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Loss of vision is a severe impairment to the dominant sensory system. It often has a
catastrophic effect upon the sufferer, with knock-on effects to their standard of living, their
ability to support themselves, and their care-givers lives. Research into visual impairments
is multi-faceted, focusing on the causes of these debilitating conditions as well as
attempting to alleviate the daily lives of affected individuals. One of the methods is
through the usage of sensory substitution device. Our proposed system, Luminophonics,
focuses on visual to auditory cross modalities information conversions. A visual to audio
sensory substitution device a type of system that obtains a continual stream visual inputs
which it converts into corresponding auditory soundscape. Ultimately, this device allows
the visually impaired to visualize the surrounding environment by only listening to the
generated soundscape. Even though there is a huge potential for this kind of devices,
public usage is still minimal (Loomis, 2010). In order to promote the adoption from the
visually impaired, the overall performance of these devices need to be improved in terms
of soundscape interpretability, information preservation and listening comfort amongst
other factors. Luminophonics has developed 3 type of prototypes, which we have used to
explore different ideas pertaining to visual to audio sensory substitution. In addition to
these, one of the prototypes has been converted to include depth information using time
of flight camera. Previously, an automated measurement method is used to evaluate the
performance of the 3 prototypes (Tan, 2013). The results of the measurement cover the
effectiveness in terms of interpretability and information preservation. The main purpose
of the experiment reported herein, was to test the prototypes on human subjects in order
to gain greater insight on how they perform in real-life situations.
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ABSTRACT

Loss of vision is a severe impairment to the dominant sensory system. It often has a catastrophic effect
upon the sufferer, with knock-on effects to their standard of living, their ability to support themselves, and
their care-givers lives. Research into visual impairments is multi-faceted, focusing on the causes of these
debilitating conditions as well as attempting to alleviate the daily lives of affected individuals. One of the
methods is through the usage of sensory substitution device. Our proposed system, Luminophonics,
focuses on visual to auditory cross modalities information conversions. A visual to audio sensory
substitution device a type of system that obtains a continual stream visual inputs which it converts into
corresponding auditory soundscape. Ultimately, this device allows the visually impaired to visualize the
surrounding environment by only listening to the generated soundscape. Even though there is a huge
potential for this kind of devices, public usage is still minimal (Loomis et al., 2010). In order to promote
the adoption from the visually impaired, the overall performance of these devices need to be improved
in terms of soundscape interpretability, information preservation and listening comfort amongst other
factors.
Luminophonics has developed 3 type of prototypes, which we have used to explore different ideas
pertaining to visual to audio sensory substitution. In addition to these, one of the prototypes has been
converted to include depth information using time of flight camera. Previously, an automated measurement
method is used to evaluate the performance of the 3 prototypes (Tan et al., 2013). The results of the
measurement cover the effectiveness in terms of interpretability and information preservation. The main
purpose of the experiment reported herein, was to test the prototypes on human subjects in order to gain
greater insight on how they perform in real-life situations.

Keywords: Image Processing, Computer Vision, Auditory Display, Image Sonification

INTRODUCTION
A sensory substitution device is a type of system that converts information from one input sensor to
another output sensor while preserving the important functionality of the original sensor. Luminophonics
is the outcome of a research project that focuses only on visual to auditory sensory substitution (VASS).
Using an input device such as a camera, visual signals are captured and then sent to a processing unit. The
processing unit will then generate the corresponding soundscapes based on different visual-to-auditory
conversion algorithms. This algorithm map properties in the visual signal to the corresponding audio
properties. The output soundscape is then transferred to an audio output device such as speaker or a pair
of headphones.

