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Sustained oscillations are frequently observed in biological systems consisting of a
negative feedback loop, but a mathematical model with two ordinary differential equations
(ODE) that has a negative feedback loop structure fails to produce sustained oscillations.
Only when a time delay is introduced into the system by expanding to a three-ODE model,
transforming to a two-DDE model, or introducing a bistable trigger do stable oscillations
present themselves. In this study, we propose another mechanism for producing sustained
oscillations based on periodic reaction pauses of chemical reactions in a negative feedback
system. We model the oscillatory system behavior by allowing the coefficients in the two-
ODE model to be periodic functions of time – called pulsate functions – to account for
reactions with go-stop pulses. We find that replacing coefficients in the two-ODE system
with pulsate functions with micro-scale (several seconds) pauses can produce stable
system-wide oscillations that have periods of approximately one to several hours long. We
also compare our two-ODE and three-ODE models with the two-DDE, three-ODE, and three-
DDE models without the pulsate functions. Our numerical experiments suggest that
sustained long oscillations in biological systems with a negative feedback loop may be an
intrinsic property arising from the slow diffusion-based pulsate behavior of biochemical
reactions.
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1 Modeling biological oscillations: integration of short reaction pauses into a stationary 
2 model of a negative feedback loop generates sustained long oscillations 

3 ABSTRACT

4 Sustained oscillations are frequently observed in biological systems consisting of a negative 
5 feedback loop, but a mathematical model with two ordinary differential equations (ODE) that has 
6 a negative feedback loop structure fails to produce sustained oscillations. Only when a time 
7 delay is introduced into the system by expanding to a three-ODE model, transforming to a two-
8 DDE model, or introducing a bistable trigger do stable oscillations present themselves. In this 
9 study, we propose another mechanism for producing sustained oscillations based on periodic 

10 reaction pauses of chemical reactions in a negative feedback system. We model the oscillatory 
11 system behavior by allowing the coefficients in the two-ODE model to be periodic functions of 
12 time – called pulsate functions – to account for reactions with go-stop pulses. We find that 
13 replacing coefficients in the two-ODE system with pulsate functions with micro-scale (several 
14 seconds) pauses can produce stable system-wide oscillations that have periods of approximately 
15 one to several hours long. We also compare our two-ODE and three-ODE models with the two-
16 DDE, three-ODE, and three-DDE models without the pulsate functions. Our numerical 
17 experiments suggest that sustained long oscillations in biological systems with a negative 
18 feedback loop may be an intrinsic property arising from the slow diffusion-based pulsate 
19 behavior of biochemical reactions.
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28 INTRODUCTION

29 Oscillations are a prevalent phenomenon occurring at multiple levels in living organisms. 
30 Understanding the basic mechanism for generating oscillations in living organisms is 
31 fundamentally important to understanding the basic principles in biology. Currently, how 
32 oscillations in living organisms are generated is not well understood. A key to understanding 
33 such a mechanism is to identifying underlying causes of sustained oscillation in simple 
34 biological systems.

35 Mathematical models have indicated that a negative feedback loop is required but not 
36 sufficient for generating sustained oscillations (Ferrell, Tsai and Yang, 2011;  Harima et al., 
37 2014). Mathematical modeling with ordinary differential equations (ODE) revealed that only 
38 when a negative feedback loop is coupled with either a delayed action along the feedback loop 
39 (Ferrell, Tsai and Yang, 2011;  Harima et al., 2014) or another positive feedback loop (Ferrell, 
40 Tsai and Yang, 2011), can sustained oscillations be generated. In essence, adding more 
41 components to a feedback loop such as a positive feedback loop is mathematically equivalent to 
42 delaying an action in the negative feedback loop. In a simple biological oscillating system, such 
43 as the oscillation of Hes7 protein in mice, it does not involve an additional feedback loop other 
44 than the auto-repression of Hes7 transcription by the direct binding of Hes7 to its own promoter 
45 (Bessho et al., 2003). Furthermore, deletions of the introns of the Hes7 gene shorten the 
46 oscillation period, but do not abolish the oscillation, indicating the robustness of the oscillation 
47 (Takashima et al., 2011; Harima et al., 2013). It is also striking that the periods of the oscillations 
48 of Hes7 and its homolog Hes1 are similar, i.e. 2-3 hours, even though the two proteins are 
49 expressed in different cells (Harima et al., 2014). Oscillations with similar durations, which fall 
50 under the definition of ultradian rhythm, have also been observed in other biological processes 
51 such as adrenal corticosterone secretion in animals (Tapp, Holaday and Natelson, 1984; Engler et 
52 al., 1989; Jasper and Engeland, 1991) and humans (Weitzman et al., 1971), and the signal 
53 transduction in the EGF-stimulated ERK/MAPK pathway (Albeck, Mills and Brugge, 2013).  
54 These oscillations are likely the fastest in systems of large biomolecules.

55 The above mentioned studies of Hes7 suggest that the processing of the Hes7 transcript 
56 precursor to the mature intronless form of the Hes7 mRNA causes a delay in the negative 
57 feedback loop. However, if all the steps in the negative feedback loop are continuous processes, 
58 any delay due to differential reaction rates between two consecutive steps will be temporary as 
59 each reaction step will adjust its output based on the input from the previous step in a closed 
60 negative feedback loop. This argues that one or more steps in the negative feedback loop need to 
61 be discrete in order to produce a sustained oscillation. 

62 Discreteness of biochemical reactions is likely a general phenomenon. Frequent pauses with 
63 durations from nearly a millisecond to seconds were observed in an in vitro enzymatic reaction 
64 involving a single enzyme molecule (Yang et al., 2003). Frequent pauses with durations from 1-6 
65 seconds were also observed in an in vitro RNA transcriptional process (Neuman et al., 2003). 
66 Pauses with similar durations have also been observed in two independent in vitro microtubule 
67 assembly experiments (Kerssemakers et al., 2006; Schek et al., 2007). The reaction pauses have 
68 been proposed to be a diffusion-based phenomenon, although one proposal was developed on the 
69 basis of subdiffusion within the enzyme molecule (Kou and Xie, 2004) and the other on the basis 
70 of slow diffusion of a reactant to the reaction site in biological systems (Yang, 2014). If so, slow 
71 diffusion can, in general, cause the same kind of pauses in in vivo biochemical reactions since the 
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72 diffusion coefficients in cellular compartments are small and the spatial confinement of the 
73 reactions requires at least some of the reactants to diffuse to the reaction centers. In this report, 
74 we propose that slow diffusion-based short reaction pauses can generate long oscillations in a 
75 two-ODE model of a simple negative feedback loop. Our model produces robust sustained 
76 oscillations with periods in the range of hours when the periods of molecular reactions and 
77 pauses are in the range of seconds that conform to the pauses observed in aforementioned 
78 molecular reactions. The periods and peak heights of the oscillations can also be increased with 
79 the addition of a third component in a three-ODE model. Thus, our model provides an 
80 explanation to how hours-long oscillations can be generated from a physical constraint in a 
81 negative feedback loop of biochemical reactions.

82 METHODS

83 The two-ODE and three-ODE models described in (Ferrell, Tsai and Yang, 2011) were used as 
84 the basic forms of our models while the original parameters  and  were replaced with a pulsate 𝛼 𝛽
85 function in our models. The pulsate function was derived by Fourier analysis, which is based on 
86 the assumption that in vivo biochemical reactions in general undergo periodic pauses due to the 
87 slow diffusion rates relative to the chemical reaction rates. The numerical experiments were 
88 conducted, and Figs. 2-6 and Figs. A.1 and A.2 were initially generated, in MATLAB using the 
89 ODE solver ode45. Fig. 1 was drawn in PowerPoint. All figures were modified and assembled in 
90 Adobe Photoshop CS2.

