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ABSTRACT

In high-throughput sequencing (HTS) projects, the sequenced fragments’ duplicate rate is a key
quality metric. A high duplicate rate may arise from a low amount of input DNA and many PCR
cycles. Many methods for downstream analyses require that duplicates be removed. If the duplicate
rate is high, most of the sequencing effort and money spent would have been in vain. Therefore, it is
of considerable interest to estimate the duplicate rate after sequencing only a small subsample at
low depth (multiplexed with other libraries) for quality control before running the full experiment.
In this article, we provide an elementary mathematical framework and an efficient computational
approach based on quadratic and linear optimization to estimate the true duplicate rate from a small
subsample. Our method is based on up-sampling the occupancy distribution of the reads’ copy
numbers. Compared to an existing approach, we use an explicit and easily explained mathematical
model that accurately inverts the subsampling process. We evaluate the performance of our approach
in comparison to that of the existing method on several artificial and real datasets.
The same ideas can be used for diversity estimation in general. Software implementing our approach
is available under the MIT license.

Keywords: DNA sequencing, library complexity, occupancy distribution, linear programming,
diversity estimation

INTRODUCTION

As of early 2015, several genome-scale sequencing projects are underway that aim to sequence whole
genomes of specific cell lines or cancer entities in order to discover the structural and single nucleotide
variants. Other projects, such as the International Human Epigenome Consortium (IHEC), aim to
catalogue the methylation state of different cell types by whole genome bisulfite sequencing.

Sometimes, the cells of interest are difficult to obtain (e.g., oocytes, or highly pure cancer samples),
and one has to work with a limited amount of DNA. Current technologies then require several PCR
amplification steps, which may lead to high rates of PCR duplicates in the resulting sequencing
libraries. It is not beneficial to sequence a library with many duplicates at high depths: most of the
reads will then be duplicates of each other. A strategy adopted by many projects is to sequence a small
subsample of a library first, for example in the range of 1% to 10%, collect duplicate statistics, and
extrapolate the duplicate rate of the full library. Consequently, methods to obtain accurate estimates
of the duplicate rate while increasing the sequencing depth are of high interest for such large-scale
projects. They are also interesting from a mathematical point of view.

The duplicate rate of a dataset is usually computed as follows. The DNA fragments are mapped
using a read mapper and then compared by mapping position and by fragment length if it is not
constant. For paired-end reads, the positions of both ends are taken into account. The rationale
behind this approach is that at typical coverages, it is highly unlikely that independently generated
DNA fragments have the exact same starting position in the genome on both ends. This approach is
problematic if only short single-end reads are available or if the coverage is extremely high. In this
case, it is impossible to distinguish independent fragments from PCR duplicates, and the approach
will over-estimate the true duplicate rate. Another approach is to estimate the duplicate rate by
sequence identity (modulo sequencing errors). However, using exact identity will under-estimate the
true duplicate rate. This option is preferable if there is no reference genome to map the reads to.

These issues notwithstanding, there exist working operational definitions of the duplicate rate
and tools that mark and count duplicates, such as picard-tools MarkDuplicates and
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samtools rmdup (Li et al., 2009), whose source code is available online1. For our purposes, the
precise way of defining duplicates is of secondary interest. Instead, we focus on the question how the
duplicate rate increases as the sequencing depth increases.

An equivalent question is to ask about the library complexity, which refers to the number of
observable original reads (counting each fragment present in multiple copies only once) at a given
sequencing depth. Formal definitions will be provided in Section “Definitions”.

We are aware of two other works that address these questions. First, the MarkDuplicates tool
of picard-tools outputs a “return-on-investment” table among other statistics, that estimates the
useful coverage factor f (c) (new original fragments) if the current coverage, including duplicates,
was multiplied by c for each c = 1,2, . . . ,100.

The estimate is based on Poisson statistics and not on the occupancy vector of multi-copy
fragments, which in some situations leads to inaccurate results, as we discuss below. Second, the
preseq tool suite by Daley and Smith (2013) up-samples the occupancy vector of the observed
subsample, as we do. However, our methodology is different from theirs. Their estimate is based on a
classical empirical-Bayes estimator (Good and Toulmin, 1956) that is originally numerically unstable
and has extremely high variance for c≥ 2. Daley and Smith use rational functions to robustify it and
provide a smooth extrapolation for large sequencing depths.

