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ABSTRACT

Whole genome bisulfite sequencing (WGBS) is the current method of choice to obtain the methylation
status of each single CpG dinucleotide in a genome. The typical analysis asks for regions that
are differentially methylated (DMRs) between samples of two classes, such as different cell types.
However, even with current low sequencing costs, many studies need to cope with few samples
and medium coverage to stay within budget. We present a method to conservatively estimate the
methylation difference between the two classes. Starting from a Bayesian paradigm, we formulate an
optimization problem related to LASSO approaches. We present a dynamic programming approach
to efficiently compute the optimal solution and its implementation diffmer. We discuss the dependency
of the resulting DMRs on the free parameters of our approach and compare the results to those
obtained by other DMR discovery tools (BSmooth and RADMeth). We showcase that our method
discovers DMRs that are missed by the other tools.

Keywords: differential methylation, whole genome bisulfite sequencing, optimization, LASSO,
dynamic programming

INTRODUCTION
DNA methylation, a chemical modification that affects 70% to 80% of the approximately 30 million
cytosines in CpG dinucleotides in the human genome, is an epigenetic process playing a key role in
X-chromosome inactivation (Gartler and Goldman, 2005), genomic imprinting (Li et al., 1993), stem
cell differentiation and gene regulation (Bock, 2012). Aberrant methylation is associated with various
diseases, such as obesity (Xu et al., 2013) or different types of cancer (Hansen et al., 2011).

It is therefore of considerable interest to compare the methylation state of every single CpG
dinucleotide in the human genome in two groups of samples, a case group and a control group, and to
find genomic regions where the methylation differs significantly. Case vs. control group might be
two different cell types, or tumor samples vs. normal (blood) samples. A differentially methylated
CpG (DMC) is either hypo- or hyper-methylated in the case group in comparison to the control group,
meaning that it has a significantly lower resp. higher methylation level. Multiple adjacent DMCs
form a differentially methylated region (DMR).

The current gold standard method to obtain the genome-wide methylation status at single basepair
resolution is whole genome bisulfite sequencing (WGBS): DNA is treated with sodium hydrogen
sulfite (bisulfite), transforming unmethylated cytosine into uracil that is sequenced as thymine, but
leaving methylated cytosine unchanged. After C/T-tolerant read mapping and comparison against the
reference sequence, the methylation status of every CpG can be inferred.

The methylation status of the same CpG in different samples may differ due to biological variation,
and the (average) methylation level of a particular CpG in a group of samples may be estimated as
the ratio of reads showing C and reads showing C or T at the cytosine in question. Of course, the
precision of such an estimate depends on the read coverage at that site and on the number of samples,
both of which may be low in experiments with a limited budget. Therefore, reliable detection of
DMRs is a challenge with currently available WGBS data.

Related work Several groups have addressed the problem of detecting DMCs and DMRs. A basic
method to detect DMCs between two samples is Fisher’s exact test (Lister et al., 2009). As this
method is only suited to compare two samples at a time, it does not account for biological variation.

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1287v3 | CC-BY 4.0 Open Access | rec: 2 Sep 2015, publ: 2 Sep 2015

P
re
P
rin

ts



An Optimization Approach to Detect Differentially Methylated Regions from Whole Genome
Bisulfite Sequencing Data

At low coverage, it suffers from low statistical power.
BSmooth (Hansen et al., 2012) uses smoothing to “borrow” information from neighboring CpGs

and thereby increases its power to detect DMRs. The approach is based on the assumption that the
true methylation level varies smoothly across the genome. First, the approach uses local-likelihood
smoothing to estimate the methylation level of each single CpG per sample and then uses the averages
of the smoothed values per class to compute estimates of the mean differences and standard errors per
CpG site to form a test statistic similar to the one used in a t-test.

Bisulfighter (Saito et al., 2014) is based on a hidden Markov model (HMM) whose states represent
hyper-methylation, hypo-methylation and no differential methylation. The transition probabilities
are inferred based on the probability distribution of the distances between neighboring CpGs. This
enables Bisulfighter to detect short as well as long DMRs. Bisulfighter pools all samples of a group
into one aggregate sample and therefore does not account explicitly for biological variability.

