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Abstract 24	  

Bacteria grow and transform elements at different rates, yet quantifying this variation in the 25	  

environment is difficult. Determining isotope enrichment with fine taxonomic resolution after 26	  

exposure to isotope tracers could help, but there are few suitable techniques. We propose a 27	  

modification to Stable Isotope Probing (SIP) that enables determining the isotopic composition 28	  

of DNA from individual bacterial taxa after exposure to isotope tracers. In our modification, after 29	  

isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is 30	  

sequenced separately. Taxon specific density curves are produced for labeled and non-labeled 31	  

treatments, from which the shift in density for each individual taxon in response to isotope 32	  

labeling is calculated. Expressing each taxon’s density shift relative to that taxon’s density 33	  

measured without isotope enrichment accounts for the influence of nucleic acid composition on 34	  

density and isolates the influence of isotope tracer assimilation. The shift in density translates 35	  

quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative 36	  

measurements of isotope enrichment, we propose to call it quantitative Stable Isotope Probing 37	  

(qSIP). We demonstrate qSIP using soil incubations, in which soil bacteria exhibited strong 38	  

taxonomic variation in 18O and 13C composition after exposure to 18O-H2O or 13C-glucose. 39	  

Addition of glucose increased assimilation of 18O into DNA from 18O-H2O. However, the 40	  

increase in 18O assimilation was greater than expected based on utilization of glucose-derived 41	  

carbon alone, because glucose addition indirectly stimulated bacteria to utilize other substrates 42	  

for growth. This example illustrates the benefit of a quantitative approach to stable isotope 43	  

probing.  44	  
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soil carbon cycle 46	  

 47	  

Introduction 48	  

The types of organisms present in an ecosystem profoundly influence its functioning, an idea 49	  

well established for plants and animals, formalized in the state factor theory of ecosystem 50	  

science (1), and illustrated through the impacts of plant and animal invasions on ecosystem 51	  

processes (2). The physiological and taxonomic diversity of microorganisms far exceeds that of 52	  

plants and animals combined (3). Yet, despite progress applying molecular tools to analyze 53	  

microbial diversity of intact assemblages (4-6), our understanding of how individual microbial 54	  

taxa affect ecosystem processes like element cycling remains weak. When applied to intact 55	  

microbial assemblages, stable isotope probing (SIP) partly addresses this challenge, in that it 56	  

links physically the fluxes of elements to an organism’s genome. In conventional SIP, organisms 57	  

that utilize isotopically labeled substrates incorporate the heavy isotope into their nucleic acids, 58	  

increasing the density of those nucleic acids which then migrate further along a cesium chloride 59	  

density gradient formed during isopycnic centrifugation. This enables identifying organisms that 60	  

utilized the labeled compound for growth (7). Conventional SIP applications use a qualitative 61	  

approach that identifies visually the separation caused by isotope incorporation (7). Nucleic acids 62	  

in density regions defined as “heavy” or “light” are then sequenced. Organisms 63	  

disproportionately represented in the “heavy” region are interpreted as having utilized the labeled 64	  

substrate for growth (8-11). 65	  

 66	  
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SIP is a robust technique to identify microbial populations that assimilate a labeled substrate, but 67	  

it does not provide quantitative measures of assimilation rates, for three reasons. First, the 68	  

distinction between labeled and unlabeled organisms is binary, defined by the density regions 69	  

selected by the investigator, limiting the resolution of taxon-specific responses to labeled or 70	  

unlabeled. Second, the distribution of DNA along the density gradient reflects the influences of 71	  

both isotope incorporation and GC (guanine plus cytosine) content because the density of DNA 72	  

increases with its GC content (12). Any comparison of density regions will reflect both 73	  

influences, challenging inferences about quantitative isotope incorporation. Third, in 74	  

conventional SIP there are no assurances that the identification of the labeled community is 75	  

complete. Low GC content organisms that incorporated the isotope label may not have shifted 76	  

sufficiently in density to be part of the “labeled” density fraction, and high GC content organisms 77	  

that did not incorporate the label may be erroneously inferred to be part of the labeled 78	  

community. This could result in incomplete coverage when discrete, non-contiguous, density 79	  

intervals representing “heavy” and “light” fractions (13, 14) are selected for sequencing, omitting 80	  

information about the microbial assemblage contained in the DNA at intermediate densities. In 81	  

other cases, only the “heavy” fractions in both labeled and unlabeled treatments were sequenced 82	  

and compared: any new organisms that appeared in the heavy fraction of the labeled treatment 83	  

were inferred to have taken up enough of the isotope tracer to have shifted the density of their 84	  

DNA (15). This approach could have excluded organisms that incorporated the isotope tracer, 85	  

but did not shift sufficiently to be represented in the “heavy” fraction, because of their low GC 86	  

content. In these ways, SIP as typically practiced is a qualitative technique capable of identifying 87	  
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some of the organisms that utilize a substrate, not a quantitative one capable of exploring the full 88	  

range of variation in isotope incorporation among microbial taxa.  89	  

 90	  

Here, we describe modifications to SIP that enable quantifying isotopic incorporation into the 91	  

genomes of individual taxa. We developed an approach that quantifies the baseline density of the 92	  

DNA of individual taxa without exposure to isotope tracers, and then quantifies the change in 93	  

DNA density of each taxon caused by isotope incorporation. Using a model of isotope 94	  

substitution in DNA, we convert the observed change in density to isotope composition. We 95	  

show how qSIP applies in soil incubations using a specific carbon source (13C-glucose) and using 96	  

a universal substrate for growing organisms (18O-H2O). We also show how combining these 97	  

tracers can provide unique insight into the microbial ecology of an interesting biogeochemical 98	  

phenomenon widely observed in soil for nearly a century, the priming effect (16). The “priming 99	  

effect” is the phenomenon where there occurs “extra decomposition of native soil organic matter 100	  

in a soil receiving an organic amendment” (17), first documented in soils over 80 years ago (18-101	  

20). This example illustrates the potential of qSIP because the priming effect involves 102	  

quantitative fluxes of elements in ecosystems and some hypotheses to explain it invoke microbial 103	  

biodiversity (21). This example also illustrates how techniques like qSIP could advance 104	  

microbial ecology as a quantitative field, relating microbial biodiversity to element cycling at the 105	  

ecosystem scale.  106	  

  107	  
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Methods 108	  

Soil incubations and DNA extractions 109	  

Our sample processing scheme, from soil collection, nucleic acid extraction, centrifugation, to 110	  

data analysis, is summarized in Figure 1. Soil (0-15 cm) was collected in November 2012 from a 111	  

ponderosa pine forest meadow, located on the C. Hart Merriam Elevation Gradient in Northern 112	  

