usage  

The resource usage cost (RUC) is defined as the cost of 

resources used by all the activities in a given activity 

modes. For a multi-mode RCPSP, an activity may have 

different modes each of which would require varied 

duration and resource amount. RUC denotes the total 

resource cost in the project duration T (see Eqs. (1) and 

(2)). mC  denotes the unit cost of the resource m. ,m tRU  

is used to calculated amount of resource m used at a 

particular time t. tZ  is equal to 1 if an activity i is 

performed at a time period t and o otherwise.  
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2.2 Resource fluctuation  

When resources are newly added or dismissed, 

additional costs will incur. Such costs may include 

training, transportation and bidding costs.  El-Rayes and 

Jun [25] proposed two metrics: release and re-hire (RRH) 

and resource idle days (RID), to measure the level of the 

resource fluctuation. The RRH and RID are calculated 

using Eqs. (3) and (4) [25]. 
1

1 1 1 1 2

1

1
( , ,..., )

2

T

t T T

t

RRH H MRD r r r r Max r r r






 
        

 


 Eq. (3)

 

 1 2 1

1

( , ,..., ), ( , ,..., )
T

t t t T t

t

RID Min Max r r r Max r r r r



   
 Eq. (4) 

Where: 

H=total increases in the daily resource demand;  
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rt = resource demand on day t;  

MRD=maximum resource demand during the entire 

project duration. 

The two metrics are agreeable though they are used in 

different circumstances. In this research, the metric of 

measuring the resource leveling RFC was calculated based 

on the metric RRH. RFC is calculated by Eq. (5). UHCm 

denotes the unit cost of hiring and releasing a resource 

type m and RRHm denotes the amount of a hired or 

increased resource m. The cost of MRD is alse added to 

the RFC to minimize the resource demand [2].  

 

mm mRFC UHC RRH C MRD      Eq. (5)

 

3. Model development 

The model consists of four modules: the evolutionary 

multi-objective optimization (EMO), the project 

scheduling, the resource leveling and the local search 

modules (see Fig. 1). The model begins and ends with the 

EMO module. The fitness values of the EMO are 

calculated based on time and cost fed into by the project 

scheduling and resource leveling modules. The local 

search module is to further optimize the results calculated 

by the EMO module. 

 

Generate an initial population 

 apply crossover and mutation

Move the eligible activities  to 

eligible set, and highest priority  to 

the scheduled set

 Calculate TF and determine  

noncritical activities 

Remove the noncritical from the 

schedule and put them to schedule 

Update preceding and succeeding 

activities 

Calculate the total cost of the 

defined schedule

1. Input the final population genes 

2. Conduct the GA algorithm to 

minimize RFC 

Evolutionary Computing Project Scheduling

Resource leveling module

Local search module

Calculate cost function

 
Fig. 1  Overview of the model 

3.1 Evolutionary Computing Model 

This module searches the solution space to find the 

Pareto optimal. If the objective is to minimize Fi(x), a 

point (i.e., a solution), x’   X, is Pareto optimal if there 

does not exist another point, x   X, such that F(x)   

F(x’), and Fi (x) <Fi (x’) for at least one function. This 

definition is illustrated in Fig. 1. The objective functions 

are to minimize the F1 and F2, and the solid dark points 

denote Pareto optimal (i.e., nondmoninated). The white 

points are non Pareto optimal (i.e., dominated) points 

because at least one dark points have larger values in 

terms of F1 and F2.  

F1

F2

nondominated dominated  

Fig. 2 Illustration of Pareto optimal 

SPEA II [33] was developed based on the natural 

evolutionary principle. SPEA II conducts crossover and 

mutation as shown in Fig. 1. Unlike the single-objective 

GA algorithm, SPEA II uses the environmental selection 

scheme to preserve the Pareto optimal. Pareto-based 

fitness assignment is used to identify nondominated 

vectors from the current population. The three high level 

goals are achieved in SPEA II [34]. 

(1) Preserving nondominated points at each generation. 

(2) Generating the known Pareto front and determining 

the nondominated sets and converging to the true 

Pareto front. 

(3) Generating a uniform distribution across the Pareto. 

 

The line in Fig. 2 can be imagined as a Pareto front line. 