Recently, Bayesian methods have been explored, where prior assumptions about methylation rates
can be encoded in the prior distribution. Posterior estimates of methylation levels and differences
can then be computed from the (beta-distributed) prior and the (binomial-distributed) likelihood
function. The beta-binomial approach is flexible and computationally efficient. One may for example
compute the (parametric) posterior distribution of each class methylation level, or the maximum
a-posteriori estimate for the class methylation difference. Three recent tools, RADMeth (Dolzhenko
and Smith, 2014), MOABS (Sun et al., 2014) and BEAT (Akman et al., 2014), make use of the
Bayesian beta-binomial approach.

Our approach Our work follows the Bayesian paradigm as well, but (a) with more detailed prior
assumptions (i.e., we do not use the beta-binomial model), and (b) using approximations that cast the
maximum a-posteriori-estimation computational as a strictly convex optimization problem related to
LASSO (least absolute shrinkage and selection operator) approaches (Tibshirani, 1996; Tibshirani
and Wang, 2007). We estimate the (unknown) true group-specific methylation rate at each CpG by
using both the available (small sample and low coverage) data and certain smoothness assumptions.
Our target function that can (in principle) be optimized using any toolbox for convex optimization, or,
as we show here, be discretized and solved efficiently by dynamic programming. We are not aware
that a similar solution approach has been proposed before. Our DMC estimation procedure outputs
conservative (shrunken) estimates of CpG methylation differences between the two classes. DMR
calling then outputs regions of consecutive DMCs according to the user’s parameters.

To validate our results, we compare called DMCs and DMRs with those obtained by other tools,
namely BSmooth and RADMeth, and showcase some of the differences. In this methodological
article, we do not report on specific genes or promoters or attempt to give biological interpretations.

DMC DETECTION AS AN OPTIMIZATION PROBLEM
Input, Output and Notation
We assume that we have processed the raw sequence reads into the following format.

There are m samples, indexed by t = 1, . . . ,m, belonging to two classes k ∈ {⊕,	}. We write K(t)
for the class of sample t. There are n CpGs (e.g., on a chromosome) indexed by i = 1, . . . ,n. The data
then consists of two matrices C = (C(t)

i ) representing the number of methylated cytosines at CpG i
in sample t and N = (N(t)

i ) representing the sum of the numbers of methylated and unmethylated
cytosines. We also assume that the distance di between consecutive CpGs i−1 and i is known.

We will estimate the true methylation level µ
(t)
i for each CpG i and sample t under assumptions

that we list below. The true methylation level may differ from the observed C(t)
i /N(t)

i due to sampling
variance, especially at low coverage. We also assume the existence of a class methylation level µi,k

for each CpG-position i and class k ∈ {⊕,	}. Differences between µ
(t)
i and µi,K(t) can be interpreted

as biological variation within a class.
We say that CpG i is a differentially methylated CpG (DMC) between the two classes if |µi,⊕−

µi,	| is sufficiently different from zero. A differentially methylated region (DMR) is an interval of
contiguous DMCs with a given minimum length.

The goal is to estimate the unknown class methylation levels µi,⊕ and µi,	 for all i from the given
data under certain assumptions for regularization, which we discuss next.

Assumptions
The following assumptions describe a null model for typical data without any exceptional features.
Deviations from this null model (that we will be able to detect) may either indicate problems with the
data or the object of interest: differential methylation.
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1. µ
(t)
i ≈C(t)

i /N(t)
i : The sample methylation level µ

(t)
i is close to the observed ratio C(t)

i /N(t)
i . The

degree of assumed closeness depends on the read coverage at CpG i: lower coverage allows
larger variation. More precisely, given N(t)

i and µ
(t)
i , the random variable C(t)

i has a binomial
distribution with these parameters.

2. µ
(t)
i ≈ µi,K(t): The sample methylation level µ

(t)
i is close to the class methylation level µi,k for

the sample’s class k = K(t). The degree depends on the (biological) within-class variability
between the samples.

3. µ
(t)
i ≈ µ

(t)
i−1 and µi,k ≈ µi−1,k: Adjacent CpGs in the same sample and in the same class are

expected to have a similar methylation level, depending on their spatial distance.