Additionally an approach by Tauber and von Haeseler (2013) uses the Pitman Sampling Formula
(Pitman, 1995) to estimate the size of the gene universe.

In this article, we adopt an explicit optimization approach based on elementary probability
theory and combinatorics. We formulate the library complexity estimation problem first as convex
optimization problem and then give a more practical linear program to work around the ill-posedness
of the original problem. When applied to several high-throughput datasets, the approach of Daley
and Smith (2013) and ours give comparable results with an important difference: Our method always
returns an estimate with an approximate 95% confidence interval, whereas preseq sometimes
returns no answer. In some datasets this happens even for the majority of samples and preseq
provides too optimistic confidence intervals. In addition, we believe that our method is conceptually
easier to understand and therefore may add insight to the field.

DEFINITIONS

Partitioning Sequenced Fragments into Families
We assume that we have a large set of sequenced and potentially mapped single-end or paired-end
reads DNA fragments and a method that is able to identify reads as duplicates of each other. This can
be achieved either by comparing sequence content or mapping information.

We can thus partition the set of fragments into families, such that each family contains all copies
of a fragment and no other fragments.

We say that a family is of type c or a type-c family if it contains exactly c elements, one of which
is original and c−1 are duplicates.

The number ac of type-c families in the complete dataset is called the occupancy number of c.
The number of fragments in type-c families is thus c ·ac. The vector a = (a1,a2, . . .) is called the
occupancy vector of the dataset. If N is the total number of sequenced fragments, we have

∑
c≥1

c ·ac = N . (1)

The complexity Γ of the dataset is the number of original fragments, i.e. the total number of
families,

Γ = ∑
c≥1

ac. (2)

The duplicate rate of the full dataset is thus

d = (N−Γ)/N =
1
N ∑

c≥1
(c−1) ·ac . (3)

1http://broadinstitute.github.io/picard
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The Subsampling Process
When taking a random subsample of size n� N, a family of type c will have 0 ≤ k ≤ c of its c
members in the subsample. We call a family with k members in the subsample a family of subtype k
independently of its type c.

We can explicitly compute the probability with which a type-c family becomes of subtype k for
any c≥ 1 and each k ≥ 0: these probabilities are given by hypergeometric distributions.

The probability that a family of type c is of subtype k for sample size N and subsample size n is
given by the hypergeometric probability

P(N,n)
c,k =

(
c
k

)(
N− c
n− k

)
/

(
N
n

)
(k = 0, . . . ,c).

The reason is a standard combinatorial argument: There are
(N

n

)
possible size-n subsamples of a set

of size N, there are
(c

k

)
ways to choose k objects out of c, representing the copies of the particular

read, and
(N−c

n−k

)
ways to choose the remaining objects.

Note that families of subtype k = 0 are not observed, while families of subtype k≥ 1 are observed,
but it is unknown from which type c they originate.

For a given occupancy vector a = (a1, . . . ,aN) of the complete dataset, we can thus compute the
expected occupancy vector of the subsample as x = x(a) = (x0, . . . ,xn) with

xk = xk(a) = ∑
c≥1

ac ·P(N,n)
c,k (0≤ k ≤ n). (4)

The Estimation Problem
Given the observed occupancy vector o = (ok)k≥1 of the subsample consisting of n = ∑k≥1 k · ok
fragments, and given the size N of the full dataset, estimate the duplicate rate d or equivalently, the
complexity Γ, of the full dataset.

The presentation so far suggests that the problem can be addressed by estimating the occupancy
vector a = (ac) of the full dataset such that the expected occupancy vector x = (xk) of the subsample
given by Eq. (4) is close to the observed occupancy vector o = (ok). It should be noted that the precise
values of (ac) are not asked for, but estimating their sum Γ is sufficient for solving the problem.

The “classical” solution (Good and Toulmin, 1956) approximates the subsampling process by a
Poisson process that is then extrapolated for N/n≤ 2. Convergence acceleration methods of power
series can be used to extend this approach up to N/n ≤ 5. For larger factors, the variance of the
estimator becomes too large to be useful. This is exactly the reason why Daley and Smith (2013)
developed a robust extrapolation of this approach for larger N/n, based on rational functions.