The EMO algorithm needs to ensure known Pareto 

optimal is evenly distributed along the Pareto front line 

and to avoid cluster. SPEAII uses an external archive 

containing nondominated solutions previously found 

(Goal 1). Nondominated individuals are copied to the 

external nondominated set (see Fig. 1). SPEA II has an 

enhanced archive truncation method that ensures to 

preserve the boundary solutions. The fitness assignment 

strategy and GA operations considers both closeness to 

the true Pareto front (Goal (2)) and even distribution of 

solutions (Goal (3)). The nondominated points are also 

preserved based on the fitness values.  

Application of the SPEA II algorithm into this research 

requires specifying some parameters and variables. The 

following sections introduced methods of generating the 

initial population, calculating the fitness values, and 

defining crossover and mutation strategies. 

3.1.1 Initial population 

The scheme of chromosome representation should be 

first defined before generating the initial population.  

There are three encoding methods: permutation based, 

priority value based and priority rule based methods [17]. 

Hartmann [35]  applied permutation based encoding 

method into the multi-mode RCPSP.  In the permutation 

based method, each individual is given by a sequence of 

activity. In the beginning, the dummy start activity is 

added into the schedule, and then each activity is added 

into the schedule with earliest start time according to the 

activity sequence specified by the individual. For priority 

value based methods, each activity is given by a unique 

priority value and each time a precedence feasible activity 

with the highest priority value is selected to add into the 

schedule. Both the permutation based and priority value 

based methods can the serial scheduling scheme to convert 

the chromosome to genotype (i.e., schedule). PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1299v3 | CC-BY 4.0 Open Access | rec: 20 Aug 2015, publ: 20 Aug 2015
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Because this problem defined in this research has a 

broader scope than the classic RCPSP and the resource 

leveling module also needs to employ the gene 

representation, the priority based encoding approach was 

adopted.  

The specific encoding approach is illustrated in Fig. 3. 

The first section of chromosome denotes the priority 

values which are unique integers in the range from 1 to n 

(i.e., the total number of activities). The second section 

denotes the mode of activities. When the two sections are 

specified, chromosome gene values would be fed into the 

resource leveling module to generate genotype (i.e., 

schedule).  

A1 ... An

n:The number of activity

M1 ... Mn

Priority values

Mode of Activities

 
Fig. 3 Chromosome structure of GA module 

3.1.2 Fitness assignment 

SPEA II calculated fitness using Eq (6) [33]. R(i) is the 

function of “strength” S(j) calculated by considering for 

each individuals that the number of individuals which it 

dominates to and that the number of individuals which it 

dominates. The values of S(j) can be derived from cost 

and project duration. SPEA II uses a nearest neighbor 

density estimation technique to calculate D(i) in the fitness 

values and to ensure the points are evenly distributes 

along the know Pareto front and to avoid cluster.  

The fitness values of the nondominated individuals are 

less than 1. 

( ) ( ) ( )F i R i D i    Eq. (6) 

( ) ( )
t tj P P

R i S j
 

     Eq. (7) 

1
( )

2k

i

D i





   Eq. (8) 

Where: 

F(i) = Fitness value for solution i 

R(i) = Raw fitness value calculated by summation of 

the strength values S(j) of all the individuals j that 

dominate the individual i. S(j) is equal to the number of 

individuals that  the individual  j dominates.  

D(i) = Density estimator calculated by inverse of the 

distance to the k-th nearest neighbor 
k

i  

3.1.3 Crossover and mutation operations 

The crossover method of the activity mode uses the 

standard crossover method. However, for the activity 

priority values, the standard one-point crossover method 

cannot be used because the priority values should be kept 

unique in different gene positions. The crossover method 

developed by Hartmann (1998) was adopted to implement 

the crossover operation of the first section of the 

chromosome. The method starts with selecting a random 

point in the parent chromosome. Then scan the parent 

genes to select unique priority values that do not exist in 

the child chromosome [17]. For instance, in Fig. 4, the left 

part of the gene values in child 1 comes from parent 1 and 

the right part is from the parent 2 by left-to-right scan. The 

scan makes the right part of child 1 takes the first three 

gene values which are different from the left part of child 

1. Similarly, the left part of child 2 takes genes from 

parent 2 and the right part of genes are taken from parent 1 

by scanning different genes.  

 

1 2

4 3 52 3 1 4 5

1 2 3 4 5

2 3

4 3 5Parent 1

Parent 2

Child 1

Child 2

 
Fig. 4  Crossover of the first section of a 

chromosome 

 

The mutation of the priority values of activities is 

achieved by swapping two randomly selected genes in a 

chromosome. For the second section of the chromosome, 

the mutation operator modifies modes at each position 

with an equal probability. If a position is selected, a 

random value within the range of the total number of 

modes is selected.  