One of the main motivation behind Luminophonics is to promote the usage of such sensory substitution
devices for the visually impaired. This category of people commonly suffers from vision loss that is
beyond repair with medication or visual correction. According to the World Health Organization (2014),
there are 285 million people who are visually impaired worldwide with 39 million completely blind. Most
importantly, about 90% of the world’s visually impaired live in low-income settings. Visual to auditory
sensory substitution device is a great approach for such people due to its characteristic of being low
cost (Maidenbaum et al., 2014) and the fact that it does not involve any surgical procedure. By using
such system, they can visualize their surroundings by listening to and interpreting the soundscape which
contributes towards allowing them to lead a normal life.

We have built a total of 3 main prototypes to examine the details of cross-modalities conversions.
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The prototypes implement different algorithms and parameterizations and therefore function differently
from each other. In order to measure their relative effectiveness, in the past we have applied automated
methods to measure the relative performances of the 2D prototypes in terms of interpretability and also
the information preservation of the conversion. Although these methods provide a fast way to evaluate
sensory substitution devices, conducting experiments on human subjects is still essential because the
quantitative method does not cover other crucial subjective elements, such as human reactions towards
the system, sound preferences, feasibility in real-life situation, amongst others. These Psychology-based
factors can only be measured in a controlled environment with human subjects.

Apart from providing rudimentary colour and shape vision, our 3D prototypes grants users the ability
to perceive depth through stereoscopic vision. Human make use of the depth information frequently
in our daily activities especially during the navigation. There are not many visual to auditory sensory
substitution system that integrates depth in their conversion process. One of the system that uses depth
information is See ColOr developed by Bologna et al. (2007) where a stereoscopic camera is used to
estimate depth by triangulation. Our approach differs from others, since we include depth information by
implementing a time-of-flight (TOF) depth camera on top of our prototype. TOF is a special technique
to capture the surrounding producing a depth map. This camera operates by modulating visible and
near-infrared radiation in each pixel which will then measures the amplitude, offset and phase of the
received radiation Lange and Seitz (2001). By using the measurement, a depth map can be constructed in
real-time. Thanks to this depth map, we can extend one of our prototypes with a new and critical type of
information.

PROTOTYPES
To date, Luminophonis consists of 4 different prototyppes. All four prototypes have been designed with
different ideas especially the latest prototype which incorporates depth information in the conversion
process. This experiments reported in this paper were designed to measure the effectiveness of each
prototype in the scenario of navigation. On top of that, the experiments can answer the question of whether
depth information is indeed important by comparing the results of our 2D and 3D prototypes.

Prototype 1
This prototype was the first Luminophonics sensory substitution system developed. As demonstrated in
(Tan et al., 2010), this system defers from many other similar system because Prototype 1 employs image
processing methods from Bradski (2000) to transform the input image before generating the soundscape.
Input image frames are simplified using K-means clustering to reduce the noise and also bring out the
salient regions. A technique called connected-component labeling is used to create multiple blobs out of
the simplified regions. Soundscapes are then generated by processing the blobs from left to right. This
swiping technique picks up the properties such as colour, location and size. The visual cues differentially
affect audio properties which in turns will be combined to form a soundscape. The colour of the blobs is
associated with sound timbre, whereas intensity of the colour is associated with sound pitch.

Prototype 2
This prototype is similar to Prototype 1 which uses a swiping technique. However, Protototype 2 swipes
from top to bottom where the topmost blob will be heard in the soundscape first and the bottom most
blob will be heard last. Addition to that, Prototype 2 makes use of differential stereo volume to translate
horizontal blob positions into sound properties. For each blob, if the volume at the left is higher then the
blob is situated slightly to the left or vise-versa. On the other hand, if the user hears the sound of the blob
equally in both ear, the blob is located directly in the middle region. For other properties like colour and
shade, Prototype 2 react like Prototype 1.

Prototype 3
Prototype 3 departs from using image processing to simplify the image frames. Prototype 3 revisit a
popular visual to auditory sensory substitution device called vOICe by Meijer (1992). Meijer uses very
simple technique in his system for auditory image representations where image frames are pixelated using
a simple filter. The advantage of using this technique consist of processing speed and the fact that a
decent amount of visual information is preserved. One of the main disadvantage is that the user needs
more time to learn how to interpret the resulting soundscapes. Prototype 3 improves on vOICe mainly by
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incorporating colour information in the representation. By applying this enhancement, Prototype 3 has
more information because vOICe only uses grayscale image. From the results reported in Tan et al. (2013),
Prototype 3 scores better compared to vOICe in terms of information preservation and also interpretation.