91 RESULTS AND DISCUSSION

92 The non-oscillatory two-ODE model

93 Mathematical models have been proposed to describe oscillations of proteins during the cell 
94 cycle (Ferrell, Tsai and Yang, 2011).  These models are based on a basic two-ODE form as 
95 illustrated by Eqs. [1] and [2], where x and y are two arbitrary chemicals in a negative feedback 
96 loop. Here  is activated through some exogeneous mechanism which in turn activates . Then, 𝑥 𝑦
97 the increasing level of  deactivates .  This type of negative feedback loop model is a simple 𝑦 𝑥
98 representation of a wide variety of oscillatory systems.  The  term in Eq. [1] represents the 𝛼1
99 activation of chemical  (which is assumed to be a simple linear function of time).  The 𝑥

100  term in Eq. [2] captures the activation of chemical  by chemical .  Note that 𝛼2(1 ‒ 𝑦)
𝑥

𝑛2

𝐾
𝑛2
2 + 𝑥

𝑛2
𝑦 𝑥

101 this term contains a Hill function which is simply a sigmoidal function of .  As the level of 𝑥
102 chemical  goes from low levels to medium levels, the activation rate of  increases relatively 𝑥 𝑦
103 quickly but as chemical  goes from medium levels to high levels, the activation rate of  𝑥 𝑦

104 increases more slowly and eventually reaches a maximum.  The  term in Eq. [1] ‒ 𝛽1𝑥
𝑦

𝑛1

𝐾
𝑛1
1 + 𝑦

𝑛1

105 models the deactivation of chemical  by chemical  which is the negative feedback portion of 𝑥 𝑦
106 the system.  Finally, the  term in Eq. [2] models the deactivation of chemical .‒ 𝛽2𝑦 𝑦

107  , [1]
𝑑𝑥
𝑑𝑡 = 𝛼1 ‒ 𝛽1𝑥

𝑦
𝑛1

𝐾
𝑛1
1 + 𝑦

𝑛1
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108  [2]
𝑑𝑦
𝑑𝑡 = 𝛼2(1 ‒ 𝑦)

𝑥
𝑛2

𝐾
𝑛2
2 + 𝑥

𝑛2
‒ 𝛽2𝑦.

109 The above model itself, however, did not produce sustained oscillations for many positive 
110 parameter values tested (Ferrell, Tsai and Yang, 2011). Only when a third chemical (three-ODE 
111 extension, bi-stable trigger) or an undefined time delay (2-DDE extension) is added to the 
112 system, can it produce sustained oscillations (Ferrell, Tsai and Yang, 2011). In the course of 
113 further investigating this model, we have found mathematically that this model indeed cannot 
114 produce sustained oscillations (App. A).  

115 The role of short periodic reaction pauses in generating long oscillations

116 The failure of the above two-ODE to account for biological oscillations seems to be at odds with 
117 experimental evidence, such as the oscillations observed with the Hes1 and Hes7 auto negative 
118 feedback loops. We hypothesized that the reason for this failure is that a general characteristic of 
119 biochemical reactions, i.e., the discreteness of the reactions, is missing from the model. 
120 Discreteness is likely an important and yet overlooked feature of biochemical reactions as 
121 discussed earlier. 

122 To modify the above model to accommodate the stop-start nature of biochemical reactions, 
123 we assume that one or more of the coefficients in Eqs. [1] and [2] are periodic with the period(s) 
124 in the range of a few seconds, and the system to be modeled is in a sufficiently small space inside 
125 the cell so that all the molecules of the same species act synchronously. Since the exact function 
126 of a periodic coefficient is unknown, we first test three common periodic functions for the  𝛼1
127 coefficient in the two-ODE system, including a sine pulse, a triangle pulse, and a sawtooth pulse 
128 with a pausing period of 3 seconds (when ), App. B). In all three cases, a sustained 𝑃(𝑡) = 0
129 oscillation with an approximately 1-hour period is generated (Fig. 1). Interestingly, if we do not 
130 allow pauses (when  at all time), no sustained oscillation can be obtained for a wide 𝑃(𝑡) > 0
131 range of parameters in the two-ODE system. Pausing in a periodic coefficient, therefore, is 
132 sufficient and likely required for the two-ODE system to generate sustained long oscillations.

133 For further investigating the role of short periodic coefficients in generating sustained long 
134 oscillations, as a proof of concept, we use a Fourier series to model . Even though we do not 𝑃(𝑡)
135 directly use the Fourier series representation of  in our subsequent numerical experiments, 𝑃(𝑡)
136 we develop it in recognition that the true form of the pulsate function is unknown and Fourier 
137 series are the most flexible and robust method for modeling periodic functions. Here we assume 
138 that  resembles a piece-wise constant function (App. B) that has a pulse phase with a 𝑃(𝑡)
139 constant positive value  alternating with a pause phase with a constant value 0. The pulse phase 𝜃
140 has a time length  and the pause phase a time length . One complete period of the pulsate 𝑡𝑓 𝑡𝑑
141 function is  . Such a function should capture the essential discreteness of the proposed 𝑡𝑓 + 𝑡𝑑
142 pulsate behavior and also allows us to apply the asymptotic theory of Fourier series to avoid long 
143 equations and thus save computational time. In order to find the Fourier coefficients of , we 𝑃(𝑡)
144 turn to the field of electronics where rectangular waves are called rectangular pulse trains. We 
145 appropriate the formula for pulse trains to obtain Eq. [3] (App. C)

146  [3]𝑃(𝑡) ~ 𝜃[𝑡𝑓

𝑡𝑑
+ ∑𝐾

𝑘 = 1
2

𝜋𝑘sin (𝜋𝑘𝑡𝑓

𝑡𝑑 )cos (2𝜋𝑘
𝑡𝑑

(𝑡 ‒
𝑡𝑓

2))].
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147 Since  is discontinuous and therefore subject to the Gibbs phenomenon, i.e., the Fourier 𝑃(𝑡)
148 series approximation overshoots or undershoots discontinuous functions at the points of 
149 discontinuity (Foster and Richards, 1991; App C). In most applications, the numerical noise 
150 introduced by the Gibbs phenomenon is inconsequential, but in a non-linear system, small 
151 changes in parameters can potentially have dramatic effects on the behavior of the system. In 
152 order to mitigate the Gibbs phenomenon, we apply the technique of -approximation, which 𝜎
153 multiplies the periodic terms in the Fourier series by a “smoothing” factor that mitigates the 
154 over/undershooting (Hamming, 1987; App C).  Applying this technique, we reach the following 
155 equation for the pulsate function,

156  [4]𝑃(𝑡) ~ 𝜃[𝑡𝑓

𝑡𝑑
+ ∑𝑚 ‒ 1

𝑘 = 1
2𝑚

(𝜋𝑘)2sin
𝜋𝑘
𝑚 sin (𝜋𝑘𝑡𝑓

𝑡𝑑 )cos (2𝜋𝑘
𝑡𝑑

(𝑡 ‒
𝑡𝑓

2))].

157 When applying Eq. [4] to the coefficients in Eqs. [1] and [2], however, computing the 
158 thousands of terms of the Fourier series required to obtain an accurate approximation of  is 𝑃(𝑡)
159 computationally taxing and suffers from numerical noise.  Alternatively, we apply the asymptotic 
160 theory of Fourier series to directly evaluate  without summing sines and cosines. This theory 𝑃(𝑡)
161 states that the Fourier series will converge to  or  at continuous points but will converge to  at 𝜃 0

𝜃
2

162 points of discontinuity.  Thus, we can model  directly as 𝑃(𝑡)

163    [5]𝑃(𝑡) = { 𝜃     if     𝑡 mod 𝑡𝑑 > 𝑡𝑑 ‒ 𝑡𝑓
𝜃
2     if     𝑡 mod 𝑡𝑑 = 0     or    𝑡 mod 𝑡𝑑 = 𝑡𝑑 ‒ 𝑡𝑓 

0     otherwise
�.

164 We replace, in turn, each coefficient ( ) in Eqs. [1] and [2] with Eq. [5] so that 𝛼1,𝛼2,𝛽1,𝛽2
165 each two-ODE model would have a single pulsate term, and numerically integrated each model 
166 with arbitrary parameters and initial conditions  (Fig. 2). These and earlier numerical 𝑥 = 𝑦 = 0
167 integration results together show that replacing any coefficient with a pulsate term that pulses on 
168 the scale of seconds can induce stable system-wide oscillations with period lengths of 
169 approximately one to several hours.