Arizona, USA (35.42N, -111.67W; http://nau.edu/ecoss/what-we-do/future-113	  

ecosystems/elevation-gradient-experiment/).. Soil was sieved (2 mm mesh), left to air-dry for 96 114	  

hours, then stored at 4°C before the experiment started. One gram of soil was added to 15 mL 115	  

Falcon tubes and adjusted to 60% water holding capacity, incubated for one week, and then 116	  

allowed to air dry for 48 hours prior to isotope additions. Samples were incubated for 7 days.  117	  

During the incubation, samples received 200 µL of water g-1 soil or a glucose solution at a 118	  

concentration of 500 µg C g-1 soil in the following isotope and substrate treatments (each with 119	  

n=3): 1) water at natural abundance δ18O; 2) 18O-enriched water (atom fraction 97%); 3) glucose 120	  

and water at natural abundance δ13C and δ18O; 4) 13C-enriched glucose (atom fraction 99%) and 121	  

water at natural abundance δ18O; 5) glucose at natural abundance δ13C and 18O-enriched water 122	  

(atom fraction 97%).  These treatments were selected in order to evaluate the effects of isotope 123	  

addition on the density and isotopic composition of DNA. We assessed (I) the effect of 18O in the 124	  

absence of supplemental glucose as the difference between treatment 2 and 1, (II) the effect of 125	  

13C in the presence of supplemental glucose as the difference between treatments 4 and 3, and 126	  

(III) the effect of 18O with supplemental glucose as the difference between treatments 5 and 3. In 127	  

each case, these comparisons isolate the effect of the presence of an isotope tracer. The specific 128	  

equations quantifying these comparisons are presented below.  129	  
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 130	  

After the incubation, samples were frozen and stored at -40°C. DNA was extracted from 131	  

approximately 0.5 g soil using a FastDNA® Spin Kit for Soil (MP Biomedicals, Santa Ana, CA, 132	  

USA) following the manufacturer's directions. Extracted DNA was quantified using the Qubit® 133	  

dsDNA High-Sensitivity Assay Kit and a Qubit® 2.0 Fluorometer (Invitrogen, Eugene, OR, 134	  

USA). 135	  

 136	  

Density Centrifugation and Fraction Collection 137	  

To separate DNA by density, 5 µg of DNA was added to approximately 2.6 mL of a saturated 138	  

CsCl and gradient buffer (200 mM Tris, 200 mM KCl, 2 mM EDTA) solution in a 3.3 mL 139	  

OptiSealTM Ultracentrifuge tube (Beckman Coulter, Fullerton, CA, USA).  The final density of 140	  

the solution was 1.73 g cm-3. The samples were spun in an OptimaTM MAX benchtop 141	  

ultracentrifuge (Beckman Coulter, Fullerton, CA, USA) using a Beckman TLN-100 rotor at 142	  

127,000 x g for 72 hours at 18°C. After centrifugation, the density gradient was divided into 143	  

fractions of 150 µL each using a fraction recovery system (Beckman Coulter Inc, Palo Alto, CA, 144	  

USA). The density of each fraction was subsequently measured with a Reichert AR200 digital 145	  

refractometer (Reichert Analytical Instruments, Depew, NY, USA). DNA was separated from 146	  

the CsCl solution using isopropanol precipitation, resuspended in 50 µL sterile deionized water, 147	  

and quantified for each density fraction. We determined total number of bacterial 16S rRNA 148	  

gene copies in each density fraction by qPCR using a pan-bacterial broad-coverage quantitative 149	  

PCR technique (22). All fractions were analyzed in triplicate in 10 µl reactions that included 1 µl 150	  

of DNA template and 9 µl of reaction mix containing 1.8 µM of forward (5’-151	  
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CCTACGGGDGGCWGCA-3’) and reverse (5’-GGACTACHVGGGTMTCTAATC-3’) primers 152	  

(bold letters denote degenerate bases), 225 nM of the TaqMan® minor groove-binding probe 153	  

(6FAM) 5’-CAGCAGCCGCGGTA-3’ (MGBNFQ), 1x Platinum® Quantitative PCR SuperMix-154	  

UDG (Life Technologies, Grand Island, NY), and molecular-grade water. Amplification and 155	  

real-time fluorescence detection were performed on the 7900HT Real Time PCR System 156	  

(Applied Biosystems). We provide the qPCR data for all density fractions in the supplementary 157	  

online material.  158	  

 159	  

Data analysis of total 16S rRNA gene copy number 160	  

Based on the qPCR data, we produced a conventional SIP density curve by graphing the 161	  

proportion of total 16S rRNA gene copies as a function of density, an approach often used to 162	  

visualize the effect of isotope incorporation on the distribution of densities across the bacterial 163	  

assemblage, delineating “heavy” and “light” regions for sequencing (9-11). We also calculated 164	  

the average DNA density for each tube as a weighted average of the density of each fraction in 165	  

which 16S rRNA gene copies were detected, weighted by the proportional abundance of total 166	  

16S rRNA gene copies measured in that fraction for each tube.  This provided an estimate of the 167	  

average DNA density for each tube, enabling testing via bootstrapping whether isotope addition 168	  

increased the density of DNA. 169	  

 170	  

Sequencing 16S rRNA genes 171	  

We sequenced the 16S rRNA gene in every density fraction that contained DNA (9-15 fractions 172	  

per centrifuge tube) by a dual-indexing amplicon-based sequencing on the Illumina MiSeq 173	  
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(Illumina Inc, San Diego, CA, USA) following Farosh et al, 2014 (23). For each density fraction, 174	  

the 16S rRNA gene V3-V4 hypervariable region was amplified in 25 µl reactions that included 5 175	  

µl of gDNA in a 20 µl of reaction mix containing 12.5 µl Phusion High-Fidelity PCR Master 176	  

Mix with HF Buffer (New England Biolabs Inc., Ipswich, MA, USA), 0.75 µl DMSO, and 1.75 177	  

µl of sterile water and 0.2 µM of each forward (5’-ACTCCTACGGGAGGCAGCAG-3’) and 178	  

reverse (5’-GGACTACHVGGGTWTC-TAAT-3’) primers, each concatenated to a linker 179	  

sequence, a 12bp barcode, and a “heterogeneity spacer” of 0-7bp in size. The following 180	  

thermocyling condition was used: an initial denaturation at 98°C for 30s, followed by 30 cycles 181	  

of denaturation at 98°C for 30s, annealing at 98°C for 30s, and amplification/ extension at 72°C 182	  

for 30s. The resultant amplicons were normalized and pooled using the SequelPrep 183	  

