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Abstract

We bring together fifteen, nonredundant, tabulated collections (amounting to 696 separate
measurements) of the apparent permeability (P,,,) of Caco-2 cells to marketed drugs. While in some
cases there are some significant interlaboratory disparities, most are quite minor. Most drugs are not
especially permeable through Caco-2 cells, with the median P,,, value being some 16 . 10 cm.s™. This
value is considerably lower than those (1310 and 230 . 10 cm.s) recently used in some recent
simulations that purported to show that P,,, values were too great to be transporter-mediated only.
While these values are outliers, all values, and especially the comparatively low values normally
observed, are entirely consistent with transporter-only mediated uptake, with no need to invoke
phospholipid bilayer diffusion. The apparent permeability of Caco-2 cells to marketed drugs is poorly
correlated with either simple biophysical properties, the extent of molecular similarity to endogenous
metabolites (endogenites), or any specific substructural properties. In particular, the octanol:water
partition coefficient, log P, shows negligible correlation with Caco-2 permeability. The data are best
explained on the basis that most drugs enter (and exit) Caco-2 cells via a multiplicity of transporters of
comparatively weak specificity.

Keywords
Caco-2 cells, Cheminformatics, Facilitated diffusion/transport, Mathematical models, Oral absorption,
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Introduction

Most pharmaceutical drugs, and all oral ones, must necessarily cross at least one cell membrane to act.
Understanding how this transport is effected remains a major challenge (Kell & Oliver 2014). We have
brought together considerable published evidence (e.g. (Dobson & Kell 2008; Kell 2013; Kell 2015; Kell et
al. 2013; Kell et al. 2011; Kell & Oliver 2014)) that suggests that (in contrast to the general textbook
belief, e.g. (Avdeef 2012; Cao et al. 2006; Krogsgaard-Larsen et al. 1996; van De Waterbeemd & Testa
2009)) small molecule drugs ‘hitchhike’ on the many protein transporters (Kell 2013; Kell & Goodacre
2014; Sahoo et al. 2014; Thiele et al. 2013) that are part of normal intermediary metabolism. These
transporters may be identified via experiments where gene expression levels are manipulated
systematically as independent variables (Giacomini et al. 2010; Han et al. 2015; Kell & Oliver 2014;
Lanthaler et al. 2011; Winter et al. 2014). A number of recent books summarise the importance of
protein transport to drug disposition (Bhardwaj et al. 2008; Ecker & Chiba 2009; Fromm & Kim 2011;
Ishikawa et al. 2013; Sugiyama & Steffansen 2013; You & Morris 2014).

Caco-2 cells (e.g. (Artursson et al. 2001; Awortwe et al. 2014; Balimane & Chong 2005; Fearn & Hirst
2006; Feng et al. 2014; Hidalgo et al. 1989; Sarmento et al. 2012; Sun et al. 2008; van Breemen & Li
2005; Volpe 2011)) are an epithelial cell line that has become a de facto standard in studies of
pharmaceutical drug transport. They form a more or less (and otherwise) impermeable layer that is
polarised, in the sense of having ‘apical’ and ‘basolateral’ faces in which transporters are differentially
expressed. They express hundreds of transporters (Anderle et al. 2004; Hayeshi et al. 2008; Landowski et
al. 2004; Pshezhetsky et al. 2007; Sun et al. 2002), and (although far from perfect (Hilgendorf et al.
2007)) they have significant predictive power as to the fraction of oral dose absorbed in humans (e.g.
(Marino et al. 2005; Rubas et al. 1996)).

It is thus of general interest to understand the kinds of apparent permeability (P,,,) rates for different
drug molecules that Caco-2 cells can sustain. Although there are undoubtedly larger databases in-house
in commercial and other enterprises, we have sought to bring together what we can of published data
to determine the kinds of permeability values that Caco-2 cells can sustain, and what might determine
that. We recognise that many factors can affect a specific measurement, e.g. the seeding density, age of
the cells, pH and so on. An interlaboratory comparison (Hayeshi et al. 2008) indicated that while on
occasion measurements could vary by more than an order of magnitude, overall the groupings were
normally reasonably tight (say within a factor of 2-5).