3.2 Project Scheduling Model 

When the activity and mode lists are fed into the 

module. The schedule would be built up in the project 

scheduling module.  Activities are scheduled according to 

the serial scheme scheduling approach [18].  Three 

activities sets are established, i.e., scheduled set, eligible 

set and decision set. At first, all the activities are placed in 

the decision set. The decision set contains all the activities 

to be scheduled. The scheduled activity set contains 

activities that have already been scheduled (i.e., starting 

and finishing time is determined).The activities whose 

precedent activities are scheduled and included in the 

scheduled set are then moved to the eligible set from the 

decision set. The eligible set contains all the activities that 

are allowed to be scheduled because the precedent 

activities have been added into the schedule chart. Several 

activities are moved to the eligible set simultaneously. 

Only the activity in the eligible set showing the largest 

priority value is selected to be moved to the scheduled set 

from the eligible set. This activity is added to the project 

schedule chart and the starting time is adjusted to meet the 

resource constraint. This process is repeated until all the 

activities in the decision set are moved to the schedule set. 

This whole process is also called the forward pass.  

The above-mentioned process starts from the first 

activity. The resource and precedent constraints are kept 

feasible in this process. On the other hand, it is possible to 

start from the last dummy activity. An activity is moved 

from decision set to eligible set when its succeeding 

activities are added to the schedule set. This process is 

regarded as backward pass. 

The last task is to calculate the total float (TF) for each 

activity.  The following method is used: the backward 

pass is used to ensure the activities to finish as late as 

possible. Then, by deducting the latest finish time by the 

earliest finish time, the TF of each activity is then 

calculated. This process may lead to the change of the 

total project duration. The reason is that some activities 

are constrained not only by the precedence but also 

resource availability. Shifting an activity would possibly 

cause an activity in the critical path to become a 

noncritical activity. Therefore, the final project duration 

should be re-calculated at the end of the resource leveling 

module by deducting the finish time of the last dummy 

activity by the start time of the first dummy activity.  
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3.3 Resource Leveling Model 

This module would calculate the time and cost needed 

by the fitness calculation of the EMO module. The first 

task is to adjust the noncritical activities (i.e., activities 

whose TF is larger than zero) to reduce the RFC. Where to 

locate these noncritical activities in the schedule is the 

critical work in the process of reducing RFC.  

Reducing RFC can be done by the reduction of RRH + 

MDR.  The noncritical activities were removed from the 

schedule and formed a noncritical activity list. In the 

subsequent steps, in terms of the priority values of the free 

activities, each activity will be added into a location where 

the maximum reduction of RRH + MRD should be 

achieved. After a noncritical activity is added to the 

schedule, the start and finish time of other noncritical 

activities are thus updated. Following this process, all the 

noncritical activities would be added to the schedule.  

Where to place the noncritical activities can be 

achieved by aligning a newly added noncritical activity to 

existing activities in the schedule. An example is shown in 

Fig. 5. The grey highlighted bar denotes the resource 

usage of the existing activities in the schedule. Two new 

activities with oblique lines are added to the schedule. To 

achieve the maximum reduction of RFC, the two activities 

should be aligned with the edge of existing activities. 

Thus, if the first activity may be located at P1, the 

reduction of RRH is R1 and if the second activity is added 

at the position P2, the reduction is R2 + R3.  

After added to the existing schedule, the two activities 

are merged to the existing schedule. The next noncritical 

activity is added based on the newly generated schedule 

where the maximum reduction of RFC could be achieved. 

This approach uses the greedy algorithm which makes the 

locally optimal choice at each stage with the hope of 

finding the global optimum. Therefore, each noncritical 

activity is added to the schedule one by one. The sequence 

of adding noncritical activities depends on the priority 

values of these noncritical activities. For all available 

noncritical activities, an activity with highest priority 

value will be chosen first to add the existing schedule to 

achieve the maximum reduction of RRH + MDR. 

However, this method cannot guarantee the final reduction 

of RRH + MDR attains maximum because the greedy 

algorithm only finds the locally optimum at each step 

without considering previous steps. This issue is discussed 

in the validation section. In the end, the total cost and 

project duration would be calculated in this module and 

returned to the EMO module. 