Normalization Kit (Life Technologies, Carlsbad, CA, USA), then purified using the AMPure XT 184	  

beads (Beckman Coulter Genomics, Danvers, MA, USA) and sequenced in combination with 185	  

~20% of PhiX control library (v3) (Illumina) on 300bp paired-end MiSeq runs.  186	  

 187	  

Data-analysis 188	  

Subsequent sequence processing and quality filtering were also performed as described in Farosh 189	  

et al, 2014 (23). Each read was assigned to the original sample based on the 24bp dual-index 190	  

barcode formed by concatenating the 12bp barcodes from each paired-end read. After trimming 191	  

the primer sequences, the original V3-V4 amplicon was reconstituted by stitching the paired-end 192	  

reads without preliminary quality filtering using FLASH (24), as FLASH includes error 193	  

correction. We obtained 9,378,878 high-quality stitched reads that were subsequently processed 194	  

at a median length of 410 bp.  195	  
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 196	  

The stitched reads were clustered using the uclust-based (25) open reference OTU picking 197	  

protocol (26) described in QIIME (v1.8.0-dev) (27) against the Greengenes 13_8 reference 198	  

database (28). Representative sequences for each OTU were chosen as the cluster centroid 199	  

sequences. OTUs with representative sequences that could not be aligned with PyNAST and 200	  

OTUs with a total count of less than 2 across all samples (i.e., singleton OTUs) were excluded 201	  

from subsequent analyses, leaving a total of 76,710 OTUs composed of 9,127,632 reads.  202	  

 203	  

All taxonomic assignments used throughout this study were generated by QIIME’s uclust-204	  

consensus taxonomy assigner (default parameters, 29) against the Greengenes 13_8 97% 205	  

reference OTUs (30). The taxonomic abundances for each sample-taxa combination using the 206	  

uclust-consensus assigner were compared with taxonomic assignments made with the RDP 207	  

classifier (confidence = 0.5, as recommended in (31)) using a non-parametric Pearson correlation 208	  

test with 999 iterations. For each sample-taxa combination, taxonomic abundances were 209	  

compared for the two assignment methods (i.e., using QIIME’s compare_taxa_summaries.py 210	  

script). The resulting p-values were significant (p<0.001) at all taxonomic levels, and the Pearson 211	  

r-values were high (>0.96, Supplemental Material Table S1), indicating that the taxonomic 212	  

profiles generated by the different methods were nearly identical. Analyses here focused on 213	  

taxonomic classification to the level of genus, of which the uclust consensus assignment yielded 214	  

a total of 790 genera. Genera included for analysis here were the 379 that occurred in all 215	  

replicate tubes; these were also the most abundant taxa, representing 99.531% of the total 16S 216	  

rRNA gene copies across the dataset. All QIIME commands used in this analysis are provided in 217	  
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Supplementary Information. All sequence data have been deposited at MG-RAST (32) project 218	  

ID 14151.   219	  

 220	  

Overview of quantitative taxon-specific isotope incorporation 221	  

In the following, we describe the calculations required to determine the isotopic composition of 222	  

individual taxa after exposure to isotopically labeled substrates. In this approach, the taxon-223	  

specific density of DNA in the treatment with the isotopically labeled substrate is computed and 224	  

compared to the density of DNA for the same taxon in the treatment with no added isotope 225	  

tracer. For a particular element and isotope, the density of DNA will reach a maximum value 226	  

when all atoms of that element in the DNA molecule are labeled with the isotope tracer. Smaller 227	  

shifts in density reflect intermediate degrees of tracer incorporation; the scaling between density 228	  

shift and isotope incorporation is linear after accounting for the effect of GC content on the 229	  

elemental composition of DNA. The incorporation of the isotope tracer is expressed as atom 230	  

fraction excess, which is the increase above natural abundance isotopic composition, and ranges 231	  

from a minimum of 0 to a maximum of 1 minus the natural abundance background for a given 232	  

isotope-element combination. Variables, calculated quantities, and indices are defined in Table 1. 233	  

 234	  

Calculating taxon-specific weighted averaged density differences 235	  

For each fraction k of a particular replicate density gradient j, we measured the total number of 236	  

16S rRNA gene copies (fk) using qPCR, the proportion (pijk) of total 16S rRNA gene copies for 237	  

each bacterial taxon i within that fraction from sequencing, and the density (xjk) of that fraction. 238	  

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1282v1 | CC-BY 4.0 Open Access | rec: 4 Aug 2015, publ: 4 Aug 2015

P
re
P
rin

ts



We calculated the total number of 16S rRNA gene copies per µL (yijk) for bacterial taxon i in 239	  

density fraction k of replicate j as: 240	  

	   yijk = pijk ⋅ f jk 	   (1) 241	  

The total number of 16S rRNA gene copies (yij) for bacterial taxon i in replicate j is summed 242	  

across all K density fractions: 243	  

	  
yij = yijk

k=1

K

∑
	   (2)

 244	  

The density (Wij) for bacterial taxon i of replicate j was computed as a weighted average, 245	  

summing across all K density fractions the density (xjk) of each individual fraction times the total 246	  

number of 16S rRNA gene copies (yijk) in that fraction expressed as a proportion of the total 16S 247	  

rRNA gene copies (yij) for taxon i in replicate j: 248	  

	  
Wij = x jk

k=1

K

∑ ⋅
yijk
yij

⎛

⎝⎜
⎞

⎠⎟ 	   (3)
 249	  

For a given taxon, we calculated the difference in density caused by isotope incorporation (Zi): 250	  

	   Zi =WLABi −WLIGHTi 	   (4) 251	  

where WLABi is the mean, across all replicates, of the isotope-enriched treatment (labeled, LAB; 252	  

n=3) and WLIGHTi is the mean, across all replicates, of the unlabeled treatment (unlabeled, 253	  

LIGHT; n=6). Because our experiment had multiple treatments without heavy isotopes, we 254	  

included data from all replicate tubes in those unlabeled treatments (i.e., unlabeled treatments 255	  

with and without added carbon; n=6) to estimate the unlabeled average density (WLIGHTi) for each 256	  

taxon i.  257	  

 258	  

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1282v1 | CC-BY 4.0 Open Access | rec: 4 Aug 2015, publ: 4 Aug 2015

P
re
P
rin

ts



Calculating taxon-specific GC content and molecular weight 259	  

We calculated the GC content (Gi) of each bacterial taxon using the mean density for the 260	  

unlabeled (WLIGHTi) treatments (n=6). We derived the relationship between GC content and 261	  

buoyant density using DNA from pure cultures of three microbial species with known but 262	  

strongly differing GC content (see below). The linear relationship between GC content (Gi, 263	  

expressed as a proportion) and unlabeled buoyant density (WLIGHTi) on a CsCl gradient is: 264	  