4. µi,	 ≈ µi,⊕: For most CpGs, we do not expect differential methylation. Therefore the methyla-
tion difference between the classes is (close to) zero.

Formalization of Assumptions
We now formalize the notion of ≈ in all of the above assumptions. We write µ for the collection
of all (m+2)n variables µ

(t)
i and µi,k for all CpG sites i, samples t and classes k. Our approach for

estimating µ is based on (approximate) maximum-a-posteriori estimation from the data. We write
f (µ |C;N) for the a-posteriori density.

Assumption 1. above is formalized by a likelihood function p(C | µ;N), while assumptions 2.–4.
describe prior expectations about typical methylation levels and are formalized by a prior density
π(µ). Note that (N(t)

i ) is assumed to be fixed and not part of the random model.
By Bayes’ Theorem, the a-posterior density is proportional to the product of the likelihood and

the prior:

f (µ |C;N) ∝ p(C | µ;N) ·π(µ)

Maximizing f is thus equivalent to minimizing − log p(C | µ;N)− logπ(µ).

Likelihood function

Consider the random number of observed methylated cytosines C(t)
i at site i in sample t when µ

(t)
i

is known and N(t)
i is fixed: C(t)

i has a binomial distribution B
N(t)

i ,µ
(t)
i

with expectation N(t)
i µ

(t)
i and

variance (σ (t)
i )2 := N(t)

i µ
(t)
i (1−µ

(t)
i ). For sufficiently large N(t)

i , it can be approximated by a normal
distribution with the same moments; its density is an approximation to p(C | µ;N).

p(C | µ;N)≈∏
i

∏
t

1√
2π(σ

(t)
i )2

· exp

(
− (C(t)

i −N(t)
i µ

(t)
i )2

2(σ (t)
i )2

)
. (1)

The key point here is that the density is concentrated around its mean and decreases quadratically
in the exponent. The variance (σ

(t)
i )2 unfortunately depends on the unknown parameter µ

(t)
i , which,

however, should be close to C(t)
i /N(t)

i . For the purpose of estimating the variance only, we approximate
it by a regularized estimation using one pseudocount: µ

(t)
i ≈ (C(t)

i +1)/(N(t)
i +2), i.e.,

(σ
(t)
i )2 ≈ N(t)

i ·
C(t)

i +1

N(t)
i +2

·
(

1− C(t)
i +1

N(t)
i +2

)
. (2)

This gives us an approximation of the variance that is independent of the unknown parameter µ
(t)
i .

Then the factor
√

2π(σ
(t)
i )2 does not depend on µ

(t)
i anymore and is a constant. We thus obtain

− log(p(C | µ;N))≈−∑
i

∑
t

N(t)
i (N(t)

i +2)2

2(C(t)
i +1)(N(t)

i −C(t)
i +1)

(
C(t)

i

N(t)
i

−µ
(t)
i

)2

+ const . (3)
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Prior density
We model the unknown prior density π(µ) with three factors corresponding to assumptions 2. to 4.:

π(µ) = πclass(µ) ·πspace(µ) ·πdiff(µ) (4)

The factor πclass(µ) makes a statement about the within-class variability of the methylation level
at each site. We assume that most differences |µ(t)

i −µi,K(t)| are small and that the probability density
for larger differences decreases exponentially with the difference. We therefore assume

πclass(µ) ∝ ∏
i

∏
t

exp
(
−αclass;i,K(t) · |µ(t)

i −µi,K(t)|
)
. (5)

A large parameter value of αclass;i,k states that the difference is concentrated close to zero, so there is
little variation in class k at CpG i. We discuss below how appropriate parameters can be chosen.

A similar assumption is made for the closeness of methylation levels at adjacent CpG sites i−1
and i. We could model the closeness in each individual sample or in each class. To keep the model
simple and because each sample methylation level is already tied to its class methylation level by (5),
we only model the closeness of class methylation levels between adjacent CpGs, thus avoiding
redundancy in the model.

