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14 Abstract

15 We bring together fifteen, nonredundant, tabulated collections (amounting to 696 separate 

16 measurements) of the apparent permeability (Papp) of Caco-2 cells to marketed drugs. While in some 

17 cases there are some significant interlaboratory disparities, most are quite minor. Most drugs are not 

18 especially permeable through Caco-2 cells, with the median Papp value being some 16 . 10-6 cm.s-1. This 

19 value is considerably lower than those (1310 and 230 . 10-6 cm.s-1) recently used in some recent 

20 simulations that purported to show that Papp values were too great to be transporter-mediated only. 

21 While these values are outliers, all values, and especially the comparatively low values normally 

22 observed, are entirely consistent with transporter-only mediated uptake, with no need to invoke 

23 phospholipid bilayer diffusion. The apparent permeability of Caco-2 cells to marketed drugs is poorly 

24 correlated with either simple biophysical properties, the extent of molecular similarity to endogenous 

25 metabolites (endogenites), or any specific substructural properties. In particular, the octanol:water 

26 partition coefficient, log P, shows negligible correlation with Caco-2 permeability.  The data are best 

27 explained on the basis that most drugs enter (and exit) Caco-2 cells via a multiplicity of transporters of 

28 comparatively weak specificity.

29
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35 Introduction

36 Most pharmaceutical drugs, and all oral ones, must necessarily cross at least one cell membrane to act. 

37 Understanding how this transport is effected remains a major challenge (Kell & Oliver 2014). We have 

38 brought together considerable published evidence (e.g. (Dobson & Kell 2008; Kell 2013; Kell 2015; Kell et 

39 al. 2013; Kell et al. 2011; Kell & Oliver 2014)) that suggests that (in contrast to the general textbook 

40 belief, e.g. (Avdeef 2012; Cao et al. 2006; Krogsgaard-Larsen et al. 1996; van De Waterbeemd & Testa 

41 2009)) small molecule drugs 8hitchhike9 on the many protein transporters (Kell 2013; Kell & Goodacre 

42 2014; Sahoo et al. 2014; Thiele et al. 2013) that are part of normal intermediary metabolism. These 

43 transporters may be identified via experiments where gene expression levels are manipulated 

44 systematically as independent variables (Giacomini et al. 2010; Han et al. 2015; Kell & Oliver 2014; 

45 Lanthaler et al. 2011; Winter et al. 2014). A number of recent books summarise the importance of 

46 protein transport to drug disposition (Bhardwaj et al. 2008; Ecker & Chiba 2009; Fromm & Kim 2011; 

47 Ishikawa et al. 2013; Sugiyama & Steffansen 2013; You & Morris 2014).

48 Caco-2 cells (e.g. (Artursson et al. 2001; Awortwe et al. 2014; Balimane & Chong 2005; Fearn & Hirst 

49 2006; Feng et al. 2014; Hidalgo et al. 1989; Sarmento et al. 2012; Sun et al. 2008; van Breemen & Li 

50 2005; Volpe 2011)) are an epithelial cell line that has become a de facto standard in studies of 

51 pharmaceutical drug transport. They form a more or less (and otherwise) impermeable layer that is 

52 polarised, in the sense of having 8apical9 and 8basolateral9 faces in which transporters are differentially 

53 expressed. They express hundreds of transporters (Anderle et al. 2004; Hayeshi et al. 2008; Landowski et 

54 al. 2004; Pshezhetsky et al. 2007; Sun et al. 2002), and (although far from perfect (Hilgendorf et al. 

55 2007)) they have significant predictive power as to the fraction of oral dose absorbed in humans (e.g. 

56 (Marino et al. 2005; Rubas et al. 1996)). 