	  
Gi =

1
0.083506

⋅ WLIGHTi −1.646057( )
	   (5)

 265	  

The natural abundance molecular weight of DNA is a function of GC content, based on the 266	  

atomic composition of the four DNA nucleotides.  DNA made of pure adenine (A) and thymine 267	  

(T) has a molecular weight of 307.691 g mol-1, while DNA made up of only guanine (G) and 268	  

cytosine (C) has a molecular weight of 308.187 g mol-1.  When GC content is known, molecular 269	  

weight can be calculated using: 270	  

	   MLIGHTi = 0.496Gi + 307.691 	   (6) 271	  

 272	  

Percent change in molecular weight associated with isotope incorporation 273	  

The number of oxygen atoms per DNA nucleotide pair (GC and AT) is constant (6 for G and C, 274	  

7 for T, and 5 for A) regardless of GC content. These atoms contain 18O at natural abundance, 275	  

which we assume to be 0.002000429 atom fraction for 18O and 0.0003789961 atom fraction for 276	  

17O (IAEA 1995).  The maximum labeling is achieved when all oxygen atoms are replaced by 277	  

18O.  Therefore, given the molecular weight of each additional neutron (1.008665 g mol-1; 33), 278	  

the maximal increase in molecular weight (corresponding to 1 atom fraction 18O, or 100% atom 279	  
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percent 18O) is 12.07747 g mol-1.  Thus, the theoretical maximum molecular weight (MHEAVYMAXi) 280	  

of fully 18O-labeled DNA for taxon i is: 281	  

	   MHEAVYMAXi = 12.07747 +MLIGHTi 	   (7) 282	  

In contrast, the number of carbon atoms per DNA nucleotide varies with GC content. There are 283	  

10 carbon atoms in G, A, and T, but only 9 in C.  The average number of carbon atoms per DNA 284	  

nucleotide (HCARBONi) for taxon i can therefore be expressed as: 285	  

	   HCARBONi = −0.5Gi +10 	   (8) 286	  

We assume these atoms are 13C-labeled at natural abundance (0.01111233 atom fraction 13C; 33). 287	  

The maximal labeling is achieved when all carbon atoms are replaced by 13C.  Complete 288	  

replacement of carbon atoms with 13C increases the molecular weight by 9.974564 g mol-1 for G, 289	  

A, and T, and by 8.977107 g mol-1 for C.  Using equation 8, the theoretical maximum molecular 290	  

weight (MHEAVYMAXi) of fully 13C-labeled DNA can be calculated as follows, with GC content (Gi) 291	  

expressed as a fraction: 292	  

	   MHEAVYMAXi = −0.4987282Gi + 9.974564 +MLIGHTi 	   (9) 293	  

Calculating isotope enrichment from density shifts 294	  

We calculated the proportional increase in density (Zi) relative to the density of the unlabeled 295	  

treatments (WLIGHTi), and calculated molecular weight of DNA for taxon i in the labeled 296	  

treatment (MLABi) as: 297	  

	  
MLABi =

Zi
WLIGHTi

+1
⎛
⎝⎜

⎞
⎠⎟
⋅MLIGHTi

	   (10)
 298	  

The atom fraction excess of 18O for taxon i (AOXYGENi) is then calculated as: 299	  
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AOXYGENi =

MLABi −MLIGHTi

MHEAVYMAXi −MLIGHTi

⋅ 1− 0.002000429( )
	   (11)

 300	  

We used the results from a pure culture study with E. coli, grown with variable 18O-enriched 301	  

water (natural abundance, 5, 25, 50, and 70% atom fraction 18O; see below) to compare to the 302	  

theoretical calculations of atom fraction excess 18O derived above. 303	  

Similarly, the atom fraction excess 13C for taxon i (ACARBONi) was calculated as: 304	  

	  
ACARBONi =

MLABi −MLIGHTi

MHEAVYMAXi −MLIGHTi

⋅ 1− 0.01111233( )
	   (12)

 305	  

Pure culture studies 306	  

To verify the predicted relationship between increased density and atom fraction excess we 307	  

conducted experiments with a pure Escherichia coli culture.  E. coli (strain HB101, GC content 308	  

50.8%) was shaken at 100 rpm, 37 °C for 8 h in Luria-Bertani (LB) broth that was prepared with 309	  

a mixture of natural abundance and 18O-water to achieve five 18O-enrichment levels (natural 310	  

abundance, 5, 25, 50, and 70% atom fraction 18O). Genomic DNA was extracted in triplicate 311	  

using PowerLyzer UltraClean Microbial DNA Isolation Kit according to the manufacturer’s 312	  

instructions (MO BIO Laboratories, Inc., Carlsbad, CA). We also grew pure cultures of two 313	  

additional strains of bacteria selected for low GC content (Staphylococcus epidermidis, ATTC# 314	  

49461, 32.1%) and high GC content (Micrococcus leuteus, ATTC# 49732, 73%). S. epidermidis 315	  

was grown for 24 h on Brain Heart Infusion Agar at 37 °C, and M. leuteus was grown with LB 316	  

agar at 23 °C. These cultures were grown with substrates and water at natural abundance stable 317	  

isotope composition.  318	  

 319	  
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For each culture, genomic DNA was extracted in triplicate. Approximately 800 ng of each DNA 320	  

extract was used for isopycnic centrifugation, density quantification, and DNA isotope analysis. 321	  

The 18O composition of the E. coli DNA was determined with a PyroCube (Elementar 322	  

Analysensysteme GmbH, Hanau, Germany) interfaced to a PDZ Europa 20-20 isotope ratio mass 323	  

spectrometer (Sercon Ltd., Cheshire, UK) at the UC Davis Stable Isotope Facility (Davis, CA). 324	  

Samples were prepared by diluting the E. coli DNA with natural abundance salmon sperm DNA 325	  

to achieve enrichment levels below 100 ‰ δ18O for isotope analysis.  Densities of DNA from the 326	  

cultures grown at natural abundance isotope composition were used to determine the relationship 327	  

between the density of DNA and its GC content, yielding the relationship described in Eq. 5 (r2 = 328	  