πspace(µ) ∝ ∏
i

∏
k∈{⊕,	}

exp
(
−αspace;i,k · |µi,k−µi−1,k|

)
, (6)

where the parameter αspace;i,k depends on the basepair distance between CpG sites i and i−1.
Finally, we make a similar distributional assumption for the difference between the two class

methylation levels |µi,⊕−µi,	|. Most CpG sites are not differentially methylated and large differences
are (exponentially) rare:

πdiff(µ) ∝ ∏
i

exp(−αdiff;i · |µi,⊕−µi,	|) (7)

Objective function
With the above considerations, the optimization problem is to minimize the objective function

− log( f (µ |C;N)) = ∑
i

∑
t

N(t)
i (N(t)

i +2)2

2(C(t)
i +1)(N(t)

i −C(t)
i +1)

(µ
(t)
i −C(t)

i /N(t)
i )2

+∑
i

∑
t

αclass;i,K(t) |µ(t)
i −µi,K(t)|

+∑
i≥2

∑
k∈{⊕,	}

αspace;i,k |µi,k−µi−1,k|

+∑
i

αdiff;i |µi,⊕−µi,	|

(8)

for given weights α = (αclass;i,k,αspace;i,k,αdiff;i) and given observed data C and N.
The objective function is (strictly) convex in the unknowns µ . We note that closeness to the

observed data is modeled by a quadratic term, whereas the prior assumptions are encoded in `1-
terms; thus the optimization problem is related to the LASSO (least absolute shrinkage and selection
operator; Tibshirani (1996); Tibshirani and Wang (2007)). The main difference to the standard
LASSO approaches is that we have several `1 terms with different weights in the objective function.
This prohibits the direct application of existing LASSO algorithms to solve the problem.

Choosing weights
To choose meaningful weights α = (αclass;i,k,αspace;i,k,αdiff;i), one has to know properties of the
within-class variation of methylation at each site, of the “horizontal” correlation of methylation
levels, and of the frequency of differentially methylated sites, respectively. This is unrealistic in
most scenarios. However, we may be able to robustly estimate moments of the distributions of the
differences by examining reliable parts of the given data.

We first reduce complexity by supposing that the weights αclass and αdiff are independent of class
or position (i.e., they are constants independent of i and k) and that αspace;i depends only on the
basepair distance di to the previous CpG site (and not otherwise on i).

To estimate αclass, we can assess properties of typical values of |µ(t)
i −µi,K(t)| by tabulating these

values at high-coverage CpG sites. Here it is justified to approximate µ
(t)
i by C(t)

i /N(t)
i and µi,K(t) by
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Figure 1. Visualization of parameters, data and terms in the target function. Square nodes
correspond to unknown parameters to be estimated. Round nodes correspond to observed data. Edges
correspond to differences between parameters or a parameter and data the objective function (thin:
absolute difference, bold: quadratic difference). Variables x,y correspond to assumptions about
(discretized) methylation levels during the dynamic programming solution.

either their mean or median. Plotting the empirical quantiles of the differences against the theoretical
ones given by (5) in a Q-Q plot, we can check the model assumptions and estimate a reasonable range
for αclass. By equating the theoretical mean or median of the distribution (5) with the empirical one,
we obtain a point estimate for αclass. Similarly, we obtain diagnostic Q-Q plots and estimates for αdiff.
We present an example in the Supplement.

As αspace;i depends on spatial distances between CpGs, we compute an individual distribution
for each possible (small) distance. For all adjacent CpGs with high overall coverage and genomic
distance d between 2 and 25 bp, we compute the methylation level difference |µi,k − µi−1,k| by
taking the estimated levels as proxies for the true ones. This yields a median value for each distance
d = 2, . . . ,25. Linear regression yields a predictive function L(d) of the median for larger distances (up
to a distance where no predictions make sense). Assuming that L(di) is the median of |µi,k−µi−1,k|
differences at CpGs with distance d = di, we obtain αspace;i = ln(2)/L(di) by equating medians.

With the weights estimated from data in this way, they may be influenced true differentially
methylated CpGs or by outliers; both effects are not desired for the null model. Therefore these
weights only represent a first estimate and should be fine-tuned in applications by systematically
changing them and observing the output size (number of DMRs, number of CpGs in DMRs).