3.4 The local search module 

The calculated results by the EMO module are further 

optimized by searching for the possible positions of the 

noncritical activities to ensure the maximum reduction of 

RRH + MRD. For each individual, the activity priority 

value and mode are determined. Then, apply the project 

scheduling module to calculate the total float and free 

float based on the generated schedule by using backward 

pass. Then to further minimize RRH + MRD, El-Rays’ 

method is applied to search the potential positions of the 

noncritical activities [25]. El-Rays used a GA technique to 

search the possible locations of noncritical activities.  

From the “right” to “left” in the schedule chart, the most 

right noncritical activity (i.e., latest finish time) is shifted 

first by the calculated value in Eq.(9) [25].  After shifting 

this activity, update the FF and TF of preceding activities. 

In this way, each noncritical activity is shifted. One 

difference from the original El-Rays’ method is that the 

shifting process should keep the resource feasible. 

*
*

1

1

/

i
i i

i

i

FF
S M

TF

M P N

 
   



   Eq. (9) 

*iS  = Actual shift-day for the activity i*. 

Mi= Possible shift-day of the activity i*. 

FFi* = Free Float of the activities i* when resource 

constraints are considered. 

iTF  = Total Float of the activity i calculated by CPM 

without consideration of resource constraints. 

Tmax= Specified maximum project duration.  
    = Fraction truncation. 

P = priority value of activity i 

N = the total number of activity. 

 

Each individual of the population calculated by the 

EMO module would use the local search algorithm. If 30 

individuals are finally generated by the EMO module, 

thus, the GA algorithm would run 30 times. Since the 

local search cannot guarantee finding the global optimum 

location, the results may be not necessarily better than 

results calculated by the EMO module. Therefore, the 

results calculated by the local search module will be 

compared with the results of the EMO module. The better 

results would be recorded as the final results. 

 

3.5 Additional considerations 

RRH and RID are agreeable though each of them may 

have different applications. A strategy was proposed to 

reduce the cost incurred by both of the release/rehiring 

cost and idleness cost of resources. Here RIC is defined to 

measure the cost of resource idleness and RIC = unit cost 

for idle resource * RID. RHC has the same definition as 

RFC. In Fig. 5, when the resource level is maintained at 

the level 2, the total cost = RIC* + RHC* (see (a) in Fig. 

5). RIC* is equal to the area indicated by the oblique lines. 

RHC* is equal to the length of the two arrow lines.  The 

change of resource level may lead to different RIC and 

RHC. 

In (b) of Fig. 5, assume the resource level increased to 

the resource level 2 from the level 1, RHC is reduced 

while RIC is increased. To keep the total value of RHC 

and RIC minimum, the resource amount at the level 2 

should be selected because the increasing of RIC below 

the level 2 is smaller than the decreasing of the RHC. This 

strategy may apply after the final calculation and allow 

users to select the resource level that reduce both of RHC 

and RIC.  
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Fig. 5  Reduction of RHC and RIC 
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4. Model Validation 

The model validation includes the analyzing runtime, 

estimating the expected RFC error due to the proposed 

chromosome representation, and testing the effectiveness 

of the model through computational experiment.  

4.1 Time complexity analysis 

The time complexity is adopted to evaluate the runtime 

of the model in terms of the number of the activities. The 

local search module is independent of the number of 

activity and thus the time complexity analysis is not 

conducted for this module.   

Zitzler and Laumanns [33] analyzed the time 

complexity of the SPEA2 algorithm. The runtime is 

mainly composed of two parts. (a) Fitness assignment. 

This runtime is dominated by the density estimator 

(O(M2logM)), where M is the sum of the population and 

archive sizes. (b) Environment selection. The worst run-

time complexity of the truncation operator is O(M3), 

however, the average runtime is lower than O(M2logM). 

For the project scheduling module, the time complexity is 

O(
2n K ) where n is the number of activities and K is the 

number of resources [36].  

The runtime of the project leveling module is mainly 

consumed by calculating TF, adding and deducting the 

free activities, and calculating the RRH. The runtime of 

calculating the total float is about O(

1

n

i

i

TF


 ) where TFi is 

the total l float of the activity i. Since TFi should be less 

than D denoting project duration). The maximum value of 

1

n

i

i

TF



 is nD.  The runtime of the second part, adding and 

deducting the free activity is O(

1

( * )
n

i i

i

TF d


 ) where di is 

the duration of activity i. Each location between ES and 

FS of an activity should be checked to make sure the 

resource constraint is not violated and checking each 

location requires a runtime of O(di) to add or deduct the 

resources. The third part, calculation of RFC, takes O(D) 

where D denotes the total project duration. Together, the 

total runtime of the resource leveling module is 

O(

1

( )
n

i i

i

TF d D


 ). 