Prototype 4
Depth is one of the fundamental types of low-level information extracted by our visual system. Thanks
to stereopsis, we are able to perceive depth and differentiate near and far objects. It is not common for
current sensory substitution system to incorporate depth information due to the issue of cacophony. One of
the underlying goals of the research in this paper was to incorporate depth information into one of our 2D
prototypes, given how crucial depth is to navigation. From the results of our performance measurement
(Tan et al., 2013), Prototype 3 ranked as the best out of all of three 2D prototypes. Therefore, we have
decided to incorporate depth information into Prototype 3. A time-of-flight camera by DepthSense was
used as the depth camera of choice in our setup. Using the resulting depth map, this prototype slices
the image into 3 regions distinguished by depth, with the near region ranging from 0 to 3m, mid region
ranging from 3m to 5m, and the far region for anything beyond 5m. When using this prototype, the users
need to manually select which region they want to focus on. From the experiment experiment reported
here, it is possible to conclude whether whether this type of depth implementation is ideal for navigation
purposes.

EXPERIMENT DESIGN
Human use vision to perform various functions including object recognition, navigation, assessing
distance and balance control. Unfortunately, visual to auditory sensory substitution devices are still
lacking behind real human vision. Most sensory substitution devices developed so far attempt to tackle
only a limited scope of visual functionalities. Possible causes of this situation, include cross-modal
functional incompatibilities and differences in sensory bandwidth. Therefore, instead of testing the
prototypes against real life scenario, we focused the experiment design on navigational-based tasks.

The experiments were designed with the intention to compare all 4 of our prototypes in the domain of
navigation. The main questions we hoped to answer include:-

• how important depth information is in helping to navigate

• how long do users need to learn how to use the system

• how each prototype performs when applied to real-life navigation based scenarios

Objectives
In general, there are a few main objectives this experiment wanted to achieve. With the introduction
of depth prototype, there is a need to find out whether the incorporation of depth did indeed improve
the usability of Luminophonics devices. This experiment aimed to provide valuables insight on the
implementation of depth by comparing the performance of the prototype against the other prototypes
that did not use depth. Moreover, user feedback was deemed equally important in obtaining a deeper
understanding of this type of prototype.

During navigation, it is suggested that human do generate memory maps (both spatial and episodic
memory) to help them maneuver themselves (Burgess et al., 2002). If the human subject do indeed develop
memory maps during the course of navigation, then journeys involving paths or regions experienced
previously would be easier, which in turn should shorten traveling time. In one of our experiments, every
human subject in order to complete a task, needs to move forward to attain some goal and then return
back to the starting point, in order for us to measure the time difference of both trips. The outcome of this
experiment allows us to determine which prototypes are better in helping the users in generating memory
maps.

Before the experiment, the users went through a one-time tutorial session on how to use the Lumino-
phonics devices. Users were taught the basic functionalities of the devices and also how to use the system
to navigate. This procedure was intentionally designed so that no prototype was unfairly advantaged
relative to the other prototype. Without a tutorial session, users would need to learn how to use the system
during experimental tasks and therefore the performance of each prototype would depend additionally on
its specific learning curve.

3/9

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1289v2 | CC-BY 4.0 Open Access | rec: 10 Aug 2015, publ: 10 Aug 2015

P
re
P
rin

ts



Apart from the above mentioned memory effect, the experiment aimed to measure the effectiveness
of different prototypes in directly guiding the subject through their journey. In real life, we use vision
to avoid obstacles and navigate along a winding road. In our experiment, there will be several obstacles
were placed around the navigation course for the users to evade by listening to the soundscape from the
prototype. An effective prototype will guide users correctly hence reduce the number of the obstacles
knocked.