SOLUTION BY A DYNAMIC PROGRAMMING APPROACH

The optimization problem given by Eq. (8) has (m+2)n variables µ
(t)
i and µi,⊕,µi,	, where n is the

number of CpGs on a chromosome and m is the number of samples. A realistic setting is that n is
of the order of 2.5 million and m = 6, yielding 20 million variables. This will often be a too large
problem for an all-purpose quadratic programming solver.

While it is possible to subdivide the problem into smaller ones (e.g., a large distance between
two adjacent CpGs means that their methylation levels are essentially uncorrelated, so one does not
need to model them as connected) and use standard (commercial) solvers to obtain an exact solution,
we here propose a different approach that exploits the specific structure of the problem and is fast in
practice. It comes at the expense of discretizing a part of the possible solution space, i.e., the class
methylation levels are only considered as a discrete set µi,k ∈ {0,ε,2ε, . . . ,1} =: M with 1/ε ∈ N.
The running time then depends on |M|= 1+1/ε . In practice, it is sufficient to use ε = 0.05, as one is
usually not interested in a more exact determination of the methylation level. We propose a dynamic
programming approach to solve the discretized optimization problem.

Let Vj(x,y) be the optimal value of the objective function up to CpG j under the condition that
µ j,⊕ = x ∈M and µ j,	 = y ∈M. In other words, define
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Vj(x,y) := min
µ:

µ j,⊕=x,
µ j,	=y

j

∑
i=1

[
αdiff |µi,⊕−µi,	|+[[i≥ 2]]αspace;i

(
|µi,⊕−µi−1,⊕|+ |µi,	−µi−1,	|

)
+∑

t

( N(t)
i (N(t)

i +2)2

2(C(t)
i +1)(N(t)

i −C(t)
i +1)

(µ
(t)
i −C(t)

i /N(t)
i )2 +αclass |µ(t)

i −µi,K(t)|
)]

. (9)

For j = 1, computing the |M|2 values V1(x,y) for each x ∈M, y ∈M requires only solving simple
“local” one-dimensional problems by finding optimal values µ

(t)
1 for all samples t; see Figure 1 (left).

Writing z = µ
(t)
1 , each problem has the form

minimize F(z) := w(z− p)2 + v|z−q|, (10)

where p :=C(t)
1 /N(t)

1 is the data, q := µ1,K(t) is the class methylation rate (the given x or y, depending
on the class of sample t) and w,v are the appropriate weights from (9). Such a one-dimensional
strictly convex problem (with w > 0,v > 0) can be explicitly solved. Let F∗ := minz F(z) and
z∗ := argminz F(z). Then

F∗ = F(z∗), z∗ =


p if q = p,
max{p− v/(2w),q} if q < p,
min{p+ v/(2w),q} if q > p.

(11)

The optimal value is then V1(x,y) = αdiff |x− y|+∑t F∗(t)1 , where F∗(t)1 is the optimal solution (11)
of (10) for sample t for the given x,y at the first CpG. Note that for j = 1, the “connection term”
weighted with αspace;i does not exist.

For j ≥ 2, we claim that

Vj(x,y) = min
x′,y′

[
Vj−1(x′,y′)+αdiff |x− y|+αspace;i

(
|x′− x|+ |y′− y|

)
+∑

t
F∗(t)j

]
, (12)

where F∗(t)j is the optimal solution of the local problem (10) for sample t at CpG j with known class
methylation rate q ∈ {x,y}; see Figure 1 (right).

The proof that (12) is correct follows the usual inductive argument as for the Viterbi algorithm for
HMMs: Assume that Vj(x,y) has a smaller value, say u, than the right-hand side of (12), and consider
the class methylation rates x′,y′ at CpG j−1 that result in the optimal u. Since all the terms in (12)
are constant or optimal, the only possible explanation is that we already missed a smaller value for
Vj−1(x′,y′). Descending the chain down to V1 leads to a contradiction.