The total runtime for the three modules was thus 

calculated by summation of the runtime of each module. 

For each individual in the EMO module, the runtime is the 

sum of the project scheduling and resource leveling 

modules, i.e., 2

1

( )


 
  

 


n

i i

i

O d TF D n K . There are a total 

of  G P individuals where G denotes the generations and 

P denotes the population size for one generation. By 

adding the runtime of environmental selection, the total 

runtime of the worst case is 

2 3

1

{[ ( ) ] }


 
   

 


n

i i

i

O d TF D n K P M G
. Thus, the runtime shown 

here is acceptable because it is polynomial times of the 

number of activities.  

The testing of the total runtime of the model was done 

in a laptop with configuration of Windows 7 OS, 2.0 GHz 

CPU, 4G RAM. The EMO module is coded by C 

language while the other modules are coded in MATLAB. 

The total runtime of the three modules is about 30s for a 

project with ten activities.  

4.2 RFC error analysis 

The arrangement of noncritical activities in the resource 

leveling module uses greedy algorithm as indicated in 

Section 3.3. It is known that the sequence of adding 

noncritical activities to the schedule affects the value of 

RFC. However, even by checking all possible 

combinations of these noncritical activity sequence (the 

maximum number is n!), the greedy algorithm cannot still 

guarantee finding the maximum reduction of RFC. All the 

possible combinations of activity sequence (i.e., the 

priority values in the chromosome) would represent the 

search space of the EMO module. The EMO module 

searches the space to find the maximum reduction of RFC 

(i.e., minimum of RFC) in the space. However, the EMO 

module cannot find the global optimum of RFC. Two 

reasons may cause this result. One reason is that EMO can 

only find the near-optimum solutions as other 

evolutionary algorithms. The second reason is that the 

global optimum is not located in the search space of the 

EMO module and therefore the EMO module cannot find 

the global optimum of RFC even if searching the whole 

space. This section would address two issues related to the 

second reason: (a) when the global optimum is located in 

the search space; (b) if the global optimum is not located 

in the search space, what the expected error is. 

To allow the EMO module to find the globally 

optimum of RFC, the greedy algorithm must add the 

noncritical activities in terms of the activity sequence 

which represents one point in the search space of EMO, to 

the schedule. The key problem here is whether to find an 

activity sequence (i.e., priority values of activities) in 

which the noncritical activities can be added to the 

globally optimum locations of the noncritical activities by 

using the greedy algorithm. Only if the globally optimum 

locations of the noncritical activities can be found by the 

greedy algorithm can the global optimum of RFC also be 

found by the EMO module. The globally optimum 

locations of the noncritical activities can be found by the 

greedy algorithm if satisfying one of the following two 

conditions: (1) no more than two noncritical activities are 

adjacent to each other, or at least one most outside edge of 

the adjacent noncritical activities is not adjacent to any of 

the critical activities (see (a) and (b) in  Fig. 6); or (2) if 

the globally optimum location of noncritical activities 

violates the condition (1), the global optimum is still 

located within the search space if there exists an activity 

sequence in which the noncritical activities could be added 

to the same locations as those optimum locations of 

noncritical activities are located (see (c) in Fig. 6) 
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Fig. 6  Illustration of conditions (1) and (2) 

 

The conditions (1) and (2) are illustrated in Fig. 6. The 

grey activities are noncritical and the activity 1 and the 

activity 2 are added to the schedule in order. According to 

the greedy algorithm, activity 1 should be added at 

position P2 and activity 2 at position P1 (see (a) and (b) in 

Fig. 6). This sequence of adding the two noncritical 

activities could lead to the maximum reduction of RFC. 

For (b) in Fig. 6, activities 1 and 2 are adjacent to each 

other but the right edge of the activity 2 is not adjacent to 

the critical activity. Thus, both (a) and (b) meet the 

condition (1). In (c) Fig. 6, the condition (1) is violated. 

However by adding activity 1 and activity 2 in order, the 

global optimum reduction of RFC can still be achieved. 

Thus, (c) also meet the requirement of the condition (2). 