The question of P,,, values in Caco-2 cells has been brought into sharper focus by a recent article
(Matsson et al. 2015a; Matsson et al. 2015b) that claimed unusually high rates for verapamil and
propranolol, based on measurements a specific earlier article (Avdeef et al. 2005) in which stirring had
been performed at a massive rate (and one not used in any equivalent transporter kinetic
measurements). We indicated that these values were major outliers (by one or even two orders of
magnitude) (Mendes et al. 2015), but did not pursue the question of typical values of P,,, for other
drugs. This is the focus of what we do here.

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1271v1 | CC-BY 4.0 Open Access | rec: 29 Jul 2015, publ: 29 Jul 2015




73  Methods

74  Data were extracted manually from tables in the papers stated, and compiled as an Excel sheet. Typical
75  biophysical descriptors were added using the RDKit module (Riniker & Landrum 2013) of KNIME
76  (Berthold et al. 2008; Mazanetz et al. 2012; Saubern et al. 2011) (www.knime.org/), essentially as
77 described (O'Hagan & Kell 2015a; O'Hagan & Kell 2015b; O'Hagan et al. 2015). For one experiment we
78  used the CDK-KNIME nodes (Beisken et al. 2013).

79 Results

80 We have selected a set of 15 studies (indicated in the legend to Figure 1) for our analysis. Based on the
81 list of FDA-approved drugs that we downloaded (as before (O'Hagan & Kell 2015b; O'Hagan et al. 2015))
82  from DrugBank (http://drugbank.ca) (Law et al. 2014), we compiled from these a non-redundant set of

83 measurements of the apparent permeability (P,p,, that are commonly given in units of cm.s). Although
84  there are older papers, we have started with the compilation of Hou and colleagues (Hou et al. 2004).
85  Our method for avoiding redundancy in later compilations was not to include a separate measurement if
86 the numbers given were identical to those in Hou (Hou et al. 2004) (or any other later papers) to at least
87 1 decimal place. We ignore any efflux transporters, since the evidence (that we show later) is that their
88 influence on these measurements is fairly small (Lin et al. 2011). We incorporated two values from the
89 review of Marino and colleagues (Marino et al. 2005), one from lower throughput 24-well plates, one
90 from a 96-well assay.

91 Where data were available for bidirectional assays, e.g. (Hayeshi et al. 2008; Skolnik et al. 2010) they are
92 given just for the A - B direction. In the case of the interlaboratory comparison (Hayeshi et al. 2008),
93  we used solely ‘batch 1’ data, while in the work of Lin et al. (Lin et al. 2011) efflux inhibitors were
94  sometimes present, as noted below. The entire dataset is given as an Excel sheet as Supplemental Table
95 S1, and consists of 696 separate measurements. As indicated in Methods, we used KNIME to append
96 some simple biophysical descriptors.

97  Figure 1A shows all of the data, with those studies finding rates above 100.10® cm.s labelled with the

98 study number. Of the 21 measurements that have this property, no fewer than 9 (labelled in red) are

99 from a study (Avdeef et al. 2005) of Avdeef and colleagues. The largest values (Avdeef et al. 2005) were
100  observed at very high values of stirring rates (700 rpm), and these in particular contained a great many
101  outliers. The implication is that these increases at exceptionally high stirring rates were due to unstirred
102 layer effects, although it is hard to see their relevance to in vivo drug absorption where no such stirring
103 is occurring. Mannitol is sometimes used as a membrane-impermeant control, taken to pass via a
104  paracellular route. This said, mannitol controls did not always have the lowest values, and inulin (Marino
105 et al. 2005) or EDTA (Lin et al. 2011) may be better. Although it was stated (Avdeef et al. 2005) that
106  mannitol transport rates were ‘normal’, it is unclear why they do not change with stirring rates (or
107  whether they do), so it is not entirely certain whether the epithelial layer remained intact, especially at
108 some of the highest stirring rates employed. For these and other reasons, and especially given the
109  strongly outlying nature of the measurements, we have decided for the rest of the analysis to exclude
110 the data from (Avdeef et al. 2005), resulting in an overall dataset of 680 separate measurements as
111  shown in Fig 1B. A cumulative plot and smoothed histogram of the data (Fig 1C) shows that the most
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abundant values for P,,, are in the range 3 to 4 . 10 cm.s?, and with a median value of ca 16 . 10° cm.s’
1. Obviously these values are considerably lower than those discussed in (Matsson et al. 2015a; Matsson
et al. 2015b), and indicate (Mendes et al. 2015) that typical transporter kinetic parameters and
expression levels are entirely adequate to account alone for cellular drug uptake, as proposed (Dobson
et al. 2009a; Dobson & Kell 2008; Kell 2013; Kell 2015; Kell & Dobson 2009; Kell et al. 2013; Kell et al.
2011; Kell & Goodacre 2014; Kell & Oliver 2014; Kell et al. 2015).