In this work, we adopt a direct and explicit computational optimization approach to the problem.
Indeed, we translate the demand that x = (xk)≈ o = (ok) into an objective function and model the
constraints directly. Our approach allows to assess the uncertainty of the estimate and give confidence
intervals.

MODELING THE OPTIMIZATION PROBLEM
Before we state the optimization problem, a few remarks are in order.

Preliminary Remarks
1. There are several possibilities to measure the closeness between x and o, which we discuss

below.

2. The value of x0, i.e. the expected number of families that are never observed in the subsample,
cannot be related to an observation and does not take part in the objective function.

3. While N and n can be as large as several hundred millions and are the maximally possible
lengths of a and o, respectively, there are no fragments with excessively many copies in typical
real datasets. Thus the observed nonzero entries (ok) typically end at a small value Klast, i.e.,
ok = 0 for k > Klast. Because families of large type c would generate families of large subtype
k > Klast, we can effectively put an upper bound C on the read types to consider and restrict
the occupancy vector a to (a1, . . . ,aC). Likewise, this choice of C bounds the subtype of the
reads that can be reasonably generated by subsampling, and we limit the occupancy vector x to
(x1, . . . ,xK). It follows that we only need the hypergeometric probabilities P(N,n)

c,k for 0≤ c≤C,
0≤ k ≤ K. The choice of C and K is discussed below in Section “Linear Program Size”.
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4. While the true occupancy vector of the complete sample consists of integer counts, we shall not
constrain the estimates ac to integers. Solving an integer-constrained problem is much more
difficult, and our goal is not the precise estimation of the single ac values, but an approximate
estimate of Γ = ∑c ac.

We now discuss how to quantify the difference between the subsample’s expected occupancy
vector x = x(a) = (x1, . . . ,xK) and the observation o = (o1, . . . ,oKlast ,0, . . . ,0) with K ≥Klast elements.

Convex Objective Function from Approximate Maximum Likelihood
Consider the random variable Xk that counts families of subtype k after subsampling. Such families
arise from type-c families for any c≥ k, and the “success probability” for a type-c family to become
of subtype k is precisely P(N,n)

c,k . Thus we can write Xk = ∑c≥k Xk,c, where Xk,c has a Binomial

distribution with size parameter ac and success probability P(N,n)
c,k . Under mild assumptions, this can

be approximated by a Poisson distribution with parameter λk,c := ac ·P(N,n)
c,k . Assuming approximate

independence of the Poisson-distributed Xk,c (the only violation is the known size n of the subsample)
we can approximate their sum Xk by a Poisson distribution with parameter ∑c λk,c =∑c ac ·P(N,n)

c,k = xk
according to Eq. (4). For large xk, this is approximately a Normal distribution with expectation xk
and variance xk. (In fact, because of the known size, the Xk,c have a small negative correlation and
the overall variance is slightly smaller than xk.) With this approximation in mind, the (approximate)
maximum likelihood approach suggests to minimize

f1(a) :=
K

∑
k=1

(xk(a)−ok)
2/xk(a)

=
K

∑
k=1

(xk(a)+o2
k/xk(a))+ const , (5)

which is a convex function of x, and hence of a, as x(a) is a linear function of a.
While f1 would be the most principled objective function to use, several properties of the problem

make f1 both inconvenient and unnecessary to use in practice.

1. While there has been much progress on convex optimization methods, they are not as easy to
use, numerically robust or widely available as linear optimization methods.

2. We found that in particular the numerical robustness issues prevent us from successfully using
the existing libraries such as CVXOPT (Andersen et al., 2003). Realistic numbers of involved
fragments are approximately n = 106 and N = 108, while some of the small but still relevant
hypergeometric probabilities are 10−9.

3. Because of the “compression” effects of subsampling (we are trying to estimate an occupancy
vector a with C elements from a smaller occupancy vector o with K �C elements), it will
in most cases be no problem to fit x(a) to o almost exactly with several choices of a, and the
optimal objective function will be close to zero.

Linear Program
The above considerations suggest to use a linear proxy for f1. We replace each term by its square
root, and as xk ≈ ok, we replace the xk in the denominator by ok +1 to avoid singularities at zero. We
obtain the objective function

f (a) :=
K

∑
k=1
|xk(a)−ok|/

√
ok +1 . (6)

Each term approximately specifies how many standard deviations ok differs from its expected value
xk(a) for a candidate a (as long as ok ≈ xk(a), which we can expect from the solution given the above
considerations).