0.912, P < 0.001).  329	  

 330	  

Statistical analysis 331	  

Following the equations above, we computed the difference in densities, Zi, between treatments 332	  

with and without isotope tracers, and the corresponding values of isotope composition, AOXYGEN 333	  

and ACARBON. We used bootstrap resampling (with replacement, 1000 iterations) of replicates 334	  

within each treatment to estimate taxon-specific 90% confidence intervals for the change in 335	  

density and the corresponding value of atom fraction excess isotope composition. All 336	  

calculations were performed in R (R Core Team 2014).  337	  

Density fractionation separates organisms according to GC content (12) as well as isotope 338	  

incorporation, so traditional SIP may be biased toward identifying high-GC content organisms as 339	  

growing or utilizing a substrate (34, 35). To test whether qSIP exhibited any such bias, we used 340	  

density without isotope addition as a proxy for GC content, and tested whether the densities of 341	  
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organisms identified as assimilating (90% confidence intervals did not include 0 for ACARBON or 342	  

AOXYGEN) differed in density from organisms where assimilation was not detected.  343	  

 344	  

Our focus was on the magnitude of variation in Zi, AOXYGEN, and ACARBON, because the goal of our 345	  

work is to establish a means to discern from SIP experiments quantitative estimates of isotope 346	  

tracer uptake. These values lie along a continuum from no uptake to complete isotope 347	  

replacement, and our approach provides a means to estimate the values and place confidence 348	  

limits on those estimates (rather than, for example, placing a high priority on distinguishing 349	  

values that are significantly positive from those that are not). For this reason, we selected 350	  

bootstrap resampling rather than, for example, t-tests. We note that, in typical SIP experiments, 351	  

an organism is considered to be growing or utilizing a substrate if it exhibits a change in relative 352	  

abundance when comparing the heavy fraction of the labeled versus control (e.g., 10) or 353	  

comparing the heavy fraction versus the light fraction (e.g., 36), yet assessments of variation in 354	  

these estimates are not typically presented. Our approach assesses both the quantitative values of 355	  

isotope uptake and the variation associated with those estimates.   356	  
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Results 357	  

In the pure culture experiments, the 18O composition of E. coli DNA was strongly related to the 358	  

18O composition of water in the growth medium, supporting the notion that oxygen from water is 359	  

quantitatively incorporated into the DNA of growing organisms (P<0.001, r2 = 0.976, Figure 360	  

2A). The slope of the relationship, 0.334 ± 0.017 (n=15), indicates that 33% of oxygen in E. coli 361	  

DNA was derived from water. The shift in density of E. coli DNA with 18O incorporation 362	  

matched well the theoretical prediction of the model of isotope substitution in the DNA molecule 363	  

(Equations 10 and 11, Figure 2B). These results confirm that ultracentrifugation in CsCl can 364	  

serve as a quantitative mass separation procedure, resolving variation in isotope tracer 365	  

incorporation into DNA. These results also support our model of the relationship between the 366	  

density of nucleic acids and isotopic substitution in the DNA molecule.  367	  

 368	  

In soil incubations, DNA density averaged across the entire community tended to increase in 369	  

response to isotope addition (Figure 3). Addition of 13C-glucose (Figure 3A) increased the 370	  

density of DNA by 0.0043 g cm-3, but the 90% confidence interval for this increase overlapped 371	  

zero (-0.002 to 0.0091 g cm-3). Addition of 18O-water (Figure 3B) caused a similar increase in 372	  

density, 0.0041 g cm-3, but the 90% confidence interval for this increase also overlapped zero, 373	  

spanning -0.0011 to 0.0090 g cm-3. The incubations receiving 18O-water and supplemental 374	  

glucose (natural abundance isotope composition) exhibited the largest increase in average DNA 375	  

density, 0.0090 g cm-3, and in this case the 90% confidence limit did not overlap zero (0.0065 to 376	  

0.0125 g cm-3). These comparisons estimate the change in density of DNA fragments encoding 377	  

the 16S rRNA gene across all taxa considered together. Figure 3 also illustrates the density 378	  
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distributions often used in SIP experiments to visualize the qualitative cutoff between labeled 379	  

and unlabeled regions suitable for sequencing.  380	  

 381	  

Sequencing all fractions allowed visualizing analogous density distributions for individual taxa. 382	  

Figure 4 shows three taxa to illustrate the concept, showing graphically the manner in which the 383	  

density of labeled (WLABi) and unlabeled (WLIGHTi) DNA is calculated for each taxon (equation 3). 384	  

For example, the density of an unidentified genus in the family Micrococcaceae did not change 385	  

with 18O-water addition in the absence of supplemental glucose. For this taxon, the shift in 386	  

density (Z) due to 18O incorporation was -0.0002 g cm-3, with the 90% confidence interval 387	  

spanning -0.0046 to 0.0049 g cm-3 (Figure 4A). The shift in density due to 18O-incorporation 388	  

increased when unlabeled glucose was also added (Figure 4B, Z = 0.0169 g cm-3, 90% CI, 389	  

0.0146 to 0.0194 g cm-3). This bacterial taxon was therefore not incorporating the 18O tracer in 390	  

unamended soil, but synthesized new DNA using 18O derived from H2O in response to glucose 391	  

addition. The DNA of an unidentified genus in the family Pseudonocardiaceae similarly 392	  

exhibited no change in density in the absence of supplemental glucose (Z = 0.0005 g cm-3, -393	  

0.0033 to 0.0045 g cm-3), and exhibited only a slight increase in response to glucose addition (Z 394	  

= 0.0040 g cm-3, 0.0015 to 0.0070 g cm-3, Figure 4C & D). By contrast, the density of DNA in a 395	  

member of the genus Herpetosiphonales increased in soil without any supplemental glucose (Z = 396	  

0.0124 g cm-3, 90% CI, 0.0105 to 0.0143 g cm-3, Figure 4E), but the density did not further 397	  

increase in response to the addition of glucose (Z = 0.0110 g cm-3, 90% CI, 0.0088 to 0.0133 g 398	  

cm-3, Figure 4F). These results show that, by dividing the density gradient into multiple fractions 399	  
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and sequencing each separately, one can determine changes in the density of DNA for individual 400	  

taxa caused by the assimilation of stable isotope tracers.  401	  

 402	  

The taxon-specific shifts in average density associated with incorporation of the heavy isotope 403	  