Figure 2 illustrates another feature of the data. Here we took the tabulated data of Lin, Skolnik and
colleagues (Lin et al. 2011) that used a variety of efflux inhibitors. A comparison showed that no very
substantial (order-of-magnitude) differences in uptake were observed (Fig 2), such that the typical ‘low’
values of P,,, cannot realistically be ascribed to a major role of efflux pumps.

Lack of relationship between Caco-2 permeability values and simple biophysical properties
of drugs

If unstirred layer effects and pure diffusion (as opposed to transporter-based enzyme kinetics) were
significant in Caco-2 permeability, one might suppose that permeability values should depend
significantly upon the molecular mass of the drug involved. However, Fig 3A shows that this is not the
case, as the line of best fit has a slope of only -0.04X and a value for r? of just 0.069. In a similar vein,
despite a widespread view that transport rates should depend on log P, Fig 3B shows that even when
the Caco-2 permeabilities are plotted in log space, the r? value for a plot against SlogP is only 0.011. (For
a plot in linear space the value drops to just r? = 0.004, data not shown.) There is a slightly clearer
relationship between Caco-2 permeability and a drug’s total polar surface area, but again the
relationship is fairly weak (r? = 0.334 when the ordinate is in log space, Fig 3C, but only r? = 0.137 when
the ordinate is in linear space (plot not shown)). It is also of interest that there is no significant
relationship between total Polar Surface Area and S logP (Fig 3D). In particular, as before, we (e.g.
(Dobson & Kell 2008; Kell & Oliver 2014)) and others (e.g. (Skolnik et al. 2010)) find that transmembrane
permeability cannot be accounted for in terms of simple biophysical properties, and certainly not via
logP.

Lack of relationship between Caco-2 permeability and structural similarity to endogenous
metabolites

Since the natural role of the transporters that drugs hitchhike on is to transport endogenous
metaboliltes (Dobson & Kell 2008; Kell 2013; Kell 2015; Kell et al. 2013; Kell & Oliver 2014; Nigam 2015;
Swainston et al. 2013), the ‘principle of molecular similarity’ (e.g. (Bender & Glen 2004; Eckert &
Bajorath 2007; Gasteiger 2003; Maldonado et al. 2006)) suggests that drugs should bear structural
similarities to endogenous metabolites, and this is found to be the case (Dobson et al. 2009b; O'Hagan &
Kell 2015b; O'Hagan et al. 2015). This led us to wonder whether any aspects of ‘metabolite-likeness’
might be related to Caco-2 permeability. However, we found no simple relationship of this type,
whether (as illustrated) in terms of the closest Tanimoto similarity (Fig 3A) or (for the 61 molecules for
which this was true) the count of endogenites exceeding a Tanimoto similarity of 0.65 (Fig 3B). (There
was a very weak positive correlation, r? = 0.156, with the number of endogenites exceeding a Tanimoto
similarity of 0.75, for the 21 molecules that had at least one, data not shown.) One interpretation of this
is that while in some cases a rather small number of transporters are typically involved in drug uptake
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(e.g. (Winter et al. 2014)), in many cases a considerably greater number contribute (e.g. (Kell et al. 2013;
Lanthaler et al. 2011)). While well enough known in general (Mestres & Gregori-Puigjané 2009), such
‘promiscuity’ has become much more manifest using modern chemical biology approaches to detect
protein binding directly (e.g. (Li et al. 2010; Niphakis et al. 2015)).