Using f , the problem can be cast as a linear program (LP) with variables (a1, . . . ,aC,x1, . . . ,xK)
and weights wk := 1/

√
ok +1 by transforming the absolute value term into linear inequalities using
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additional auxiliary variables (δ1, . . . ,δK) with δk ≥ |ok− xk|:

minimize
K

∑
k=1

wk ·δk such that (7)

ok− xk ≤ δk (k = 1, . . . ,K), (8)
−ok + xk ≤ δk (k = 1, . . . ,K), (9)

xk =
C

∑
c=k

ac ·P(N,n)
c,k (k = 1, . . . ,K), (10)

N =
C

∑
c=1

c ·ac , (11)

ac ≥ 0 (c = 1, . . . ,C) . (12)

Some observations on the LP follow.

1. The above constraints imply additional ones. For example, using that the expectation of the
hypergeometric distribution P(N,n)

c,· is (cn)/N, together with (10) and (11), we see that

∑
k

k xk = ∑
c≥1

ac ·∑
k≥1

k P(N,n)
c,k = ∑

c≥1
ac · (cn)/N = n,

i.e., the total number of fragments in x is constrained to be the same as that in o.

It also follows that xk ≥ 0 for all k, as well as ac ≤ N/c for all c and xk ≤ n/k for all k.

2. The variables (xk) can be eliminated from the problem by replacing xk with the appropriate
linear combination of a given by (10). The LP formulation here includes them for readability.

3. Solving the LP (7)–(12) will give one (out of possibly many almost equivalent) solutions for a,
from which we derive an estimate of the complexity Γ or of the duplicate rate d using Eqs. (2)
and (3).

4. In an optimal solution (a∗,x∗,δ ∗), the k-th term wk δ ∗k = δ ∗k /
√

ok +1 states approximately how
many standard deviations the observed value ok deviates from the expected x∗k for the computed
a∗. For subtypes k with sufficiently many observations, say ≥ 25, we may expect small values
(less than 1).

Approximate Confidence Intervals
We have already remarked that the problem of estimating a from o is ill-conditioned. Indeed, for large
enough c, two adjacent rows of the hypergeometric probability matrix, P(N,n)

c,· and P(N,n)
c+1,· have very

similar entries, and for an individual observed read of subtype k, the type c cannot be decided. There
may be other solutions a′ 6= a that achieve almost the same objective function value, i.e. x(a′)≈ x(a)
even though a′−a is large by any measure. Therefore an interval estimate [dmin,dmax] may be more
informative than a point estimate of d.

We proceed as follows. Given the optimal solution (a∗,x∗,δ ∗) of the linear program (7)–(12), we
set up a new linear program to minimize resp. maximize the duplicate rate (maximize resp. minimize
the complexity Γ = ∑

C
c=1 ac) under constraints that the admissible solutions do not differ much from

the optimal one. In particular, we constrain each term of the original objective function to stay within
two standard deviations unless it was already larger in the original solution,

wk ·δk ≤max{2,wk ·δ ∗k } (k = 1, . . . ,K). (13)

Additionally, we constrain the sum of these terms by

∑
k∈K!

wk ·δk ≤ ∑
k∈K!

max{Z,wk ·δ ∗k }, (14)

where K! := {k | ok ≥ 25} is the set of ks with a non-negligible amount of observations and Z > 0 is
a tunable parameter that we set to Z := 1 by default. We empirically found this choice to produce
approximate 95% confidence intervals. In summary, the two LPs to be solved are

minimize / maximize
C

∑
c=1

ac, (15)
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such that (8)–(14) hold. This produces solutions amin and amax, from which we derive the duplicate
rates dmax and dmin, respectively, by (3).

As a remark, we chose this particular approach for numerical robustness. While one could argue
that a more natural approach is to demand that the total variance V := ∑

K
k=1 w2

kδ 2
k be bounded by 4K,

this would entail solving a quadratically constrained program. Our attempts with freely available
solvers resulted in severe numerical problems, no solutions and even frequent crashes, and we found
the above strategy more robust and sufficiently accurate.