(Figure 5) translate directly to quantitative variation in isotope composition, expressed here as 404	  

atom fraction excess 18O (AOXYGEN, Figure 5A & B) and 13C (ACARBON, Figure 5C). The detection 405	  

limit for a shift in density is the median change in density required to shift the lower bound of the 406	  

bootstrapped 90% confidence limit above zero. As constrained by our sampling design, these 407	  

values were 0.0037 g cm-3 for 18O, and 0.0044 g cm-3 for 13C, changes that correspond to 0.056 408	  

atom fraction excess 18O and 0.081 atom fraction excess 13C.  409	  

 410	  

More than half of the bacterial genera (209) did not exhibit any detectable excess 18O enrichment 411	  

under control conditions without added glucose (Figure 5A). Of the 170 taxa that did exhibit 412	  

detectable 18O enrichment without added glucose, the corresponding values of atom fraction 413	  

excess 18O ranged from 0.047 (90% confidence interval, 0.001 to 0.100) in a member of the 414	  

genus, Lentzea, to 0.354 (CI, 0.248 to 0.449) in an unidentified representative of the candidate 415	  

bacterial phylum, OD1. With added glucose, 351 of the 379 taxa exhibited positive atom fraction 416	  

excess 18O (90% CIs did not overlap zero), averaging 0.147 atom fraction excess 18O (Figure 417	  

5B), with a minimum of 0.036 (CI, 0.004 to 0.064) in an unidentified genus of the family 418	  

Ktedonobacteracea, and a maximum of 0.365 (CI, 0.282 to 0.449) in an unidentified genus 419	  

within the class AT12OctB3 of the phylum, Bacteroidetes. Bacterial taxa in this soil varied in 420	  

atom fraction excess 18O under control conditions and in response to added glucose (Figure 5A 421	  
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& B). Atom fraction excess 13C reflects direct assimilation of C from the added glucose (Figure 422	  

5C), and ranged from no detectable enrichment among 215 of the 379 genera, to over half of the 423	  

carbon atoms comprising 13C in the DNA of a member of the Micrococcaceae (0.525, CI 0.458 424	  

to 0.592).  425	  

 426	  

GC Bias 427	  

There was no evidence of GC bias in qSIP. Average densities of organisms exhibiting tracer 428	  

assimilation were negligible for all comparisons (Table 2). Inferred GC contents averaged 52.3% 429	  

(CI 44.6% to 57.3%) for organisms exhibiting tracer assimilation, very close to the average of 430	  

52.8% inferred GC content for taxa for which assimilation was not detected (CI 45.1% to 431	  

58.2%).  432	  

 433	  

Soil Incubations: multi-element quantitative stable isotope probing  434	  

There was a strong positive relationship between increased atom fraction excess 18O in response 435	  

to glucose addition and the direct utilization of glucose-derived carbon (atom fraction excess 436	  

13C) (Figure 6; r2=0.51, P<0.001). The expected relationship (solid line in Figure 6) reflects the 437	  

case where glucose is the sole C source, and thus there should be an 0.33 atom fraction excess 438	  

increase in 18O for each 1 atom fraction excess increase in 13C, based on our finding that 33% of 439	  

the oxygen molecules in DNA are derived from water (Figure 2). For many taxa, the increase in 440	  

atom fraction excess 18O in response to added glucose exceeded the expected amount (solid line 441	  

in Figure 6).    442	  
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 443	  

Discussion 444	  

We demonstrate that stable isotope probing of bacterial assemblages in natural environments can 445	  

yield quantitative information about the assimilation of isotope tracers into bacterial DNA with 446	  

fine taxonomic resolution. This work establishes a framework for coupling quantitative 447	  

interpretation of stable isotope tracer experiments with microbial diversity, a coupling essential 448	  

for understanding how to represent microbial diversity in biogeochemical models.  449	  

 450	  

The shifts in density we could detect using qSIP (0.0034 to 0.0042 g cm-3, Figure 5) are nearly 451	  

an order of magnitude smaller than those typically used to resolve the assimilation of stable 452	  

isotopes into newly synthesized DNA using conventional SIP, in which “light” and “heavy” 453	  

density fractions often differ by 0.03 g cm-3 (14, 37) or more (13, 38, 39). For 13C, the minimum 454	  

required change in density for SIP has been estimated to be 0.01 g cm-3, corresponding to 0.2 455	  

atom fraction excess (7). The approach presented here achieves higher resolution by accounting 456	  

for taxonomic differences in the density of DNA caused by natural variation in GC content. It 457	  

may be possible to improve the resolution we achieved. We collected fractions in discrete 458	  

density increments of 0.0036 g cm-3 (average difference in density between adjacent fractions), 459	  

setting a limit on the changes in density we could detect. This difference in density between 460	  

adjacent fractions we collected is comparable to the density shifts of bacterial taxa that we could 461	  

resolve: the mean density shift required for the lower confidence limit to exceed zero was, on 462	  

average, 0.0034 g cm-3 for 18O and 0.0042 g cm-3 for 13C.  Thus, it is possible that separation of 463	  

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1282v1 | CC-BY 4.0 Open Access | rec: 4 Aug 2015, publ: 4 Aug 2015

P
re
P
rin

ts



the nucleic acids into finer density fractions will afford higher precision in the estimates of stable 464	  

isotope composition.  465	  

The resolution achieved by sequencing individual density fractions, though an improvement over 466	  

traditional SIP, is still very coarse compared to the resolution achieved with isotope ratio mass 467	  

spectrometry. Detecting differences between taxa with quantitative stable isotope probing (~0.05 468	  

atom fraction excess) is four orders of magnitude less precise than that achieved with gas isotope 469	  

ratio analysis of bulk organic matter in continuous flow, where differences of 0.000005 atom 470	  

fraction excess or better (<0.5‰) can be resolved (40). Isopycnic centrifugation to quantify 471	  

isotope composition is also less precise than compound specific analysis of biomarkers, for 472	  

example, of 13C in fatty acids, where resolution of 0.00002 atom fraction excess (or 2‰) is 473	  

typical (41-43).  Coupling stable isotope tracing with Nano-scale secondary ion mass 474	  

spectrometry (Nano-SIMS) and microarrays, a coupling called Chip-SIP (44), can resolve 0.005 475	  

atom fraction excess for 15N and 0.001 for 13C (45), considerably more precise than qSIP.  476	  

 477	  

qSIP has advantages in taxonomic resolution over these other techniques. For compound specific 478	  

biomarkers, specific fatty acids serve as biomarkers for up to a dozen groups of microorganisms, 479	  

taxonomic resolution much coarser than that afforded by qSIP. Chip-SIP requires nucleic acid 480	  

probes, necessitating deciding a priori what sequences to collect for isotopic analysis, and 481	  

preparing microarrays implanted with those sequences prior to the isotope addition. For this 482	  

reason, in Chip-SIP the taxonomic resolution in the isotope fluxes is influenced by information 483	  

gathered without knowledge of which taxa are biogeochemically important. One advantage of 484	  

qSIP is that sequencing occurs after isotope enrichment, enabling quantitative exploration of the 485	  
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biodiversity involved in biogeochemistry, without having to decide where to focus a priori. 486	  