57 It is thus of general interest to understand the kinds of apparent permeability (Papp) rates for different 

58 drug molecules that Caco-2 cells can sustain. Although there are undoubtedly larger databases in-house 

59 in commercial and other enterprises, we have sought to bring together what we can of published data 

60 to determine the kinds of permeability values that Caco-2 cells can sustain, and what might determine 

61 that. We recognise that many factors can affect a specific measurement, e.g. the seeding density, age of 

62 the cells, pH and so on. An interlaboratory comparison (Hayeshi et al. 2008) indicated that while on 

63 occasion measurements could vary by more than an order of magnitude, overall the groupings were 

64 normally reasonably tight (say within a factor of 2-5). 

65 The question of Papp values in Caco-2 cells has been brought into sharper focus by a recent article 

66 (Matsson et al. 2015a; Matsson et al. 2015b) that claimed unusually high rates for verapamil and 

67 propranolol, based on measurements a specific earlier article (Avdeef et al. 2005) in which stirring had 

68 been performed at a massive rate (and one not used in any equivalent transporter kinetic 

69 measurements). We indicated that these values were major outliers (by one or even two orders of 

70 magnitude) (Mendes et al. 2015), but did not pursue the question of typical values of Papp for other 

71 drugs. This is the focus of what we do here.

72
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73 Methods

74 Data were extracted manually from tables in the papers stated, and compiled as an Excel sheet. Typical 

75 biophysical descriptors were added using the RDKit module (Riniker & Landrum 2013) of KNIME 

76 (Berthold et al. 2008; Mazanetz et al. 2012; Saubern et al. 2011) (www.knime.org/),  essentially as 

77 described (O'Hagan & Kell 2015a; O'Hagan & Kell 2015b; O'Hagan et al. 2015). For one experiment we 

78 used the CDK-KNIME nodes (Beisken et al. 2013).

79 Results

80 We have selected a set of 15 studies (indicated in the legend to Figure 1) for our analysis. Based on the 

81 list of FDA-approved drugs that we downloaded (as before (O'Hagan & Kell 2015b; O'Hagan et al. 2015)) 

82 from DrugBank (http://drugbank.ca) (Law et al. 2014), we compiled from these a non-redundant set of 

83 measurements of the apparent permeability (Papp, that are commonly given in units of cm.s-1). Although 

84 there are older papers, we have started with the compilation of Hou and colleagues (Hou et al. 2004). 

85 Our method for avoiding redundancy in later compilations was not to include a separate measurement if 

86 the numbers given were identical to those in Hou (Hou et al. 2004) (or any other later papers) to at least 

87 1 decimal place. We ignore any efflux transporters, since the evidence (that we show later) is that their 

88 influence on these measurements is fairly small (Lin et al. 2011). We incorporated two values from the 

89 review of Marino and colleagues (Marino et al. 2005), one from lower throughput 24-well plates, one 

90 from a 96-well assay.

91 Where data were available for bidirectional assays, e.g. (Hayeshi et al. 2008; Skolnik et al. 2010) they are 

92 given just for the A � B direction. In the case of the interlaboratory comparison (Hayeshi et al. 2008), 

93 we used solely 8batch 19 data, while in the work of Lin et al. (Lin et al. 2011) efflux inhibitors were 

94 sometimes present, as noted below. The entire dataset is given as an Excel sheet as  Supplemental Table 

95 S1, and consists of 696 separate measurements. As indicated in Methods, we used KNIME to append 

96 some simple biophysical descriptors.

97 Figure 1A shows all of the data, with those studies finding rates above 100.10-6 cm.s-1 labelled with the 

98 study number. Of the 21 measurements that have this property, no fewer than 9 (labelled in red) are 

99 from a study (Avdeef et al. 2005) of Avdeef and colleagues. The largest values (Avdeef et al. 2005) were 

100 observed at very high values of stirring rates (700 rpm), and these in particular contained a great many 

101 outliers. The implication is that these increases at exceptionally high stirring rates were due to unstirred 

102 layer effects, although it is hard to see their relevance to in vivo drug absorption where no such stirring 