170 Combinations of pulsate coefficients also produce sustained long oscillations

171 We also numerically integrate Eqs. [1] and [2] with two pulsate terms by replacing each possible 
172 pair of coefficients with Eq. [5] (Fig. 3).  Parameters can be found for generating stable 
173 oscillations for all the pulsate term combinations, although the combinations of   and  and 𝛼2 𝛽2
174  and  yield erratic oscillations (in Fig. 3D and F). 𝛽1 𝛽2

175 When pulsate  terms are introduced into the model, stable oscillations can be 𝛼1,𝛼2,and 𝛽2
176 produced with a set of the parameter values (Fig. 4A). Pulsate  terms can also 𝛼1,𝛼2,and 𝛽1
177 produce stable but weak oscillations for another set of the parameter values (Fig. 4B).  Attempts 
178 to find stable oscillations with the other possible combinations of three or four pulsate terms 
179 were unsuccessful.

180 Our results show that one or more pulsate coefficients representing short reaction pauses in 
181 the two-component negative feedback loop can produce sustained oscillations with 
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182 approximately one to several hours long periods for both x and y. The failure to demonstrate the 
183 same system behavior with all the possible combinations of the pulsate coefficients suggests that 
184 either not all coefficients should be pulsate in the system (which can be reasonably argued to be 
185 the case in the cell) or we simply have not found the appropriate parameter values. 

186 The effect of periodic coefficients has previously been analyzed in predator-prey models 
187 (Cushing, 1977), which shows that periodic coefficients can lead to an oscillatory behavior.  
188 However, it only shows that -periodic coefficients can lead to -periodic solutions. In other 𝜔 𝜔
189 words, the individual coefficients and the solutions have the same period in the predator-prey 
190 models. Our model, on the other hand, shows that short-duration pulses in coefficients can lead 
191 to long-duration oscillations in the system.

192 Comparison between our two-ODE model and the two-DDE model

193 Why does the addition of short-duration pulsate behavior create long-duration oscillations in the 
194 otherwise stable system?  We conjecture that this is due to the diffusion-based pulsate behavior 
195 acting as a time delay.  It is known that the two-ODE system with constant coefficients is stable 
196 unless there is some form of time delay between the two legs of the system either through adding 
197 a buffer chemical, or an explicit time delay in the form of delay differential equations (DDE) 
198 (Ferrell, Tsai and Yang, 2011). To explore our conjecture, we demonstrate the similarities 
199 between a two-DDE system and the two-ODE system with the diffusion-based pulsate behavior.  
200 Fig. 5A and B show, respectively, the results of numerically integrating the following two-DDE 
201 system (Eqs. [6] and [7]) from (Ferrell, Tsai and Yang, 2011) with a short time and a long time 
202 lag and otherwise identical parameters.  

203  , [6]
𝑑𝑥[𝑡]

𝑑𝑡 = 𝛼1 ‒ 𝛽1𝑥[𝑡]
𝑦[𝑡 ‒ 𝜏1]

𝑛1

𝐾
𝑛1
1 + 𝑦[𝑡 ‒ 𝜏1]

𝑛1

204  [7]
𝑑𝑦[𝑡]

𝑑𝑡 = 𝛼2(1 ‒ 𝑦[𝑡])
𝑥[𝑡 ‒ 𝜏2]

𝑛2

𝐾
𝑛2
2 + 𝑥[𝑡 ‒ 𝜏2]

𝑛2
‒ 𝛽2𝑦[𝑡].

205 We also numerically integrated the two-ODE pulsate system (Eqs. [1] and [2]) with short and 
206 long periods of the pulsate function and otherwise identical parameters (Fig. 5C and D).  It is 
207 apparent that increasing the time lag in the two-DDE system has the same qualitative effect as 
208 increasing the period of the pulsate behavior in the two-ODE system: increasing the oscillation 
209 period and the peak height. However, peaks produced by our model are not as uniform as those 
210 produced by the two-DDE model in height and temporal separation. Also, in the limit of the two-
211 DDE system where , the system approaches the two-ODE system without pulsate behavior 𝜏→0
212 which is known to be stable.  Correspondingly, as  in the two-ODE pulsate system it also 𝑡𝑓→𝑡𝑑
213 approaches the stable two-ODE system. Even though both the two-DDE and our two-ODE 
214 models can produce similar oscillation outcomes, our two-ODE model is based clearly on a 
215 physical mechanism whereas the two-DDE model is not. It is envisioned that in more complex 
216 systems with numerous chemicals and multiple feedback loops, integration of additional  𝑃(𝑡)
217 terms into expanded ODE models can be readily justified, which is not the case with the time 
218 delay factors, τs, in expanded DDE models. 

219 Expansion of our model to a three-ODE system
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220 To investigate how increasing complexity affects our model, we expanded the two-ODE model 
221 to a three-ODE model by modifying another model proposed by Ferrell, Tsai and Yang (2011), 
222 the three-ODE model with a buffer chemical.  The third chemical in the system, , acts as a 𝑧
223 buffer between  and , and provides the necessary time delay which allows the system to 𝑥 𝑦
224 oscillate.  The three-ODE system from Ferrell, Tsai and Yang (2011) is 

225  ,               [8]
𝑑𝑥
𝑑𝑡 = 𝛼1 ‒ 𝛽1𝑥

𝑦
𝑛1

𝐾
𝑛1
1 + 𝑦

𝑛1

226  , [9]
𝑑𝑦
𝑑𝑡 = 𝛼2(1 ‒ 𝑦)

𝑧
𝑛2

𝐾
𝑛2
2 + 𝑧

𝑛2
‒ 𝛽2𝑦

227  [10]
𝑑𝑧
𝑑𝑡 = 𝛼3(1 ‒ 𝑧)

𝑥
𝑛3

𝐾
𝑛3
3 + 𝑥

𝑛3
‒ 𝛽3𝑧.

228 In one form of our model, , , and  are replaced with , , and  𝛼1 𝛼2 𝛼3 𝑃1(𝑡) 𝑃2(𝑡) 𝑃3(𝑡)
229 respectively, which gives us the system

230  ,              [11]
𝑑𝑥
𝑑𝑡 = 𝑃1(𝑡) ‒ 𝛽1𝑥

𝑦
𝑛1

𝐾
𝑛1
1 + 𝑦

𝑛1

231  , [12]
𝑑𝑧
𝑑𝑡 = 𝑃2(𝑡)(1 ‒ 𝑧)

𝑥
𝑛2

𝐾
𝑛2
2 + 𝑥

𝑛2
‒ 𝛽2𝑧

232  [13]
𝑑𝑦
𝑑𝑡 = 𝑃3(𝑡)(1 ‒ 𝑦)

𝑧
𝑛3

𝐾
𝑛3
3 + 𝑧

𝑛3
‒ 𝛽3𝑦.

233 We numerically integrate both Ferrell et al.’s model (Eqs. [8-10]; Fig. 6A) and our model 
234 (Eqs. [11-13]; Fig.  6B). All parameters are identical and the pulsate terms in Eqs. [11-13] are 
235 calibrated so that their average values are equal to the respective  , and  in Eqs. [8-10]. 𝛼1 𝛼2 𝛼3
236 The results show that adding pulsate behavior to models that already oscillate increases the peak 
237 height and period of the oscillation comparing to what they would have been without the pulsate 
238 behavior.  As another comparison, we also numerically integrate the following analogous three-
239 DDE model (Eqs. [14-16]; Fig. 6C) and our three-ODE model (Fig. 6D) with a different but 
240 identical set of parameters, except that the former does not involve pulsate terms and the latter 
241 involves pulsate  , and . The peak height and period of the oscillation from the three-DDE 𝛼1 𝛼2 𝛼3
242 model are still shorter than those from our three-ODE model, even though they are longer than 
243 those from the vanilla three-ODE model, respectively. These results provide further evidence 
244 that the molecular pulsate behavior can be an important physical basis for the time delay – and 
245 hence the oscillations – in many biological systems containing negative feedback loops.