Furthermore, the taxonomic resolution possible with a microarray is limited by probe specificity 487	  

and fidelity, whereas the resolution afforded by qSIP is very high, equivalent to the resolution of 488	  

sequencing technology applied to the density fractions. Chip-SIP also requires access to a Nano-489	  

SIMS, expensive and technically challenging, limiting its wide adoption in the field.  490	  

 491	  

Other approaches used to link element fluxes to microbial taxa are limited to target organisms, 492	  

such as fluorescent in situ hybridization (FISH) coupled with SIMS (46), or halogen in situ-493	  

hybridization-SIMS (47). Bromodeoxyuridine (BrdU) uptake has been proposed as a universal 494	  

technique for identifying growing organisms (48) and their responses to environmental 495	  

perturbations (49). However, there is up to 10-fold variation among taxa in the conversion 496	  

between BrdU uptake and growth, unrelated to taxonomic affiliation, a bias calling into question 497	  

the quantitative universality of this technique (50). Compared to these other techniques, qSIP can 498	  

assess quantitatively the entire microbial assemblage at fine taxonomic resolution, a solid 499	  

foundation for exploring quantitatively the relationships between microbial biodiversity and the 500	  

biogeochemistry known to be microbial.  501	  

 502	  

Our finding that many bacterial taxa did not exhibit any increase in 18O content under control 503	  

conditions (Figure 5A) is consistent with the notion that a portion of the soil microbial biomass is 504	  

not growing and may be metabolically inactive (51). The increase in atom fraction 18O and 13C 505	  

with added glucose indicates that glucose addition stimulates bacterial growth, not just 506	  

respiration. The breadth of taxa that exhibited a positive response to glucose addition is 507	  
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consistent with glucose being a widely utilized substrate (52), though there are two other 508	  

possible mechanisms. First, over the 7-day duration of the incubation period, glucose will be 509	  

assimilated by cells that then died, releasing labeled cellular constituents available to the rest of 510	  

the microbial community (53). We cannot distinguish between direct utilization of the added 511	  

glucose and utilization of labeled cellular constituents produced by another organism. This 512	  

applies equally to the 18O-labeled and 13C-labeled assemblages. Second, 18O-water is a universal 513	  

tracer for DNA synthesis, not necessarily tied to any particular carbon source (54, 55). The 514	  

observed increase in atom fraction excess 18O includes growth stimulation caused by the carbon 515	  

contained in the added glucose, along with the growth stimulation caused by increased rates of 516	  

utilization of other carbon sources. In contrast, atom fraction excess 13C in response to 13C-517	  

glucose addition traces the incorporation of carbon atoms from glucose (or derived from glucose 518	  

via other metabolites as discussed above) into newly synthesized DNA (Figure 5C). This is 519	  

expected, because glucose addition stimulates growth and DNA synthesis (56, 57). In summary, 520	  

the effect of added glucose was apparent as: (1) an overall stimulation of growth, independent of 521	  

the specific carbon substrate, and (2) as a stimulation of growth that relied directly on glucose-522	  

derived carbon.  523	  

 524	  

The combination of 18O and 13C tracers enabled quantitative partitioning of these direct and 525	  

indirect effects, based on the deviation in the data from the expected relationship between 18O 526	  

and 13C enrichment for organisms utilizing glucose as a sole carbon source (solid line, Figure 6). 527	  

One explanation for this deviation is that most taxa derive more than 33% of the oxygen in DNA 528	  

from environmental water. Quantitative variation in the contribution of water to oxygen in DNA 529	  
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could occur, for example, due to the variation in the oxidation state of the carbon substrate (e.g., 530	  

lipids versus carbohydrates), though to our knowledge this variation is not known. Given the 531	  

universality of the mechanism of DNA replication, it is unlikely that taxa vary widely in the 532	  

contribution of water to oxygen, at least when grown on a common substrate.  533	  

 534	  

A more parsimonious explanation of the deviation we observed is that it represents utilization of 535	  

C sources other than glucose for growth. In other words, the added glucose stimulated the 536	  

utilization of native soil C as a growth substrate. This points to the potential for quantitative 537	  

stable isotope probing to test hypotheses regarding microbial diversity in the commonly observed 538	  

phenomenon where the addition of simple C substrates to soil increases the mineralization of 539	  

native soil C (16). This so-called “priming effect” has been observed for decades (17, 18), is 540	  

common and quantitatively significant (16), but remains mechanistically inscrutable. Our results 541	  

suggest that some microorganisms respond to glucose addition by enhancing their rates of 542	  

utilization of native soil carbon, enabling additional biosynthesis (Figure 6). The taxonomic 543	  

diversity of responses we observed highlights the potential for this technique to provide insight 544	  

into the population and community ecology behind biogeochemical phenomena involving such 545	  

indirect effects (e.g., 16, 17).  546	  

 547	  

Quantifying isotope composition is the first step in determining the rate of substrate utilization in 548	  

isotope tracer experiments, and the foundation for comparing rates of substrate utilization and 549	  

element fluxes among different taxa in intact microbial communities. This work advances a 550	  

quantitative approach to stable isotope probing in order to elucidate taxon-specific processes that 551	  
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drive element cycling in intact communities, bringing to microbial ecology the power of stable 552	  

isotopes to quantify rates of element fluxes into and through organisms (58, 59). Like Chip-SIP 553	  

(44, 60), qSIP provides a means to quantify the ecology of organisms about which we know little 554	  

more than the genetic fragment used to identify their unique place on the tree of life. These 555	  

approaches lay the groundwork for a quantitative understanding of microbial ecosystems, 556	  

including the types of ecological interactions previously described among macro-organisms that 557	  

influence ecosystem processes. Quantitative stable isotope probing adds to the suite of tools that 558	  

facilitate interpretation of stable isotope tracer experiments in microbial communities, probing 559	  

the quantitative significance of microbial taxa for biogeochemical cycles in nature.  560	  
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Figure Legends 746	  

Figure 1. Conceptual model of the quantitative stable isotope probing technique, from sample 747	  

collection to determining the density of 16S rRNA gene fractions for individual taxa and their 748	  

corresponding values of atom % stable isotope composition. Note: except for the addition of the 749	  

stable isotope tracer at the beginning of the incubation, all steps are applied identically to both 750	  

labeled and unlabeled samples. Artwork by Victor Leshyk.  751	  

 752	  

Figure 2 (A) The 18O composition of E. coli DNA as a function of the 18O composition of water 753	  

in the growth medium. Solid line is the regression (18ODNA = 0.3339 x 18OH2O + 0.0004, n=15, 754	  