Finally, we wondered whether a standard machine learning approach (a random forest learner (Breiman
2001; Knight et al. 2009; O'Hagan & Kell 2015b)) might be able to predict Caco-2 permeabilities using a
couple of fingerprint methods for encoding drug structures. Even this very powerful method had
negligible predictive power as judged by its out-of-bag error (Fig 5). It must be concluded that the ability
to pass through Caco-2 cells is a very heterogeneous property, that cannot be accounted for via simple
biophysical properties (e.g. those contributing to log P), and is best explained by the intermediacy of a
very heterogeneous set of transporters.

Discussion and conclusions

A recent publication (Matsson et al. 2015a; Matsson et al. 2015b), using exceptionally high values of P,
for verapamil and propranolol, claimed that the apparent permeability values were such that they could
not be supported by known (random) transporters at random expression level, K., and k. values. It was
stated (Matsson et al. 2015a) that such rates “are possible in the absence of transmembrane diffusion,
but only under very specific conditions that rarely or never occur for known human drug transporters”.
While we showed that this was simply not the case (quite the opposite) (Mendes et al. 2015), it
prompted us to ask the question as to what typical rates of P,,, might be for marketed drugs more
generally. By bringing together tabulated data from 15 studies, we found that the commonest values are
just ca 3-4 . 10° cm.s%, and that the median value is ca 16 . 10® cm.s™. Thus, transporters alone can
easily account for these. There was no significant correlation of P,,, values with either the values of
various biophysical descriptors or measures of endogenite-likeness, and even powerful machine learning
methods could not predict the permeabilities from the drug structures. The most obvious reason for this
is simply that there is no unitary explanation (such as simplistic phospholipid bilayer diffusion), as most
drugs exploit multiple but often unknown transporters with overlapping specificities. Which they are
and how much each contributes to a given Caco-2 permeability must be determined by varying their
activities as independent variables (Kell 2015; Kell & Oliver 2014; Kell et al. 2015), whether by using
inhibitors (e.g. (Han et al. 2015; Ming et al. 2009)) or genetically. This latter activity has been initiated in
other cell lines (e.g. (Giacomini et al. 2010; Han et al. 2015; Lanthaler et al. 2011; Winter et al. 2014)).
The availability of powerful mammalian genome editing tools such as variants of the CRISPR/Cas9
system (e.g. (Kleinstiver et al. 2015; Maeder et al. 2013; Wang et al. 2014; Zhou et al. 2014)) imply that
we may soon expect to see this strategy applied with great effect to the Caco-2 system.
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Figures and legends to figures

Figure 1. A compilation of 15 review articles on Caco-2 permeability measurements. A. Full dataset,
including outliers. B. Reduced dataset after removal of the data from (Avdeef et al. 2005). C. Cumulative
plot and smoothed histogram of the Caco-2 permeabilities in the reduced dataset. In Figure 1C data for
identical drugs were averaged. Data were extracted from the following papers. 1 (Bergstrom et al.
2003); 2 (Hou et al. 2004); 3 (Corti et al. 2006); 4 (Balimane et al. 2006); 5 (Gozalbes et al. 2011); 6 (Peng
et al. 2014); 7 (Press 2011); 8 (Usansky & Sinko 2005); 9 (Marino et al. 2005); 10 (Avdeef et al. 2005); 11
(Hayeshi et al. 2008); 12 (Wang et al. 2010); 13 (Uchida et al. 2009); 14 (Skolnik et al. 2010); 15 (Lin et al.
2011)

Figure 2. Relative lack of effect of efflux inhibitors on Caco-2 permeabilities of marketed drugs. Data are
taken from (Lin et al. 2011) and shown as paired values.

Figure 3. Lack of relationship between Caco-2 cells and simple biophysical parameters. A. Caco-2
permeability as a function of MW. B. Caco-2 permeability as a function of SlogP. C. Caco-2 permeability
as a function of Total Polar Surface Area. D. Lack of relationship between Total Polar Surface Area and S
log P.

Figure 4. Lack of relationship between Caco-2 cell permeability and measures of endogenite-likeness. A.
Lack of relationship between the P,,, of a drug in Caco-2 cells and its greatest Tanimoto similarity to any
endogenite molecule in Recon2. B. Lack of relationship between the P,,, of a drug and the number of
endogenous metabolites (endogenites) in Recon2 possessing a Tanimoto similarity greater than 0.65.