Therefore we compute a sequence of |M|× |M| matrices Vj, j = 1, . . . ,n, where each Vj depends
only on the previous matrix. To obtain the final result, we see that V := minx,y Vn(x,y) is the overall
optimal value. To reconstruct the optimal sequence of class methylation levels, we additionally store
traceback pointers, i.e., the values of x′,y′ minimizing (12) for each ( j,x,y) in O(n|M|2) space.

To analyze the running time, we note that there are n|M|2 values to compute. According to (12),
each value Vj(x,y) can be computed in O(m+ |M|2) time, leading to a running time of O(mn|M|2 +
n|M|4). (With current small sample sizes m = 6, and the proposed |M|= 21 with ε = 0.05, the time
is linear in the number n of CpGs. In fact, for n = 30 ·106, we obtain mn|M|2 +n|M|4 ≈ 5.9 ·1012.)

The space requirement of O(n|M|2) may be reduced to O(|M|2 + n) by a divide-and-conquer
technique following the lines of Hirschberg’s technique for pairwise sequence alignment (Hirschberg,
1975). In practice, the αspace;i term vanishes for large distances between CpGs, and one can start a
new independent problem.

DMR Calling
After computing class methylation values for every single CpG site, we call DMCs and DMRs as a
function of the following user-defined parameters: the minimally required methylation difference
∆ for a CpG to be a DMC, the minimum size S (in terms of number of CpGs) of a DMR, the
minimally required mean methylation difference ∆ of each size-S window in a DMR, and optionally
the maximally allowed number s of consecutive non-DMCs in a DMR (“skip” parameter, s� S),

We first create a binary sequence δ = (δi) ∈ {0,1}n of DMC indicators by comparing each
|µi,⊕−µi,	| with threshold ∆. Short runs of zeros (non-DMCs) of length ≤ s are filled in with 1s (the
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default is s = 0, so no relabeling of non-DMCs as DMCs occurs). Next we determine the start indices
of size-S windows with all ones whose mean methylation difference at at least ∆. The resulting runs
of ones are the resulting DMRs.

As a post-processing step, DMRs called by different parameter sets can be joined, e.g., one
might use (∆,S,∆,s) = (0.2,5,0.3,1) to find good candidates of intermediate length and additionally
(0.7,1,0.0,0) for clearly differential single CpGs.

Software
The optimization approach described above has been implemented in the diffmer (DIFFerentially
MEthylated Regions) software1. Installation and usage instructions are on the project overview page.
The software is written in Python (version 3.4 or newer is required) and makes use of just-in-time
compilation with numba and LLVM for performance-critical code. Running diffmer consists of
two steps:

1. Estimating class methylation levels (diffmer estimate) requires tabular count data in
BED format (CpG position, followed by absolute number of methylated and total reads at each
CpG in each sample), sample-to-class assignment (either on the command line or via a file) and
setting appropriate weights (defaults are provided); see the repository README for details.
This step produces tab-separated output of estimated class methylation levels.

2. Calling differentially methylated CpGs and DMRs (diffmer dmrs) uses the estimates from
the first step and requires user-provided thresholds (∆,S,∆,s); defaults are provided. Called
DMRs are output in BED format. For each DMR, we report the genomic interval, the number
of CpGs in the interval, the mean absolute methylation difference, the kind of DMR (hyper- or
hypo-methylation of the case class vs. the control class (+1 or -1; or 0 for mixed), and finally
the sequence of signed class methylation differences for each CpG in the region.

EVALUATION
We compare our approach to the existing popular approaches BSmooth and RADMeth on two real
WGBS datasets, a public one on the social status of macaques, and an unpublished one on different
types of uveal melanoma that is being studied at University Hospital Essen.

Datasets
The “macaques dataset” of Tung et al. (2012) consists of six DNA samples from female rhesus
macaques, three individuals of low social rank and three individuals of high rank. The study states a
relationship between DNA-methylation and social rank. Each sample consists of roughly 27 million
CpGs at an average coverage between 11× and 14×. The data can be obtained with accession number
GSE34128 from Gene Expression Omnibus2.

The “uveal melanoma dataset” (provided by Michael Zeschnigk, Ludger Klein-Hitpass and
Bernhard Horsthemke, University Hospital Essen) compares two different types of human uveal
melanoma tissue. Each type is represented by two samples with roughly 28 million CpG-sites at
about 35× coverage. The data is currently not publicly available.