Navigation Course

Figure 1. Front View of Experiment Site Figure 2. Rear View of Experiment Site

A fixed navigation course with obstacles is designed for every human subject to walk through. This
course was similar to the path used in the experiment conducted by SeeColor by Bologna et al. (2009).
Both Figure 1 and Figure 2 shows the front view and the rear view of the experiment site. From the
figures, it is apparent that the experiment was setup in an indoor flat classroom. The purpose of using
an indoor venue instead of an outdoor field was partly due to the consistency of lighting condition. In a
controlled environment with consistent lighting throughout the day, the differences experienced by users
is minimized for all test cases. Audio interference can also be reduced so that the users can listen closely
only to the generated soundscape. On top of that, indoor room is safer to the human subjects when they
are performing their tasks blindfolded.

Referring to Figure 3, the red wavy line indicates the path the user needed to walk along. Obstacles
were placed next to, and all along, this path. The green flag indicates the end of the path. When the user
reaches the green flag, they were required to perform a task involving object recognition.

As seen at Figure 1, a 90m long path was drawn with yellow floor-tape stuck on to the floor. Yellow
colour was chosen because it is easier to be detected and recognized for the first-time user. Barricade
floor-tape with alternating red and white stripe were taped on both left and right side of the yellow tape.
This tape was intended as an indicator for users when they were not focusing at the correct angle. The
yellow path guided users from the origin to the target point, where they were expected to perform a
specific task. After finishing the task, users were required to return back to the origin. Time was measured
for each direction the user navigated, i.e: from origin to target, and from target back to origin.

A total of 10 paper boxes were placed randomly throughout the path. They acted as obstacles that the
users needed to avoid. For every box that was knocked was counted which in turn affected the result of
user and also the performance of the prototype in use. Besides walking and avoiding obstacle, at the end
of the path the user needed to select a balloon of a specific colour designated by the experimenter. The
subject was required to select one out of three coloured balloons (i.e. red, yellow or blue). This task was
designed to measure the object recognition functionality of each prototype. The time needed for each user
to complete this task was also recorded.
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Figure 3. Course Path Design
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Experiment Process
There were a total of 4 prototypes available to be tested by experimental subjects. Every subject needed
to use all of the prototypes in order to produce an unbiased result. Because there were 24 possible
sequence combinations, a minimum of 24 subject was required for the experiment. After learning the
basic operation of different prototypes, subjects were randomly assigned to a unique sequence they needed
to complete later. For example, if the sequence is 4213, the user started with Prototype 4, followed by
Prototype 2, 1 and 3. Since the experiment course was the same for every prototype, implementing this
approach enabled us to counterbalance the study. This reduced any sequence bias introduced via learning
and memory (i.e. prototypes later in a sequence benefit from transfer learning obtained from prototypes
earlier in a sequence).

The whole experiment was carried out in 5 working days where every participant was allocated a one
hour slot to complete all 4 prototypes. 28 subjects signed up before the week, however only 16 attended
the actual experimental session. For each session, there was a experimenter to handle the experiment.
All of the subjects have normal vision. Before the start of the session, a suer was given a 4 number
sequence. After that he/she was given a brief tutorial on how each prototype worked. The session
started after the subject told the experimenter that he/she was ready. Following the sequence give, the
subject completed the course journey using one prototype after another. At the end, subjects were given a
feedback form. Besides the quantitative performance results such as time taken and number of obstacles
knocked down, the feedback forms were used in order to capture insights pertaining to subjective aspects
of prototype performance. Questions pertaining to the emotional response and opinion of users were
asked and recorded.