Linear Program Size
It remains to choose reasonably small values for the problem dimensions C ≤ N and K ≤ n, i.e., for
the lengths of the vectors a and x, respectively that enter the LP formulation. Let Klast be the maximal
type observed in the subsample, such that ok = 0 for all k > Klast, but oKlast > 0.

The probability that a type-c read generates a subtype-k read with k > Klast is given by pc,Klast =

∑k>Klast
P(N,n)

c,k . As no such reads were observed, we need not consider values of c where pc,Klast is
high, say larger than some threshold t := 0.5. If there were 10 such type-c reads, we would then
expect at least 5 with subtype larger than Klast instead of the observed zero reads. Thus we set

C := min
{

c≥ 1 :
Klast

∑
k=0

P(N,n)
c,k ≤ 1− t

}
.

Given C, we might set K := Klast, but as the error terms in the objective function measure the error
only up to the K-th term, we must choose a larger value to ensure that almost the whole probability
mass of the hypergeometric distribution for type C is contained in the considered range for K, say up
to an error of τ := 10−4. Thus for the given C, we set

K := min
{

κ ≥ 1 :
κ

∑
k=0

P(N,n)
C,k ≥ 1− τ

}
.

As an example, consider the observation o = (o1, . . . ,o5) = (65610,14580,1620,90,2) with
n = 100000 and Klast = 5. With N = 106, t = 0.5 and τ = 10−4, we find C = 57 and K = 16. Using
more relaxed parameters t = 0.2 and τ = 10−3, we find C = 40 and K = 11.

Reducing Linear Program Size
The strategy described in Section “Linear Program Size” is accurate and leads to small LP sizes for
most real datasets. However, in case of extremely high duplicate rates or extreme outliers (a few
families with extremely many copies in the subsample), an LP may become too large to be solved in
a few seconds.

If such a case occurs (say, if C� K > 50), we may resort to the following heuristic that sacrifices
a little accuracy at the benefit of considerably smaller problem size and increased speed.

Instead of using the real value of Klast of the observed occupancy vector o = (o1, . . . ,oKlast), we cut
off the observed occupancy vector at a smaller convenient index, say K0, and execute the estimation
procedure for a with this shortened vector. Correspondingly, the values of n and N for the LP must be
reduced (see below).

At the end, we separately add back the cut-off part as follows. As the sampling factor is n/N,
the resulting subtype of most type-c families is close to k = cn/N. Conversely, for large enough k, a
family of observed subtype k can be assumed to come from a family whose original type is close to
c = [kN/n], where [x] here denotes the closest integer to x. Thus for each k > K0, we increase a[kN/n]
by ok.

This procedure accounts for n0 := ∑k>K0 k ·ok observed fragments and N0 := ∑k>K0 [kN/n] ·ok
fragments in the full dataset, so the LP must be solved with n′ = n−n0 and N′ = N−N0 instead of
the original n and N.

We may expect that the error introduced by this heuristic is small because

1. the absolute number of affected families, ∑k>K0 ok is small;

2. the error introduced by inferring the wrong type c′ = [kN/n] instead of the true c has a small
effect on the resulting N′ if |c′− c| is small.
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Table 1. Left: average properties of different scenarios for artificial datasets: length of full
occupancy vector a, number of original reads, total number of reads, typical duplicate rate, number of
problems to solve. Right: size of evaluated real datasets. Abbreviations: M: million.

scenario len(a) ∑c ac reads dup.rate #problems

d = dirac 10 1.0 M 10.0 M 90 % 2500
e = easy 7 9.7 M 10.8 M 11 % 2500
h = hard 91 1.0 M 10.0 M 90 % 2500
m = monotone 16 5.0 M 10.1 M 42 % 2500

dataset #problems

exome 20700
rna 11600

SOFTWARE
We have implemented the point estimate and interval estimates for the duplicate rate in a software
package called dupre (for duplicate rate estimation). Python 3.4, together with the PuLP package is
required. The linear programs are solved with PuLP’s default solver, the Cbc (Coin-or branch and
cut) command line tool (CBC-CMD) from the COIN-OR project (Computational Infrastructure for
Operations Research2).

Our tool dupre is open source (MIT license) and may be obtained from its BitBucket code
repository3. We recommend to follow the README instructions at the repository for easy installation.
No commercial or proprietary optimization libraries are required.