246  ,   [14]
𝑑𝑥[𝑡]

𝑑𝑡 = 𝛼1 ‒ 𝛽1𝑥[𝑡]
𝑦[𝑡 ‒ 𝜏1]

𝑛1

𝐾
𝑛1
1 + 𝑦[𝑡 ‒ 𝜏1]

𝑛1
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247  , [15]
𝑑𝑧[𝑡]

𝑑𝑡 = 𝛼2(1 ‒ 𝑧[𝑡])
𝑥[𝑡 ‒ 𝜏2]

𝑛2

𝐾
𝑛2
2 + 𝑥[𝑡 ‒ 𝜏2]

𝑛2
‒ 𝛽2𝑧[𝑡]

248  [16]
𝑑𝑦[𝑡]

𝑑𝑡 = 𝛼3(1 ‒ 𝑦[𝑡])
𝑧[𝑡 ‒ 𝜏3]

𝑛3

𝐾
𝑛3
3 + 𝑧[𝑡 ‒ 𝜏3]

𝑛3
‒ 𝛽3𝑦[𝑡].

249 CONCLUSIONS
250
251 Our ODE model indicates that a negative feedback loop and short (a few seconds) reaction 
252 pauses are sufficient for generating sustained long (hours) oscillations that resemble actual 
253 oscillations in biological systems.
254
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299 APPENDICES

300 Appendix A: Proof that the two-ODE System with constant coefficients cannot generate 
301 stable limit cycles

302 We can use linear stability analysis to show that the two-ODE system with constant coefficients 
303 cannot generate stable limit cycles.  According to linear stability analysis, the stability of the 
304 two-ODE system can be deduced from the Jacobian matrix of the system.

305 Assume that ; ; and .  Let  be a critical point of the 𝛼1,𝛼2,𝛽1,𝛽2 > 0 𝑛1,𝑛2 > 2 𝑥,𝑦 ≥ 0 (𝑥,𝑦)
306 two-ODE system.  First, we compute the Jacobian by computing all of the partial derivatives. Put 

307 𝑓(𝑥,𝑦) =
𝛿𝑥
𝛿𝑡 = 𝛼1 ‒ 𝛽1𝑥

𝑦
𝑛1

𝐾
𝑛1
1 + 𝑦

𝑛1
,

308 𝑔(𝑥,𝑦) =
𝛿𝑦
𝛿𝑡 = 𝛼2(1 ‒ 𝑦)

𝑥
𝑛2

𝐾
𝑛2
2 + 𝑥

𝑛2
‒ 𝛽1𝑦.

309 Then, we compute each partial derivative:

310
𝛿𝑓
𝛿𝑥 =‒ 𝛽1

𝑦
𝑛1

𝐾
𝑛1
1 + 𝑦

𝑛1
,

311
𝛿𝑓
𝛿𝑦 = 𝛽1𝑥

𝐾
𝑛1
1 𝑛1𝑦

𝑛1 ‒ 1

(𝐾
𝑛1
1 + 𝑦

𝑛1)2
,

312
𝛿𝑔
𝛿𝑥 = 𝑎2(1 ‒ 𝑦)

𝐾
𝑛2
2 𝑛2𝑥

𝑛2 ‒ 1

(𝐾
𝑛2
2 + 𝑥

𝑛2)2
,

313
𝛿𝑔
𝛿𝑦 =‒ 𝛼2

𝑥
𝑛2

𝐾
𝑛2
2 + 𝑥

𝑛2
‒ 𝛽2.

314 Then, the Jacobian,  is𝐽
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315 𝐽 = [ ‒ 𝛽1
𝑦

𝑛1

𝐾
𝑛1
1 + 𝑦

𝑛1
𝛽1𝑥

𝐾
𝑛1
1 𝑛1𝑦

𝑛1 ‒ 1

(𝐾
𝑛1
1 + 𝑦

𝑛1)2

𝑎2(1 ‒ 𝑦)
𝐾

𝑛2
2 𝑛2𝑥

𝑛2 ‒ 1

(𝐾
𝑛2
2 + 𝑥

𝑛2)2
‒ 𝛼2

𝑥
𝑛2

𝐾
𝑛2
2 + 𝑥

𝑛2
‒ 𝛽2]

316 and the eigenvalues of the matrix are

317 𝜆1,2 =
tr (𝐽)

2 ±
tr (𝐽)2

4 ‒ det (𝐽).

318 In order to generate sustained oscillations at least one eigenvalue must have non-negative 
319 real part and non-zero imaginary part.  So there must be some  such that,  and 𝑖 Re (𝜆𝑖) ≥ 0
320 . First, we show that . Im (𝜆𝑖) ≠ 0 tr (𝐽) < 0

321 tr (𝐽) = ‒ 𝛽1
𝑦

𝑛1

𝐾
𝑛1
1 + 𝑦

𝑛1
‒ 𝛼2

𝑥
𝑛2

𝐾
𝑛2
2 + 𝑥

𝑛2
‒ 𝛽2.

322 Since all parameters are positive, each of the terms are negative and thus .  
tr (𝐽)

2 < 0

323 Now, let .  Suppose that , then  is imaginary so that 𝑅 =
tr (𝐽)2

4 ‒ det (𝐽) 𝑅 < 0 𝑅

324  for each .  Suppose that , then  is real and  while Re (𝜆𝑖) =
tr (𝐽)

2 < 0 𝑖 𝑅 ≥ 0 𝑅 Re (𝜆𝑖) =
tr (𝐽)

2 ± 𝑅
325 .  We see that none of the cases satisfies the conditions for sustained oscillations.  Im (𝜆𝑖) = 0
326 Thus, the two-ODE system cannot generate sustained oscillations.

327 Appendix B: Pulsate functions used for coefficients in the two-ODE and related systems 

328 Sine pulse 

329 𝑃(𝑡) = {𝜃|sin (𝜋𝑡
𝑡𝑓

)|  if  𝑡 mod (𝑡𝑓 + 𝑡𝑑) ≤ 𝑡𝑓 

0 otherwise
�.
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330 t
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Sine Pulse

331

332 Triangle pulse

333  

334 𝑃(𝑡) = { 2𝜃
𝑡𝑓

(𝑡 mod 
𝑡𝑓

2 )            if     𝑡 mod (𝑡𝑓 + 𝑡𝑑) ≤
𝑡𝑓

2
‒ 2𝜃
𝑡𝑓

(𝑡 mod 
𝑡𝑓

2 ) + 𝜃     if    𝑡𝑓 ≥ 𝑡 mod (𝑡𝑓 + 𝑡𝑑) >
𝑡𝑓

2
0 otherwise

�.
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335 t
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Triangle Pulse

336 Sawtooth pulse

337 𝑃(𝑡) = { 𝜃
𝑡𝑓

(𝑡 mod 𝑡𝑓)  if  𝑡 mod (𝑡𝑓 + 𝑡𝑑) ≤ 𝑡𝑓 

0 otherwise �.
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339 Piece-wise pulse

340

341

342 Appendix C: Derivation of the Pulsate Function: Pulse Trains, Gibbs Phenomenon, and -𝝈
343 Approximation

344 Pulse trains

345 The pulsate function, , can be represented by the general Fourier series 𝑃(𝑡)

346                                      [A.1]
𝑑𝑃
𝑑𝑡  ~ 𝐴0 + ∑∞

𝑘 = 1𝐴𝑘cos (2𝜋𝑘𝑡
𝑡𝑑

) + 𝐵𝑘sin (2𝜋𝑘𝑡
𝑡𝑑

).
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347 Where the coefficients can be calculated with the formulas

348                                                                                  [A.2]𝐴0 =
1

2𝑡𝑑
∫𝑡𝑑

‒ 𝑡𝑑

𝑑𝑃
𝑑𝑡𝑑𝑡,

349                                                                  [A.3]𝐴𝑘 =
1
𝑡𝑑

∫𝑡𝑑
‒ 𝑡𝑑

𝑑𝑃
𝑑𝑡cos (2𝜋𝑘𝑡

𝑡𝑑
)𝑑𝑡,

350                                                                  [A.4]𝐵𝑘 =
1
𝑡𝑑

∫𝑡𝑑
‒ 𝑡𝑑

𝑑𝑃
𝑑𝑡sin (2𝜋𝑘𝑡

𝑡𝑑
)𝑑𝑡.