The arrangement of noncritical activities in (d) of Fig. 6 

shows the globally optimum locations of activities 1 and 

2. The total reduction is R1+R2+R3 (see (d)). However, if 

the greedy algorithm is applied, the locally optimum 

locations of the two activities are shown in (e) of Fig. 6. 

The reduction is R4+R5, which is less than the value of 

R1+R2+R3. 

Condition (1) is briefly proved here. Assume the 

globally optimum locations of all noncritical activities are 

known, and then a noncritical activity with the smallest 

reduction of RFC can be first removed from the schedule 

while the optimum locations of the other noncritical 

activities are kept unchanged in the schedule chart, that is 

to say, these noncritical activities have larger RFC 

reduction in their original positions. All the noncritical 

activities can be removed from schedule in this way until 

only the critical activities are remained. Then if all the 

noncritical activities are added into the schedule (with 

only critical activities) in the reverse order by using 

greedy algorithm, the final locations of the noncritical 

activities would achieve the same reduction as the 

previous globally optimum locations of the noncritical 

activities.  

When condition (1) is violated, the expected error is 

calculated to estimate the difference between the locally 

optimum locations found by EMO and the globally 

optimum locations. This can be shown in (c) and (d) of 

Fig. 6. If there are two activities are adjacent, the 

reduction is R4+R5 if the greedy algorithm is applied while 

the global optimum reduction should be R1+R2+R3. The 

difference (or, error) is about 1/3 of the globally maximum 

reduction if the values of R1, R2, R3. R4 and R5 are 

assumed to be close. Similarly, if there are three activities 

adjacent (i.e., violating condition (1)), the error is ¼ of the 

globally maximum reduction of RFC. If there are i 

activities adjacent, the error is 1/(i+1). Assume the 

average reduction of RFC for each noncritical activity is t, 

and each noncritical activity has an equal possibility of 

meeting or violating the condition (1). In other words, 

from the perspective of the expectation, there are a1 

noncritical activities that are not adjacent to noncritical 

activities and critical activities in the schedule chart (i.e, 

just like (a) in Fig. 6, meeting condition (1)), the error is 

0%; also there are a1 free activities that are only adjacent 

to one noncritical activity and critical activities (i.e., 

violating condition (1)) and the error is about (a1/2) x (1/3) 

because two noncritical activities are adjacent to form 

only one whole block (as seen from (e) of Fig. 6); 

similarly, there are a1 free activities that are only adjacent 

to i noncritical activities and critical activities and the 

error is (ai/i) x [1/(i+1)]. The total noncritical activities 

would be a1 x i. Since the assumption is made that each 

noncritical activity has an equal possibility of adjacent to 

different number of other noncritical activities, the 

expected error can be calculated by Eq. (10). 

1 1 1
1 1

1 1 1 1 1
0% ... / ( )

2 3 3 4 1 1 2

a a a
e a a i

i i i i

 
              

Eq. (10) 

If i is equal to 2 or 3, e would be about 8%, and if i 

becomes larger, e would become smaller. In addition, if 

the second condition (2) is considered, the value of e 

should be even smaller. Thus, it is concluded that the 

greed algorithm adopted in this research is reasonably 

accurate to ensure the locally optimum value of RFC 

calculated by the EMO module is close to the globally 

optimum reduction if it is assumes the EMO module has 

the ability to find the global optimum in the search space. 

5. Conclusions 

This research proposed a time-cost tradeoff model 

based on the SPEAII to optimize the project duration and 

resource cost by integrated consideration of the resource-

constrained project scheduling and resource leveling. 

Resource rehiring/releasing cost was proposed to measure 

the resource fluctuation. The impact of resource 

fluctuation was thus converted to costs which could be 

added into the resource cost as an objective function.  

The analysis of the time complexity of the model 

showed that the runtime was acceptable and had 

polynomial relationship with the number of activity. It 

took 30s to calculate the result for a ten-activity project. In 

additional, the model was evaluated in terms of the 

potential errors of resource fluctuation cost to justify the 

effectiveness of the chromosome representation.  

However, due to the limitations of the baseline model, 

the developed model was not adequately validated. In 

addition, this model assumes the cost information such as 

unit cost of resource rehiring and releasing can be 

predetermined. In reality, it is sometime difficult to 

estimate all the cost information. Thus, the users have to 

run many times to compare the results if this cost 

information is uncertainty. Future work can be done by 

introducing the stochastic cost model to develop a more 

realistic model. 
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