Dependence of the Solution on Parameters
The number of discovered DMRs (and DMCs within DMRs) is influenced by two distinct types of
parameters: the α weights for estimation, and the thresholds (∆,S,∆,s) for the caller. We estimated
the α weights as follows.

estimated weights used weights
dataset αclass αdiff αspace;i αclass αdiff αspace;i

macaque 34.83 33.50 ln(2)
0.00180·di+0.054 34.83 16.75 3 ln(2)

0.00180·di+0.054

melanoma 17.82 11.09 ln(2)
0.00224·di+0.033 17.82 11.09 3 ln(2)

0.00224·di+0.033

The weights αdiff and αspace;i have the biggest impact on the result: A larger value of αspace;i yields
smoother class methylation values, while αdiff controls the number of resulting DMCs and therefore
the number and size of DMRs and detection sensitivity. With the parameters as stated above, we
observed little smoothing across adjacent CpGs. Therefore we scaled αspace;i with a factor of 3. On
the macaque data we found few and small DMRs with the estimated αdiff, so we scaled it by 0.5.

1https://bitbucket.org/genomeinformatics/diffmer/
2http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34128
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Figure 2. Total number of DMRs (y-axis: log-scale) as a function of the threshold ∆ (mean
methylation difference; color) of the required minimum size S of a DMR (x-axis). Left: macaques.
Right: uveal melanoma.
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Figure 3. Venn diagrams comparing the number of DMCs in DMRs detected by diffmer, BSmooth
and RADMeth. Left: macaques; right: uveal melanoma. Parameters were chosen to obtain an
approximately equal number of DMCs in DMRs for each method.

With the weights fixed in this way, we set ∆ := 0.1 and varied the thresholds S and ∆ (minimum
DMR size and mean methylation difference). The resulting number of discovered DMRs is shown in
Figure 2. The total size of detected DMRs in both datasets differs strongly for the same parameters:
There are much less differential methylated regions detected in the macaque dataset than in the uveal
melanoma dataset, although the overall number of CpGs in the genome is comparable. Because
the weights suggest that intra-class variability is considerably lower, we may speculate that there
is indeed much less differential methylation present in the macaque dataset. On the other hand,
the macaque dataset also has a smaller coverage, which produces more conservative estimates of
methylation difference by shrinkage. It becomes clear that the optimal choice of thresholds depends
on the organism, cell type and study question. From a practical perspective, one might want to verify
a small number of most promising DMRs at interesting genomic locations (see below).

While the results do not strongly depend on the discretization granularity ε , the running time
does. We measured the wall clock time for the estimation step on a modern )Intel R© Core

TM
i7-4790

processor at 3.6 GHz CPU clock with 16 GB RAM, using a single thread. On the macaque dataset
(6 samples), for ε = 0.2,0.1,0.05,0.02, estimation took 8, 27, 240 and 7430 minutes, respectively; on
the uveal melanoma dataset (4 samples), 8, 27, 235 and 7400 minutes (approx. 5 days). Single-thread
times for RADMeth for macaque and uveal melanoma are 780 and 1600 minutes, for BSmooth 600
and 260 minutes, respectively. We suggest ε = 0.05 as a good compromise between precision and
speed for our method; it is then faster than the other ones. The computation may be parallelized by
chromosome to benefit from multiple cores; this has not yet been implemented. The times for DMR
calling after estimation are insignificant in comparison (seconds).

Comparative Evaluation
We compare the DMRs discovered by our method to those discovered by BSmooth and RADMeth.
Thresholds were chosen to obtain a comparable number of DMCs within DMRs from each method.

For our method, the weights were as described above, precision ε = 0.05, DMC threshold ∆ = 0.1
for macaques and ∆ = 0.4 for uveal melanoma, minimum DMR size S = 4, mean methylation
difference ∆ = 0.25 for macaques and ∆ = 0.5 for uveal melanoma, and s = 0 (no skipping).
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Figure 4. A DMR from chromosome 5 of the macaque data exclusively found by diffmer. Each
column represents a CpG-position; each of the three top and bottom rows represents a sample. The
two left- and rightmost columns are not included in the DMR and are presented for contrast.
Numbers in matrix cells show methylation levels in percent and coverages; color corresponds to
methylation level (red: full, blue: none); the saturations corresponds to coverage. The outer and inner
middle rows show empirical and computed class methylation levels, respectively. The x-axis shows
average methylation levels and (relative) genomic positions for each CpG.