351 The  symbol means that the Fourier series will converge to the target function in the limit, ~
352 except at discontinuities where it will converge to the average of the two discontinuous points. 
353 We used these formulas to calculate the coefficients for a rectangular wave.  We first calculated 
354 the coefficients for a simple wave that has amplitude [0, 1] and is symmetric about the -axis (so 𝑃
355 it starts halfway through the first pulse at ) and then we shifted and scaled the Fourier series 𝑡 = 0
356 accordingly.  

357 Calculating :𝐴0

358 𝐴0 =
1

2𝑡𝑑
∫𝑡𝑑

‒ 𝑡𝑑

𝑃(𝑡)𝑑𝑡

359                      =
1

2𝑡𝑑
∫𝑡𝑓

‒ 𝑡𝑓
1𝑑𝑡

360 __________________________________

361 .  ----------------------------------------------------------------=
𝑡𝑓

𝑡𝑑

362 -------------

363 Calculating :𝐴𝑘

364 𝐴𝑘 =
1
𝑡𝑑
∫𝑡𝑑

‒ 𝑡𝑑

𝑃(𝑡)cos (2𝜋𝑘𝑡
𝑡𝑑

)𝑑𝑡

365 =
1
𝑡𝑑[∫𝑡𝑓/2

‒ 𝑡𝑓/2
cos (2𝜋𝑘𝑡

𝑡𝑑
)𝑑𝑡 + ∫𝑡𝑑

𝑡𝑑 ‒ 𝑡𝑓/2
cos (2𝜋𝑘𝑡

𝑡𝑑
)𝑑𝑡 + ∫ ‒ 𝑡𝑑 + 𝑡𝑓/2

‒ 𝑡𝑑

cos (2𝜋𝑘𝑡
𝑡𝑑

)𝑑𝑡]
366  ------------------------------------------------------=

2
𝑡𝑑

∫𝑡𝑓/2
‒ 𝑡𝑓/2

cos (2𝜋𝑘𝑡
𝑡𝑑

)𝑑𝑡

367  -------------------------------------------=
2
𝑡𝑑

𝑡𝑑

2𝜋𝑘[sin (𝜋𝑘𝑡𝑓

𝑡𝑑 ) + sin (𝜋𝑘𝑡𝑓

𝑡𝑑 )]
368  ----------------------------------------------------------------=

2
𝑘𝜋sin (𝜋𝑘𝑡𝑓

𝑡𝑑 ).
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369 Calculating : The term  is the odd part of .  However, we have defined  𝐵𝑘 𝐵𝑘sin
2𝜋𝑘𝑡

𝑡𝑑
𝑃(𝑡) 𝑃(𝑡)

370 to be symmetric about the -axis and therefore entirely even.  Since the function has no odd part, 𝑃
371 we know that .𝐵𝑘 = 0

372 Finally, we scale the Fourier series by  so that its amplitude is [0, ] and we shift it by  𝛽 𝛽 𝑡𝑓/2
373 so that it starts with one complete pulse.  This gives us the formula

374                           [A.5]𝑃(𝑡) ~ 𝛽[𝑡𝑓

𝑡𝑑
+ ∑∞

𝑘 = 1
2

𝑘𝜋sin (𝜋𝑘𝑡𝑓

𝑡𝑑 )cos (2𝜋𝑘
𝑇 (𝑡 ‒

𝑡𝑓

2))].

375 Mitigating the Gibbs phenomenon

376 The pulsate function Fourier series suffers from the Gibbs phenomenon, which is the 
377 overshooting/undershooting of the Fourier series at points of discontinuity (Foster and Richards, 
378 1991).  In order to mitigate this, we applied the technique of -approximation which multiplies 𝜎
379 the periodic portions of the Fourier series by a smoothing factor – the Lanczos  factor 𝜎
380 (Hamming, 1987) – which is defined as 

381                                                         [A.6]𝜎 = sinc ( 𝑘
𝑚) =

sin
𝑘𝜋
𝑚

𝑘𝜋
𝑚

=
𝑚sin

𝑘𝜋
𝑚

𝑘𝜋 .

382 Here  is the order of the finite-order Fourier series plus one.  Now, we reach the final form𝑚

383

384                        [A.7]
𝑑𝑃
𝑑𝑡 ~ 𝛽[𝑡𝑓

𝑡𝑑
+ ∑𝑚 ‒ 1

𝑘 = 1𝜎
2

𝑘𝜋sin (𝜋𝑘𝑡𝑓

𝑡𝑑 )cos (2𝜋𝑘
𝑇 (𝑡 ‒

𝑡𝑓

2))]
385  ----------= 𝛽[𝑡𝑓

𝑡𝑑
+ ∑𝑚 ‒ 1

𝑘 = 1
2𝑚

(𝜋𝑘)2sin (𝜋𝑘
𝑚 )sin (𝜋𝑘𝑡𝑓

𝑡𝑑 )cos (2𝜋𝑘
𝑇 (𝑡 ‒

𝑡𝑓

2))].

386 For an illustration of the difference between the -approximated Fourier series and the 𝜎
387 unadjusted Fourier series see Fig. A.1, which shows a zoomed-in plot of  during one of its 𝑃(𝑡)
388 pulses. The -approximated series is a perfect horizontal line, while the unadjusted series has 𝜎
389 some unwanted curvature.  For an illustration of the numerical noises’ impact on the integration, 
390 see Fig. A.2, which shows two versions of a two-ODE pulsate model with the exact same 
391 parameters except one model’s Fourier series are -approximated while the other model’s 𝜎
392 Fourier series are not.  The seemingly insignificant numerical noise introduced by the Gibbs 
393 phenomenon has a large effect on the final results, so it must be reduced.
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394

Fig. A.1. Comparison between 
dP/dt with and without -𝜎
approximation. (A) Zoomed-in plot 
of -approximated  with 𝜎 𝑑𝑃/𝑑𝑡

, , , and 𝑡𝑓 = 0.5 𝑡𝑑 = 3 𝛽 = 0.005
.  (B) Zoomed-in plot of 𝑚 = 1000

unadjusted  with the same 𝑑𝑃/𝑑𝑡
parameters as A.
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395

Fig. A.2. Comparison between 
models with and without -𝜎
approximation. (A) Numerical 
integration of equations [5] and [6] 
with -approximated pulsate terms 𝜎
and arbitrarily chosen parameters 

, , , 𝑡𝑓1 = 0.5 𝑡𝑑1 = 3 𝜃1 = 0.005
, , , 𝛽1 = 0.0125 𝐾1 = 0.5 𝑛1 = 8

 for [5] and , 𝑚1 = 1000 𝑡𝑓2 = 0.5
, , 𝑡𝑑2 = 4 𝜃2 = 0.02

, , 𝛽2 = 0.0001666667 𝐾2 = 0.5
,  for [6].  (B) 𝑛2 = 8 𝑚2 = 1000

Same as (A) except the pulsate 
terms are not -approximated.𝜎
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396 Figure legends