P<0.001, R2=0.976). (B) The average density of E. coli DNA as a function of the 18O 755	  

composition of the DNA (density = 0.0644 x atom fraction 18O + 1.6946 756	  

R² = 0.852, n=15) 757	  

 758	  

Figure 3.   The relative abundance of bacterial 16S rRNA genes, measured through quantitative 759	  

PCR, as a function of density of DNA. Isotope treatments are shown with filled symbols while 760	  

natural abundance controls are shown with open symbols. Comparison of soil samples incubated 761	  

with (A) 12C-glucose and 13C-glucose, (B) 16O-H2O and 18O-H2O, and (C) 
16O-H2O plus 12C-762	  

glucose and 18O-H2O plus 12C-glucose. The dotted lines represent the density that separates 763	  

labeled from non-labeled DNA in traditional SIP. The distribution of densities in each replicate 764	  

tube yielded an estimate of the average density for that tube, indicated by the horizontal position 765	  

of the large symbols and error bars at the top of each panel (bars show 90% CIs, with n=3; the 766	  

vertical position of these symbols does not convey meaning).  767	  
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 768	  

 769	  

Figure 4.   Frequency distribution of the 16S rRNA gene as a function of density of DNA for 770	  

three bacterial taxa without added glucose (left panels) and with added (natural abundance δ13C) 771	  

glucose (right side panels) for three different taxa: unidentified genera in the families 772	  

Micrococacceae (A & B) and Pseudonocardiaceae (C & D), and genus Herpetosiphonales (E & 773	  

F). Open symbols and dashed lines show the density distribution for the incubation where all 774	  

substrates had natural abundance isotope composition, and filled symbols and solid lines show 775	  

the distribution with 18O-water. Different shapes represent individual replicates within a 776	  

treatment combination. For each replicate, the area under the curve sums to 1. The distribution of 777	  

densities for each taxon in each replicate yielded an estimate of the average density for that 778	  

taxon, indicated by the horizontal position of the large symbols and error bars at the top of each 779	  

panel (bars show 90% CIs, with n=3; note, the vertical position of the large symbols does not 780	  

convey meaning).  781	  

 782	  

Figure 5. The taxon-specific shift in average density of DNA (g cm-3, lower horizontal axis) and 783	  

the corresponding atom fraction excess of 18O or 13C (upper horizontal axis) between incubations 784	  

with enriched and natural abundance substrates. Changes in DNA density were caused by 18O 785	  

incorporation from water (A) without or (B) with added natural abundance glucose, or by (C) 13C 786	  

incorporation from added 13C-labeled glucose. Bars show bootstrapped medians and 90% CIs.  787	  

 788	  
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Figure 6. Atom fraction 13C with added 13C-glucose and the shift in atom fraction 18O caused by 789	  

added 12C-glucose across groups of bacteria. The solid black line represents the expected 790	  

relationship if organisms derived 100% of their carbon from the added glucose and 33% of their 791	  

oxygen from 18O water. The difference between the solid line and points falling above it is the 792	  

indirect effect of added glucose on the utilization of other carbon substrates, reflecting the 793	  

difference between the total growth stimulation caused by glucose addition and the stimulation 794	  

based on direct reliance on the added glucose. Points show means with standard errors of the 795	  

mean (n=3).  796	  

 797	  
 798	  

Table 1. Definitions of indices, variables, and calculated quantities used in modeling excess atom 799	  

fraction 18O for each bacterial taxon.   800	  

Indices: 801	  

  i  taxon 802	  

  j  replicate (or tube) within a treatment 803	  

  k  fraction (within a replicate) 804	  

  I  number of taxa 805	  

  J  number of replicates (within a treatment) 806	  

  K  number of fractions (within a replicate) 807	  

 808	  

Variables: 809	  

  fjk  total number of 16S rRNA gene copies per µL (all taxa combined) in fraction k of 810	  

replicate j (copies µL-1) 811	  
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  pijk  proportion of the total number of 16S rRNA gene copies per µL that are taxon i in 812	  

fraction k of replicate j (unitless) 813	  

  xjk  density of fraction k of replicate j (g cm-3) 814	  

   815	  

Calculated quantities: 816	  

  yijk  number of 16S rRNA  gene copies per µL of taxon i in fraction k of replicate j 817	  

(copies µL-1) 818	  

  yij  total number of 16S rRNA gene copies per µL of taxon i in replicate j (copies µL-819	  

1) 820	  

  Wij  observed weighted average density for taxon i in replicate j (g cm-3) 821	  

  WLABi mean observed weighted average density for taxon i in the labeled treatment 822	  

(mean across all replicates of the treatment with the heavy isotope) (g cm-3) 823	  

  WLIGHTi mean observed weighted average density for taxon i in the unlabeled (i.e., natural 824	  

abundance) treatment (mean across all replicates in all treatments without heavy 825	  

isotopes) (g cm-3) 826	  

  Gi  guanine + cytosine content of taxon i (unitless) 827	  

  HCARBONi average number of carbon atoms per DNA nucleotide for taxon i 828	  

  MLIGHTi observed molecular weight of the DNA fragment containing the 16S RNA gene 829	  

for taxon i in the unlabeled (i.e., natural abundance) treatment (g mol-1) 830	  

  MHEAVYMAXi theoretical molecular weight of the DNA fragment containing the 16S RNA gene 831	  

for taxon i assuming maximum labeling by the heavy isotope (g mol-1) 832	  
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  MLABi observed molecular weight of the DNA fragment containing the 16S RNA gene 833	  

for taxon i in the labeled treatment (g mol-1) 834	  

  Zi  difference in observed weighted average densities of taxon i for the labeled and 835	  

unlabeled treatments (g cm-3) 836	  

  AOXYGENi excess atom fraction of 18O in the labeled versus unlabeled treatment for taxon i 837	  

(unitless) 838	  

  ACARBONi excess atom fraction of 13C in the labeled versus unlabeled treatment for taxon i 839	  

(unitless) 840	  

  841	  
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 842	  
Table 2. Density (g cm-3) of DNA for taxa exhibiting or not exhibiting 

tracer assimilation in the three tracer experiments. Values are means and 

standard deviations.  

 

Density (g cm-3) 

Tracer assimilating not assimilating 

18O-H2O 1.6905 ± 0.0031 1.6912 ± 0.0033 

18O-H2O with glucose 1.6896 ± 0.0033 1.6894 ± 0.0045 

13C-glucose 1.6890 ± 0.0030 1.6900 ± 0.0036 

  843	  
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Figure 4 876	  
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Figure 5.  879	  
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Figure 6.  881	  
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