The software takes as input an observed occupancy vector o = (o1, . . . ,oKlast) (provided as a file
or on the command line) and a target library size N and outputs point and interval estimates of the
duplicate rate. On demand, further useful properties of the problem can be provided, such as the LP
size (C,K) or the estimated full occupancy vector a.

The example in Section “Linear Program Size” can be run as follows (with -v for verbose output):

dupre -o 65610 14580 1620 90 2 -N 1000000 -v

Running dupre --help explains available options.
A separate tool bam2occupancy is available to compute the occupancy vector from reads in a

BAM file. It is provided as part of the dupre package and additionally needs the pysam package to
be installed.

Note that dupre itself is a general tool and not tightly connected to sequencing libraries. It is
of potential use in other fields that require estimating the increase of observed diversity when the
sampling depth increases, such as capture-recapture experiments in biodiversity studies.

EVALUATION
We compare dupre with preseq of Daley and Smith (2013) on

1. artificially generated occupancy vectors with different properties,

2. occupancy vectors obtained from several full and subsampled in-house datasets of different
types: Exomes and RNA-seq.

Some of our in-house datasets are confidential and cannot be released. However, we do provide the
occupancy vectors for all datasets in the same repository as the software and make it easy (a) to
reproduce our experiments and (b) to compare dupre’s estimates to those of other tools.

Artificial Datasets
We describe four different scenarios (dirac, easy, hard, monotone); for artificial full occupancy vectors
in the following paragraphs. Each scenario poses different challenges. A summary of each scenario’s
properties is given in Table 1.

For each scenario, we generate 50 instances, i.e., true occupancy vectors a(s,i), where s is the
scenario and i = 1, . . . ,50 enumerates instances. For each instance, we consider five different
subsampling ratios ρ ∈ {0.01,0.02,0.05,0.10,0.20}, where lower subsampling ratios create more
difficult problems. For each instance and sampling ratio, we generate 10 independent subsamples and
their occupancy vectors o(s,i,ρ,r), r = 1, . . . ,20. This yields a total of 10 000 problems.

2http://www.coin-or.org/
3http://bitbucket.org/genomeinformatics/dupre
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Figure 1. Results for scenario “dirac”. Left: Error of estimated duplicate rate (boxplots); red bars
show median, boxes show interquartile range; black bars show minimum and maximum except
outliers (blue crosses). The ideal estimate has an error of zero (green horizontal line). Positive values
state that the tool overestimates the true duplicate rate. Center: Fraction of problems solved for each
subsampling rate ρ ∈ {1%,2%,5%,10%,20%} and by each tool. Right: fraction of solved instances
where the output confidence interval contains the true solution. As both methods claim to output 95%
confidence intervals, this should be approximately 0.95 (green horizontal line). preseq produced
no solutions for ρ ≥ 0.02 and few for ρ = 0.01.

dirac We create an occupancy vector a by setting a10 := 1000000 and ac := 0 for c 6= 10; no
randomness is involved. Thus each family has exactly 10 members, for a total of ten million
sequenced fragments.

easy We create an occupancy vector a whose entries drop approximately exponentially at a given
rate r < 1. We choose ac uniformly around a target number Tc, between Tc/2 and 2Tc, and then set
Tc+1 = r ·Tc. We here use T1 := 7000000 and r := 0.1. This creates short occupancy vectors with
steeply decreasing values.

hard This scenario is similar to the easy one, but we use T1 := 80000 and r := 0.9. We obtain long
vectors whose entries are of similar size to each other.

monotone We set a1 = 2500000 and then each ac randomly uniformly distributed between 0 and
ac−1 until we reach zero. This creates monotone decreasing occupancy vector a.

Real Datasets
We additionally tested both tools on real occupancy vectors obtained from BAM files of projects at
University Hospital Essen. The available datasets consisted of 414 from exome sequencing and 232
from RNA-seq. The properties (library size, length of a, duplicate rate) varied considerably within
each scenario, creating a variety of problems of different difficulty and size. We computed the true
duplicate rates from the given BAM files with mapped reads and then created 10 random subsamples
for each of the five sampling rates ρ ∈ {0.01,0.02,0.05,0.10,0.20} for a total of (414+232+92) ·
10 ·5 = 32300 problems to solve.