397 Figure 1.  Numerical integration of Eqs. [1] and [2] with  being replaced by a pulsate 𝛼1
398 function. (A)  is a sine pulse. Initial , and .  The parameter values are , 𝛼1 𝑥 = 𝑡 = 0 𝑦 = 0.3 𝑡𝑓1 = 1
399 , , , ,  for Eq. [1] and , , 𝑡𝑑1 = 1 𝜃1 = 0.002 𝛽1 = 0.025 𝐾1 = 0.5 𝑛1 = 8 𝛼2 = 0.0001 𝛽2 = 0.0001
400 ,  for Eq. [2].  (B)  is a triangle pulse. Initial , and .  The 𝐾2 = 0.5 𝑛2 = 8 𝛼1 𝑥 = 𝑡 = 0 𝑦 = 0.35
401 parameter values are , , , , ,  for Eq. [1] 𝑡𝑓1 = 1 𝑡𝑑1 = 1 𝜃1 = 0.0025 𝛽1 = 0.025 𝐾1 = 0.5 𝑛1 = 8
402 and , , ,  for Eq. [2]. (C)  is a sawtooth pulse. Initial 𝛼2 = 0.0001 𝛽2 = 0.0001 𝐾2 = 0.5 𝑛2 = 8 𝛼1
403 , and .  The parameter values are , , , , 𝑥 = 𝑡 = 0 𝑦 = 0.25 𝑡𝑓1 = 1 𝑡𝑑1 = 1 𝜃1 = 0.003 𝛽1 = 0.025
404 ,  for Eq. [1] and , , ,  for Eq. [2].𝐾1 = 0.5 𝑛1 = 8 𝛼2 = 0.0002 𝛽2 = 0.0001 𝐾2 = 0.5 𝑛2 = 8
405
406 Figure 2.  Numerical integration of Eqs. [1] and [2] with single constant coefficients replaced by 
407 pulsate terms.  (A)  is replaced by the pulsate function .  The parameter values are 𝛼1 𝑃1(𝑡)
408 , , , , ,  for Eq. [1] and , 𝑡𝑓1 = 0.25 𝑡𝑑1 = 1 𝜃1 = 0.003 𝛽1 = 0.015 𝐾1 = 0.5 𝑛1 = 8 𝛼2 = 0.003
409 , ,  for Eq. [2].  (B)  is replaced by the pulsate function .  𝛽2 = 0.0001 𝐾2 = 0.5 𝑛2 = 8 𝛼2 𝑃2(𝑡)
410 The parameter values are , , ,  for Eq. [1] and ,  𝛼1 = 0.0001 𝛽1 = 0.05 𝐾1 = 0.5 𝑛1 = 8 𝑡𝑓2 = 0.25
411 , , , ,  for Eq. [2].  (C)  is replaced by the pulsate 𝑡𝑑2 = 1 𝜃2 = 0.01 𝛽2 = 0.0001 𝐾2 = 0.5 𝑛2 = 8 𝛽1
412 function .  The parameter values are , , , , , 𝑃1(𝑡) 𝛼1 = 0.0001 𝑡𝑓1 = 0.25 𝑡𝑑1 = 1 𝜃1 = 0.4 𝐾1 = 0.5
413  for Eq. [1] and , , ,  for Eq. [2].  (D)  is 𝑛1 = 8 𝛼2 = 0.011 𝛽2 = 0.0002 𝐾2 = 0.5 𝑛2 = 8 𝛽2
414 replaced by the pulsate function .  The parameter values are , , 𝑃2(𝑡)  𝛼1 = 0.0001 𝛽1 = 0.01
415 ,  for Eq. [1] and , , , , ,  𝐾1 = 0.5 𝑛1 = 8 𝛼2 = 0.0007 𝑡𝑓2 = 0.25 𝑡𝑑2 = 1 𝜃2 = 0.01 𝐾2 = 0.5 𝑛2 = 8
416 for Eq. [2].  The initial conditions are always .𝑥 = 𝑦 = 𝑡 = 0
417
418 Figure 3.  Numerical integration of Eqs. [1] and [2] with pairs of constant coefficients replaced 
419 by pulsate terms. (A)  and  are replaced by the pulsate functions  and , 𝛼1 𝛽1 𝑃11(𝑡) 𝑃12(𝑡)
420 respectively. The parameter values are , , , , 𝑡𝑓11 = 0.25 𝑡𝑑11 = 1 𝜃11 = 0.001 𝑡𝑓12 = 0.25
421 , , ,  for Eq. [1] and , , , 𝑡𝑑12 = 1.25 𝜃12 = 0.05 𝐾1 = 0.5 𝑛1 = 8 𝛼2 = 0.0003 𝛽2 = 0.0002 𝐾2 = 0.5
422  for Eq. [2].  (B)  and  are replaced by the pulsate functions  and , 𝑛2 = 8 𝛼1 𝛽2 𝑃11(𝑡) 𝑃22(𝑡)
423 respectively.  The parameter values are , , , , 𝑡𝑓11 = 0.5 𝑡𝑑11 = 3 𝜃11 = 0.0025 𝛽1 = 0.001
424 ,  for Eq. [1] and , , , , , 𝐾1 = 0.5 𝑛1 = 8 𝛼2 = 0.001 𝑡𝑓22 = 0.5 𝑡𝑑22 = 4 𝜃22 = 0.005 𝐾2 = 0.5
425  for Eq. [2]. (C)  and  are replaced by the pulsate functions  and , 𝑛2 = 8 𝛽1 𝛼2 𝑃12(𝑡) 𝑃21(𝑡)
426 respectively.  The parameter values are , , , , , 𝛼1 = 0.00005 𝑡𝑓12 = 0.5 𝑡𝑑12 = 3 𝜃12 = 0.2 𝐾1 = 0.5
427  for Eq. [1] and , , , , ,  for Eq. [2]. 𝑛1 = 8 𝑡𝑓21 = 0.5 𝑡𝑑21 = 4 𝜃21 = 1 𝛽2 = 0.001 𝐾2 = 0.5 𝑛2 = 8
428 (D)  and  are replaced by the pulsate functions  and , respectively.  The 𝛼2 𝛽2 𝑃21(𝑡) 𝑃22(𝑡)
429 parameter values are , , ,  for Eq. [1] and , 𝛼1 = 0.0009 𝛽1 = 0.0133 𝐾1 = 0.5 𝑛1 = 8 𝑡𝑓21 = 0.5
430 , , , , , ,  for Eq. [2].  (E)  and 𝑡𝑑21 = 3 𝜃21 = 0.3 𝑡𝑓22 = 0.5 𝑡𝑑22 = 4 𝜃22 = 0.02 𝐾2 = 0.5 𝑛2 = 8 𝛼1
431  are replaced by the pulsate functions  and , respectively.  The parameter values 𝛼2 𝑃11(𝑡) 𝑃21(𝑡)
432 are , , , , ,  for Eq. [1] and 𝑡𝑓11 = 0.25 𝑡𝑑11 = 1 𝜃11 = 0.0003 𝛽1 = 0.0125 𝐾1 = 0.5 𝑛1 = 8
433 , , , , ,  for Eq. [2].  (F)  𝑡𝑓21 = 0.25 𝑡𝑑21 = 1.25 𝜃21 = 0.00125 𝛽2 = 0.000014 𝐾2 = 0.5 𝑛2 = 8 𝛽1
434 and  are replaced by the pulsate functions  and , respectively.  The parameter 𝛽2 𝑃12(𝑡) 𝑃22(𝑡)
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435 values are , , , , ,  for Eq. [1] and 𝛼1 = 0.00007 𝑡𝑓12 = 0.25 𝑡𝑑12 = 1 𝜃12 = 0.03 𝐾1 = 0.5 𝑛1 = 8
436 , , , , ,  for Eq. [2].  The 𝛼2 = 0.00025 𝑡𝑓22 = 0.25 𝑡𝑑22 = 1.25 𝜃22 = 0.00015 𝐾2 = 0.5 𝑛2 = 8
437 initial conditions are always .  𝑥 = 𝑦 = 𝑡 = 0
438
439 Figure 4.  Numerical integration of equations [1] and [2] with triples of constant coefficients 
440 replaced by pulsate terms. (A) , , and  are replaced by the pulsate functions , 𝛼1 𝛼2 𝛽2 𝑃11(𝑡)
441 , and , respectively.  The parameter values are , , , 𝑃21(𝑡) 𝑃22(𝑡) 𝑡𝑓11 = 0.5 𝑡𝑑11 = 3 𝜃11 = 0.005
442 , ,  for Eq. [1] and , , , , 𝛽1 = 0.05 𝐾1 = 0.5 𝑛1 = 8 𝑡𝑓21 = 0.5 𝑡𝑑21 = 4 𝜃21 = 0.03 𝑡𝑓22 = 0.5
443 , , ,  for Eq. [2].  (B) , , and  are replaced by the 𝑡𝑑22 = 4.5 𝜃22 = 0.001 𝐾2 = 0.5 𝑛2 = 8 𝛼1 𝛽1 𝛼2
444 pulsate functions , , and , respectively.  The parameter values are 𝑃11(𝑡) 𝑃12(𝑡) 𝑃21(𝑡) 𝑡𝑓11 = 0.25
445 , , , , , , , ,  for Eq. [1] 𝑡𝑑11 = 1 𝜃11 = 0.00005 𝑡𝑓12 = 0.25 𝑡𝑑12 = 1.5 𝜃12 = 0.075 𝐾1 = 0.5 𝑛1 = 8
446 and , , , , ,  for Eq. [2].  𝑡𝑓21 = 0.25 𝑡𝑑21 = 1.25 𝜃21 = 0.001 𝛽2 = 0.0002 𝐾2 = 0.5 𝑛2 = 8
447 The initial conditions are always .   𝑥 = 𝑦 = 𝑡 = 0
448
449 Figure 5.  A comparison between two-DDE models with varying time lags and two-ODE 
450 models with varying pulsate periods.  Only chemical  has been plotted.  Chemical  oscillates 𝑥 𝑦
451 with the same period as  so it is excluded for clarity. (A) Numerical integration of DDE Eqs. [6] 𝑥
452 and [7] with arbitrarily chosen parameters , , , , 𝜏1 = 250 𝛼1 = 0.0005 𝛽1 = 0.0125 𝐾1 = 0.5
453  for Eq. [6] and , , , ,  for Eq. [7].  (B) 𝑛1 = 8 𝜏1 = 250 𝛼2 = 3 𝛽2 = 0.02 𝐾2 = 0.5 𝑛2 = 8
454 Numerical integration of DDE Eqs. [6] and [7] with the same parameters as in (A) except 
455 . (C) Numerical integration of ODE Eqs. [1] and [2] where  and  are replaced 𝜏1 = 𝜏2 = 500 𝛼1 𝛼2
456 by the pulsate functions  and , respectively.  The parameter values are , 𝑃11(𝑡) 𝑃21(𝑡) 𝑡𝑓11 = 0.5
457 , , , ,  for Eq. [1] and , , 𝑡𝑑11 = 2.5 𝜃11 = 0.005 𝛽1 = 0.0125 𝐾1 = 0.5 𝑛1 = 8 𝑡𝑓21 = 0.5 𝑡𝑑21 = 2
458 , , ,  for Eq. [2].  (D) Numerical integration of 𝜃21 = 0.0175 𝛽2 = 0.0001666667 𝐾2 = 0.5 𝑛2 = 8
459 Eqs. [1] and [2] where  and  are replaced by the pulsate functions  and , 𝛼1 𝛼2 𝑃11(𝑡) 𝑃21(𝑡)
460 respectively. The parameter values are , ,  for Eq. [1] and , 𝑡𝑓1 = 0.5 𝑡𝑑1 = 3 𝜃1 = 0.006 𝑡𝑓2 = 0.5
461 ,  for Eq. [2].  All other parameters are the same as in (C).  The initial 𝑡𝑑2 = 3.5 𝜃2 = 0.0306
462 conditions are always . The parameter  so that the 𝑥 = 𝑦 = 𝑡 = 0 𝜃𝑙𝑜𝑛𝑔