For BSmooth, we followed the guidelines provided by its authors and kept only positions with
coverage ≥ 2 in all samples. The t-statistic cutoff was set to 4.5 for uveal melanoma and to 4.0 for
the macaque dataset. We reported only DMRs with a minimum length of 4 and a mean methylation
difference ≥ 0.19 for macaques and ≥ 0.41 for uveal melanoma.

For RADMeth, we restricted DMRs to be between 1 and 99 bp in length and required an FDR-
corrected p-value below 0.01. A minimum DMR size of 4 was required, as for the other methods.
For macaques, we did no further filtering because the results were already rare, the uveal melanoma
DMRs were additionally required to have a methylation difference of at least 0.4.

Figure 3 shows the number of DMCs in DMRs detected by each method and the size of the
intersections of such DMCs (the circle size is proportional to the number of elements in it). For both
datasets, we can make similar observations: the results overlap, but do largely not agree (this holds
especially for the macaque data). Each method detects a large number of DMRs that are not detected
by any of the other methods.

To illustrate that our results not only differ from those of other methods, but that our unique
discoveries are meaningful DMRs, we exemplarily show two DMRs (one for each dataset) that are
missed by the other methods. Figure 4 shows a DMR from chromosome 5 in the macaque data,
and Figure 5 shows a DMR from chromosome 1 in the melanoma data. The plots visually compare
measured and computed values by coloring the values (red: full methylation, blue: no methylation).
The contrast between the rows and the numbers show clear differential methylation.

DISCUSSION AND CONCLUSION
We presented a method for estimating class methylation levels and differences between them from
low-coverage and few-sample WGBS data, based on a Bayesian approach and written as a LASSO-
like convex optimization problem. We also gave an efficient dynamic programming solution for
a discretized version of the problem. Based on class methylation differences, we gave a versatile
method to call DMRs with several threshold parameters. Our initial findings show that existing DMR
discovery methods show large differences in reported DMRs and DMCs. We discover a large set
of putative DMRs not reported by any other method, and we assure the reader that the presented
examples are quite representative.
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Figure 5. A DMR from chromosome 1 of the melanoma data exclusively found by diffmer (cf.
Figure 4)

The statistically inclined reader may have noted that we do not report p-values for DMRs. We
do not consider them a necessity, because (a) we intend to use our tool for “discovery” mode (each
DMR of interest would have to be verified on a larger patient set by an independent method, such
as methylation-sensitive PCR on a larger patient cohort), and (b) we report conservative shrunken
estimates of methylation differences, which can be used to sort DMCs or DMRs.

In future work, we will systematically evaluate the discovered DMRs on the uveal melanoma
dataset and attempt to interpret them biologically. We will also attempt to find better explanations for
the striking differences in reported DMRs between different tools.
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SUPPLEMENT
Estimation of Weights
We illustrate exemplarily how the weight αdiff in the objective function (8) can be chosen. On the
uveal melanoma dataset, we included all CpG-sites with a coverage above 100 in all samples. For
these sites, we took the class methylation values µi,⊕ and µi,	 as the mean of the corresponding µ

(t)
i .

Note that for the available number of two samples per class, this is also the median. We tabulated
differences |µi,⊕− µi,	| and obtained two candidates for αdiff, one via the mean and one via the
median of the differences. Figure 6 shows the Q-Q plot for αdiff = 11.09 obtained by equating the
empirical mean of the differences to the theoretical one 1/αdiff of πdiff. The agreement is quite
satisfactory.
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Figure 6. Q-Q plot for the estimate of αdiff. X-axis: empirical quantiles (class methylation
differences). Y-axis: theoretical quantiles for αdiff = 11.09 obtained by equating empirical with
theoretical mean.
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