Results
Each observed occupancy vector o(s,i,ρ,r), together with the known full sample size N of a(s,i) serves
as input to dupre and to preseq. For each problem, each tool outputs a point estimate and an
interval estimate for the duplicate rate; both dupre and preseq claim to provide approximate 95%
confidence intervals. We evaluate according to the following criteria:

1. number of instances solved without errors or crashes

2. the difference between the point estimate of the duplicate rate and the known true duplicate
rate, which should be close to zero and of small variation

3. the number of times that the true duplicate rate is in the estimated confidence interval, which
should be close to 95%.

Evaluations were automated with Snakemake (Köster and Rahmann, 2012) and took a few days
overall, including instance creation. Each single problem is solved in a few seconds up to a minute
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Figure 2. Results for scenario “easy”; cf. Figure 1.
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Figure 3. Results for scenario “hard”; cf. Figure 1.

with dupre. The running time is longer for smaller ρ because of the larger LP size that increases
with 1/ρ2. As shown below, preseq had convergence problems on several instances and took
extremely long times for some of them. In practice, running time for a single instance is not an issue.

Figure 1 shows the results for the “dirac” dataset. We see that dupre solves every instance and
keeps the 95% confidence interval promise for each subsampling rate. The point estimate errors of
dupre are close to zero, except for a few outliers at the lowest subsampling rates, which was to be
expected. Unfortunately, preseq shows messages for most of the problems and is not able to solve
them. It only solves a few problems with ρ = 0.01, on which it underestimates the true duplicate rate
by approximately 0.05.

Figure 2 shows the results for the “easy” dataset. Again, preseq cannot solve most of the
problems and does not keep the 95% confidence interval promise. When it does solve a problem, its
estimate is very accurate. Indeed, both tools estimate the duplicate rate accurately, even for small ρ .
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Figure 4. Results for scenario “monotone”; cf. Figure 1.
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Figure 5. Results for real exome datasets; cf. Figure 1.
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Figure 6. Results for real RNA-seq datasets; cf. Figure 1.

The larger variation in error of our tool dupre is partly due to the much larger numbers of solved
instances.

On the “hard” dataset (Figure 3), preseq improves: While it does not solve all problems, it
solves most of them and shows very low estimation error. Its confidence intervals are slightly too
narrow (95% is not reached). The estimation errors of dupre show larger variation around zero,
especially for low ρ , and the confidence intervals may be chosen too wide.

For the “monotone” dataset (Figure 4), the picture is similar: dupre solves all instances, gives
good (albeit slightly too wide) confidence intervals and shows a larger variation in errors, whereas
preseq fails to solve most instances, reports too narrow confidence intervals, but achieves excellent
point estimation.

The picture emerging so far continues on the first real dataset, the exome dataset. Again, preseq
cannot solve many of the problems for small ρ and gives too small confidence intervals. Both tools
are able to estimate the duplicate rate quite accurately. Median and lower and upper quartile of the
error are very close to zero, but we note that both tools produce several outliers, even for large ρ .

On the RNA-seq dataset (“rna”), preseq solves almost all problems, but still does not give
accurate confidence intervals for small ρ . The estimates of dupre have small bias (medians lie on
the zero line) but a large variation for ρ < 0.05, whereas the estimates of preseq are biased too
high with a lower variation. For ρ ≥ 0.1, both tools perform well.

DISCUSSION AND CONCLUSION
We have presented an elementary optimization approach to estimate the duplication rate in a large
sequencing library with N reads from a small subsample with n� N reads, typically n = 0.05 ·N.
The basis of the method is to estimate the occupancy vector of the full sample (i.e., the number ac of
original reads present with c copies for each c) from that of the subsample, for which we use a linear
program based on hypergeometric probabilities that capture the subsampling dynamics. We showed
that our method is effective in a large number of situations: it gives reliable estimates and confidence
intervals, whereas an existing method fails to solve several instances and frequently produces too
narrow confidence intervals.
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While our primary motivation to develop this approach was to explore the benefit of increasing
sequencing depth for a given library, it in fact solves a much more general problem with applications
in biodiversity, as evidenced by the classical statistical research on this problem (Good and Toulmin,
1956).

In the future, we want to implement the full convex optimization model, compare it to the linear
program used here, tighten our confidence intervals and compute them in a more principled way.
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