𝑖 = 𝜃𝑠ℎ𝑜𝑟𝑡
𝑖 ∗ 𝑡𝑙𝑜𝑛𝑔

𝑑 /𝑡𝑠ℎ𝑜𝑟𝑡
𝑑

463 average values of  in the long-period ODE pulsate model and the short-period ODE pulsate 𝑃𝑖(𝑡)
464 model are equal.
465
466 Figure 6. A comparison between three-ODE models, three-DDE models, and three-ODE models 
467 with varying pulsate periods.  (A) Numerical integration of the standard three-ODE model, Eqs. 
468 [8-10], with arbitrarily chosen parameters , , , 𝛼1 = 0.0004166666667 𝛽1 = 0.0125 𝐾1 = 0.5
469  for Eq. [8]; , , ,  for Eq. [9]; and 𝑛1 = 8 𝛼2 = 0.0025 𝛽2 = 0.0001666667 𝐾2 = 0.5 𝑛2 = 8
470 , , ,  for Eq. [10].  (B) Numerical integration of 𝛼3 = 0.003 𝛽3 = 0.0001666667 𝐾3 = 0.5 𝑛3 = 8
471 the three-ODE model, Eqs. [11-13], with arbitrarily chosen parameters , , 𝑡𝑓1 = 0.25 𝑡𝑑1 = 1
472  for Eq. [11]; , ,  for Eq. [12]; and , 𝜃1 = 0.0017 𝑡𝑓2 = 0.25 𝑡𝑑2 = 1.25 𝜃2 = 0.0125 𝑡𝑓3 = 0.25
473 ,  for Eq. [13] and with all other parameters unchanged from (A).  (C) 𝑡𝑑3 = 1.5 𝜃3 = 0.018
474 Numerical integration of the three-DDE model, Eqs. [14-16]. All parameters are the same as in 
475 (A) except .  (D) Numerical integration of the three-ODE model, Eqs. [11-13] 𝜏1 = 𝜏2 = 𝜏3 = 300
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476 with arbitrarily chosen parameters , ,  for Eq [11]; , 𝑡𝑓1 = 0.5 𝑡𝑑1 = 3 𝜃1 = 0.0025 𝑡𝑓2 = 0.5
477 ,  for Eq [12]; and , ,  for Eq [13] and with all other 𝑡𝑑2 = 4 𝜃2 = 0.02 𝑡𝑓3 = 0.5 𝑡𝑑3 = 5 𝜃3 = 0.03
478 parameters unchanged from (A). Only chemical  is plotted.  Chemical  oscillates with the 𝑥 𝑦
479 same period as  so it is excluded for clarity.  The initial conditions are always . 𝑥 𝑥 = 𝑦 = 𝑡 = 0
480 The parameter   so that the average value of  in the pulsate model is equal to 𝛼𝑖 = 𝜃𝑖 ∗ 𝑡𝑓𝑖/𝑡𝑑𝑖 𝑃𝑖(𝑡)
481 the constant term  in the vanilla ODE model.   𝛼𝑖
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1
Figure 1

Numerical integration of Eqs. [1] and [2] with α_1 being replaced by a pulsate function. (A)

α_1 is a sine pulse. Initial x=t=0, and y=0.3. The parameter values are t_f1=1, t_d1=1,

θ_1=0.002, β_1=0.025, K_1=0.5, n_1=8 for Eq. [1] and α_2=0.0001, β_2=0.0001, K_2=0.5,

n_2=8 for Eq. [2]. (B) α_1 is a triangle pulse. Initial x=t=0, and y=0.35. The parameter

values are t_f1=1, t_d1=1, θ_1=0.0025, β_1=0.025, K_1=0.5, n_1=8 for Eq. [1] and

α_2=0.0001, β_2=0.0001, K_2=0.5, n_2=8 for Eq. [2]. (C) α_1 is a sawtooth pulse. Initial

x=t=0, and y=0.25. The parameter values are t_f1=1, t_d1=1, θ_1=0.003, β_1=0.025,

K_1=0.5, n_1=8 for Eq. [1] and α_2=0.0002, β_2=0.0001, K_2=0.5, n_2=8 for Eq. [2].
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Figure 2

Numerical integration of Eqs. [1] and [2] with single constant coefficients replaced by pulsate

terms. (A) α_1 is replaced by the pulsate function P_1 (t). The parameter values are

t_f1=0.25, t_d1=1, θ_1=0.003, β_1=0.015, K_1=0.5, n_1=8 for Eq. [1] and α_2=0.003,

β_2=0.0001, K_2=0.5, n_2=8 for Eq. [2]. (B) α_2 is replaced by the pulsate function P_2 (t).