RESULT AND DISCUSSION
Every human subject was allocated an hour for each session, and no subject exceeded this allocated time.
However, there were 2 out of 16 users ended the session prematurely. Both of them showed signs of
discomfort when using the devices. They were encouraged to go through part of the experiment but they
took longer than usual to make decisions during navigation. Apparently, they were not able to distinguish
sound patterns within the generated soundscapes. A large number of objects were knocked on their trials
and they were not able to follow the yellow path correctly. If we can extrapolate, this suggests that there
might exist a group of users, amongst the visually impaired, that is unable to use this kind of device on
the first attempt. This group of users may be perceiving soundscapes in a way that is deeply different
from the average user. This difference may contribute towards difficulties in recreating images and spatial
relationships from soundscapes. Without specially tailored training material and tutorials targetted at this
group of users, an excessively large amount of additional time to self-learn this kind of device might be
necessary. When rolling out this sensory substitution device to the public, it is advisable to formulate
training programs that can cater for both groups of users.

Navigation Result
Table 1 hows the average travel time in seconds separated by different prototypes labelled using P1 as
Prototype 1, P2 as Prototype 2, P3 as Prototype 3 and P4 as Prototype 4. The navigation results are
grouped into 3 different values where the first row shows the average total time traveled, the second row
shows the average time taken from the origin to the target and finally the third row shows the average time
taken for user to return from the target back to the point of origin.

P1 P2 P3 P4
Total 293.0714 337.9286 360.9286 366
From Origin 183.9286 199.2143 217.7857 254.3571
Back to Origin 109.1429 138.7143 143.1429 111.6429

Table 1. Average Travel Time

There was no statistically significant difference between groups as determined by one-way ANOVA
(F(3,52) = 1.9497, p = 0.1376). However, the average travel time results show that Prototype 1 is better
than the other 3 prototypes, in the sense that its total average task completion time was less than 300s,
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while other prototypes required at least 10% more time. For the total time taken to travel, Prototype 3 and
Prototype 4 obtained very close results with 360s for Prototype 3 and 360.9286 for Prototype 4.

The results are contrary to our original expectation, since from our previous tests with our own
performance measurement tool (Tan et al., 2013), Prototype 3 fared the best in terms of information
preservation and also interpretability. However, the results were consistent with the subjective opinions
expressed by users, where most users felt that Prototype 1 was faster when generating soundscapes
from frames, which in turn facilitated quick decision making during navigation. Prototype 1 takes 0.5s
generating a soundscape from a frame, whereas Prototype 2 takes slightly less than 1s to perform the same
task. As for the depth variant of Prototype 3, it takes at least 2s for soundscape generation. In a navigation
scenario, normal human performance relies on quick judgment rather than a lengthy thought process
before making the next decision (i.e. taking the next step) (Findlay and Gilchrist, 2003). Naturally human
does gaze fixation to guide our movement to appropriate the landing target. On average, we fixate our
gaze 2 steps ahead in a short period of time (about 800ms - 1000ms) before the limb is placed (Patla and
Vickers, 2003). Similarly, during the experiment, subjects tend to move the camera left-right or up-down
to emulate gaze fixation in real life which helps in increasing the accuracy of their next action (Mennie
et al., 2007).

All prototypes demonstrated that return times were considerably reduced compared to the time taken
for users to travel from the origin to the target. Prototype 4 showed a 56.1% decrease in time and is the
prototype with the most time reduction out of the four prototypes. Apart from a significant reduction in
return time, users of this prototype also tended to knock fewer obstacles on their way back to the origin.
Prototype 1 came in at second with 40.67% time reduction. Prototype 2 and Prototype 3 yielded similar
results, with 30.37% and 34.28% time reductions respectively.

This suggests that users create mental images/maps, on their first trip from origin to target, by listening
to the soundscapes being generated while navigating. On their return trip, they presumably rely less on
soundscapes because they can use the mental images/maps created on their previous trip as a guidance.
It is not clear why Prototype 4 has such an improvement compared to its counterpart without depth
information. However, the creation of mental images tends to be directly correlated to the information
contained inside the soundscape. Prototype 1 converts relatively less visual information and therefore it
helps in mental image recreation. From user feedback, mental images/maps are retained only for each
individual prototype period. Subjects need to recreate a new mental image for the next test. This might be
due to the fact that users are inexperienced in using this type of device. With proper training and exposure,
we believe that users can be taught how to recreate rich mental images/maps from soundscapes with more
information and how to prolong these mental images/maps.