Figure 5. Lack of relationship between experimental Caco-2 permeabilities and those predicted (via out-
of-bag estimation) from a random forest learner. Drug properties were encoded using either the
MACCS166 encoding (O'Hagan et al. 2015) or the full DES encoding (O'Hagan & Kell 2015b), each
together with the molecular properties encoded in the CDK KNIME node (Beisken et al. 2013).

Supplemental Table S1.
Set of Caco-2 permeabilities and RDKit descriptors used herein. Excel file.
Drugs_Caco2_compilation_with_descriptors_2.xls
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1

A compilation of 15 review articles on Caco-2 permeability measurements.

A. Full dataset, including outliers.

A Initial full dataset
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A compilation of 15 review articles on Caco-2 permeability measurements.

B. Reduced dataset after removal of the data from ( Avdeef et al. 2005 ) .

B Reduced dataset used in study
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3

A compilation of 15 review articles on Caco-2 permeability measurements.

C. Cumulative plot and smoothed histogram of the Caco-2 permeabilities in the reduced
dataset. In Figure 1C data for identical drugs were averaged. Data were extracted from the
following papers. 1 ( Bergstrom et al. 2003 ) ; 2 ( Hou et al. 2004 ) ; 3 ( Corti et al. 2006 ) ; 4 (
Balimane et al. 2006 ) ; 5 ( Gozalbes et al. 2011 ) ; 6 ( Peng et al. 2014 ) ; 7 ( Press 2011 ) ; 8
( Usansky & Sinko 2005 ) ; 9 ( Marino et al. 2005 ) ; 10 ( Avdeef et al. 2005 ) ; 11 ( Hayeshi et
al. 2008 ) ; 12 ( Wang et al. 2010 ) ; 13 ( Uchida et al. 2009 ) ; 14 ( Skolnik et al. 2010 ) ; 15 (
Lin et al. 2011)
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A4

Relative lack of effect of efflux inhibitors on Caco-2 permeabilities of marketed drugs.

Data are taken from ( Lin et al. 2011 ) and shown as paired values.

Effects of efflux inhibitors on Caco-2 permeability
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5

Lack of relationship between Caco-2 cells and simple biophysical parameters.

A. Caco-2 permeability as a function of MW.

A
Lack of relationship between Caco-2 permeability and MW
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Lack of relationship between Caco-2 cells and simple biophysical parameters .

B. Caco-2 permeability as a function of SlogP.

B
Lack of relationship between Caco-2 permeability and SlogP
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Lack of relationship between Caco-2 cells and simple biophysical parameters.

Caco-2 permeability as a function of Total Polar Surface Area.

C
Lack of relationship between Caco-2 permeability and TPSA
10°%. Caco-2 P,,, /cm.st A
“ o @ Y =1.42 +0.01X, 12 = 0,334 o
' @ (on linear ordinate r2 = 0.137)
©

100 150

200 250 300

350

Total Polar Surface Area / A2

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1271v1 | CC-BY 4.0 Open Access | rec: 29 Jul 2015, publ: 29 Jul 2015



8

Lack of relationship between Caco-2 cells and simple biophysical parameters.

D. Lack of relationship between Total Polar Surface Area and S log P.

D
Lack of relationship between Caco-2 TPSA and SlogP
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9

Lack of relationship between Caco-2 cell permeability and measures of endogenite-
likeness.

A. Lack of relationship between the P,,, of a drug in Caco-2 cells and its greatest Tanimoto

similarity to any endogenite molecule in Recon2.

A Lack of relationship between P_,, and Max TS
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Lack of relationship between Caco-2 cell permeability and measures of endogenite-
likeness.

B. Lack of relationship between the P,,, of a drug and the number of endogenous metabolites

(endogenites) in Recon2 possessing a Tanimoto similarity greater than 0.65.

B Lack of relationship between P,,, and number of

endogenites with a TS > 0.65
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Lack of relationship between experimental Caco-2 permeabilities and those predicted
(via out-of-bag estimation) from a random forest learner.

Drug properties were encoded using either the MACCS166 encoding ( O'Hagan et al. 2015 )
or the full DES encoding ( O'Hagan & Kell 2015b ) , each together with the molecular
properties encoded in the CDK KNIME node ( Beisken et al. 2013 ) .

Random Forest Prediction of Permeability
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CDK Molecular Properties
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