The parameter values are α_1=0.0001, β_1=0.05, K_1=0.5, n_1=8 for Eq. [1] and t_f2=0.25,

t_d2=1, θ_2=0.01, β_2=0.0001, K_2=0.5, n_2=8 for Eq. [2]. (C) β_1 is replaced by the

pulsate function P_1 (t). The parameter values are α_1=0.0001, t_f1=0.25, t_d1=1, θ_1=0.4,

K_1=0.5, n_1=8 for Eq. [1] and α_2=0.011, β_2=0.0002, K_2=0.5, n_2=8 for Eq. [2]. (D) β_2

is replaced by the pulsate function P_2 (t). The parameter values are α_1=0.0001, β_1=0.01,

K_1=0.5, n_1=8 for Eq. [1] and α_2=0.0007, t_f2=0.25, t_d2=1, θ_2=0.01, K_2=0.5, n_2=8

for Eq. [2]. The initial conditions are always x=y=t=0.
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Figure 3

Numerical integration of Eqs. [1] and [2] with pairs of constant coefficients replaced by

pulsate terms. (A) α_1 and β_1 are replaced by the pulsate functions P_11 (t) and P_12 (t),

respectively. The parameter values are t_f11=0.25, t_d11=1, θ_11=0.001, t_f12=0.25,

t_d12=1.25, θ_12=0.05, K_1=0.5, n_1=8 for Eq. [1] and α_2=0.0003, β_2=0.0002, K_2=0.5,

n_2=8 for Eq. [2]. (B) α_1 and β_2 are replaced by the pulsate functions P_11 (t) and P_22 (t),

respectively. The parameter values are t_f11=0.5, t_d11=3, θ_11=0.0025, β_1=0.001,

K_1=0.5, n_1=8 for Eq. [1] and α_2=0.001, t_f22=0.5, t_d22=4, θ_22=0.005, K_2=0.5,

n_2=8 for Eq. [2]. (C) β_1 and α_2 are replaced by the pulsate functions P_12 (t) and P_21 (t),

respectively. The parameter values are α_1=0.00005, t_f12=0.5, t_d12=3, θ_12=0.2,

K_1=0.5, n_1=8 for Eq. [1] and t_f21=0.5, t_d21=4, θ_21=1, β_2=0.001, K_2=0.5, n_2=8 for

Eq. [2]. (D) α_2 and β_2 are replaced by the pulsate functions P_21 (t) and P_22 (t),

respectively. The parameter values are α_1=0.0009, β_1=0.0133, K_1=0.5, n_1=8 for Eq. [1]

and t_f21=0.5, t_d21=3, θ_21=0.3, t_f22=0.5, t_d22=4, θ_22=0.02, K_2=0.5, n_2=8 for Eq.

[2]. (E) α_1 and α_2 are replaced by the pulsate functions P_11 (t) and P_21 (t), respectively.

The parameter values are t_f11=0.25, t_d11=1, θ_11=0.0003, β_1=0.0125, K_1=0.5, n_1=8

for Eq. [1] and t_f21=0.25, t_d21=1.25, θ_21=0.00125, β_2=0.000014, K_2=0.5, n_2=8 for

Eq. [2]. (F) β_1 and β_2 are replaced by the pulsate functions P_12 (t) and P_22 (t),

respectively. The parameter values are α_1=0.00007, t_f12=0.25, t_d12=1, θ_12=0.03,

K_1=0.5, n_1=8 for Eq. [1] and α_2=0.00025, t_f22=0.25, t_d22=1.25, θ_22=0.00015,

K_2=0.5, n_2=8 for Eq. [2]. The initial conditions are always x=y=t=0.
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Figure 4

Numerical integration of equations [1] and [2] with triples of constant coefficients replaced

by pulsate terms. (A) α_1, α_2, and β_2 are replaced by the pulsate functions P_11 (t), P_21

(t), and P_22 (t), respectively. The parameter values are t_f11=0.5, t_d11=3, θ_11=0.005,

β_1=0.05, K_1=0.5, n_1=8 for Eq. [1] and t_f21=0.5, t_d21=4, θ_21=0.03, t_f22=0.5,

t_d22=4.5, θ_22=0.001, K_2=0.5, n_2=8 for Eq. [2]. (B) α_1, β_1, and α_2 are replaced by

the pulsate functions P_11 (t), P_12 (t), and P_21 (t), respectively. The parameter values are

t_f11=0.25, t_d11=1, θ_11=0.00005, , t_f12=0.25, t_d12=1.5, θ_12=0.075, K_1=0.5, n_1=8

for Eq. [1] and t_f21=0.25, t_d21=1.25, θ_21=0.001, β_2=0.0002, K_2=0.5, n_2=8 for Eq.

[2].

The initial conditions are always x=y=t=0.
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Figure 5

A comparison between two-DDE models with varying time lags and two-ODE models with

varying pulsate periods. Only chemical x has been plotted. Chemical y oscillates with the

same period as x so it is excluded for clarity. (A) Numerical integration of DDE Eqs. [6] and

[7] with arbitrarily chosen parameters τ_1=250, α_1=0.0005, β_1=0.0125, K_1=0.5, n_1=8

for Eq. [6] and τ_1=250, α_2=3, β_2=0.02, K_2=0.5, n_2=8 for Eq. [7]. (B) Numerical

integration of DDE Eqs. [6] and [7] with the same parameters as in (A) except τ_1=τ_2=500.

(C) Numerical integration of ODE Eqs. [1] and [2] where α_1 and α_2 are replaced by the

pulsate functions P_11 (t) and P_21 (t), respectively. The parameter values are t_f11=0.5,

t_d11=2.5, θ_11=0.005, β_1=0.0125, K_1=0.5, n_1=8 for Eq. [1] and t_f21=0.5, t_d21=2,

θ_21=0.0175, β_2=0.0001666667, K_2=0.5, n_2=8 for Eq. [2]. (D) Numerical integration of

Eqs. [1] and [2] where α_1 and α_2 are replaced by the pulsate functions P_11 (t) and P_21

(t), respectively. The parameter values are t_f1=0.5, t_d1=3, θ_1=0.006 for Eq. [1] and

t_f2=0.5, t_d2=3.5, θ_2=0.0306 for Eq. [2]. All other parameters are the same as in (C). The

initial conditions are always x=y=t=0. The parameter

θ_i^long=θ_i^short*t_d^long/t_d^short so that the average values of P_i (t) in the long-

period ODE pulsate model and the short-period ODE pulsate model are equal.
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Figure 6

A comparison between three-ODE models, three-DDE models, and three-ODE models with

varying pulsate periods. (A) Numerical integration of the standard three-ODE model, Eqs. [8-

10], with arbitrarily chosen parameters α_1=0.0004166666667, β_1=0.0125, K_1=0.5,

n_1=8 for Eq. [8]; α_2=0.0025, β_2=0.0001666667, K_2=0.5, n_2=8 for Eq. [9]; and

α_3=0.003, β_3=0.0001666667, K_3=0.5, n_3=8 for Eq. [10]. (B) Numerical integration of

the three-ODE model, Eqs. [11-13], with arbitrarily chosen parameters t_f1=0.25, t_d1=1,

θ_1=0.0017 for Eq. [11]; t_f2=0.25, t_d2=1.25, θ_2=0.0125 for Eq. [12]; and t_f3=0.25,

t_d3=1.5, θ_3=0.018 for Eq. [13] and with all other parameters unchanged from (A). (C)

Numerical integration of the three-DDE model, Eqs. [14-16]. All parameters are the same as

in (A) except τ_1=τ_2=τ_3=300. (D) Numerical integration of the three-ODE model, Eqs. [11-

13] with arbitrarily chosen parameters t_f1=0.5, t_d1=3, θ_1=0.0025 for Eq [11]; t_f2=0.5,

t_d2=4, θ_2=0.02 for Eq [12]; and t_f3=0.5, t_d3=5, θ_3=0.03 for Eq [13] and with all other

parameters unchanged from (A). Only chemical x is plotted. Chemical y oscillates with the

same period as x so it is excluded for clarity. The initial conditions are always x=y=t=0. The

parameter α_i=θ_i*t_fi/t_di so that the average value of P_i (t) in the pulsate model is equal

to the constant term α_i in the vanilla ODE model.
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