Balloon Recognition Result
At the end of the path, users were asked to choose a specific balloon based on colour. Skills to locate the
position of the balloon and also to distinguish balloons and other objects were required in order to perform
this task. The table 2 shows the average time (in seconds) the users took to choose the correct balloon.

P1 P2 P3 P3 with Depth
Average Time 78.92857 80.78571 72.71429 83.28571

Table 2. Average Balloon Recognition Time

The results from this aspect of the experiment do not exhibit an obvious pattern as with the navigational
aspect. This could be due to the simplistic nature of the test, given that the main goal of the experiment
focused on navigation rather than object recognition. In the future we could conduct an experiment to test
all four prototypes focusing on object recognition as described in our ”Swiping with Luminophonics”
experiment (Tan et al., 2010). Comparing the four prototypes, users of Prototype 3 took 72s on average
to choose the correct balloon while for the other prototypes they took 78.93s or more. Evolving from
vOICe (Meijer, 1992), we did indeed expect Prototype 3 to be the best performer in this case, since it
converts relatively more visual information than the other prototypes. In a task that requires more visual
information like balloon recognition, Prototype 3 performs better compared to the results it obtains from
the navigational task.
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Depth Implementation
From these results, we can see that the prototype that incorporates depth information (i.e. P4) using
a time-of-flight camera, does not result in a significant improvement over the other three prototypes.
It performs worst both in terms of the navigation and recognition tasks. From our survey of the users
who went through the experiments, most of them felt that our depth implementation did not provide a
significant advantage over the other prototypes. In fact, some of them were even confused during the
navigation course while using the prototype.

There are 2 possible reasons behind this poor result. The first one is due to our particular method for
incorporating depth. Our method of letting users choose depth range during navigation not only caused
confusion but also interrupted their flow of spatial reasoning. As mentioned earlier, during navigation
users rely on snap judgments and quick reflexes, therefore prototypes which can provide faster refresh
rates will perform better. This implementation slows down users’ thought processes and creates additional
confusion on top of the usual sound cacophony generated by VASS devices. The second reason, consists
of our particular depth camera selection. Time-of-flight cameras do give us depth information but the
QQVGA resolution (160x120) of the depth map is too limited for this type of application.

Even though our results are apparently discouraging towards depth information in VASS devices, we
still believe that depth can be useful, and that it is a case of finding the right approach for incorporating
this type of information. Additional effort needs to be put into researching new ways of converting and
integrating different types of visual information, including depth. It is possible that new and effective
ways for incorporating depth information will involve both advanced artificial intelligence and cognitive
science, leading to methods that maximize information conversion, whilst reducing sound confusion and
user interaction.

CONCLUSION
In summary, experimental designs based on human subjects are crucial for measuring the performance of
sensory substitution devices. The experiment reported herein presents us with several valuable insights.
Generally, it confirms that our understanding of this type of device is still basic. With this basic knowledge,
the prototypes we build can typically only perform well in terms of one function. From our results, a
faster prototype performs better in terms of navigation but often performs poorly at object recognition
due to insufficient information. Trade-offs need to be made in order to create a good sensory substitution
device unless we have a better understanding on how human brains work. In spite of our negative results
pertaining to depth, we remain firm in the belief that future sensory substitution devices need to make use
of this type of information. More work needs to be done to design better devices and algorithms that can
adequately exploit the data from current depth cameras. Before visual to auditory sensory substitution
devices can be widely adopted, there are a few major hurdles that researchers need to overcome, which
include a better understanding on how the brain interprets visual information, more sophisticated hardware
and also better algorithms that can convert visual information more effectively.
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