103 is occurring. Mannitol is sometimes used as a membrane-impermeant control, taken to pass via a 

104 paracellular route. This said, mannitol controls did not always have the lowest values, and inulin (Marino 

105 et al. 2005) or EDTA (Lin et al. 2011) may be better.  Although it was stated (Avdeef et al. 2005) that 

106 mannitol transport rates were 8normal9, it is unclear why they do not change with stirring rates (or 

107 whether they do), so it is not entirely certain whether the epithelial layer remained intact, especially at 

108 some of the highest stirring rates employed. For these and other reasons, and especially given the 

109 strongly outlying nature of the measurements, we have decided for the rest of the analysis to exclude 

110 the data from (Avdeef et al. 2005), resulting in an overall dataset of 680 separate measurements as 

111 shown in Fig 1B. A cumulative plot and smoothed histogram of the data (Fig 1C) shows that the most 
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112 abundant values for Papp are in the range 3 to 4 . 10-6 cm.s-1, and with a median value of ca 16 . 10-6 cm.s-

113 1. Obviously these values are considerably lower than those discussed in (Matsson et al. 2015a; Matsson 

114 et al. 2015b), and indicate (Mendes et al. 2015) that typical transporter kinetic parameters and 

115 expression levels are entirely adequate to account alone for cellular drug uptake, as proposed (Dobson 

116 et al. 2009a; Dobson & Kell 2008; Kell 2013; Kell 2015; Kell & Dobson 2009; Kell et al. 2013; Kell et al. 

117 2011; Kell & Goodacre 2014; Kell & Oliver 2014; Kell et al. 2015).

118 Figure 2 illustrates another feature of the data. Here we took the tabulated data of Lin, Skolnik and 

119 colleagues (Lin et al. 2011) that used a variety of efflux inhibitors. A comparison showed that no very 

120 substantial (order-of-magnitude) differences in uptake were observed (Fig 2), such that the typical 8low9 

121 values of Papp cannot realistically be ascribed to a major role of efflux pumps. 

122 Lack of relationship between Caco-2 permeability values and simple biophysical properties 

123 of drugs

124 If unstirred layer effects and pure diffusion (as opposed to transporter-based enzyme kinetics) were 

125 significant in Caco-2 permeability, one might suppose that permeability values should depend 

126 significantly upon the molecular mass of the drug involved. However, Fig 3A shows that this is not the 

127 case, as the line of best fit has a slope of only -0.04X and a value for r2 of just 0.069. In a similar vein, 

128 despite a widespread view that transport rates should depend on log P, Fig 3B shows that even when 

129 the Caco-2 permeabilities are plotted in log space, the r2 value for a plot against SlogP is only  0.011. (For 

130 a plot in linear space the value drops to just r2 = 0.004, data not shown.) There is a slightly clearer 

131 relationship between Caco-2 permeability and a drug9s total polar surface area, but again the 

132 relationship is fairly weak (r2 = 0.334 when the ordinate is in log space, Fig 3C, but only r2 = 0.137 when 

133 the ordinate is in linear space (plot not shown)). It is also of interest that there is no significant 

134 relationship between total Polar Surface Area and S logP (Fig 3D). In particular, as before, we (e.g. 

135 (Dobson & Kell 2008; Kell & Oliver 2014)) and others (e.g. (Skolnik et al. 2010)) find that transmembrane 

136 permeability cannot be accounted for in terms of simple biophysical properties, and certainly not via 

137 logP.

138 Lack of relationship between Caco-2 permeability and structural similarity to endogenous 

139 metabolites

140 Since the natural role of the transporters that drugs hitchhike on is to transport endogenous 

141 metaboliltes (Dobson & Kell 2008; Kell 2013; Kell 2015; Kell et al. 2013; Kell & Oliver 2014; Nigam 2015; 

142 Swainston et al. 2013), the 8principle of molecular similarity9 (e.g. (Bender & Glen 2004; Eckert & 

143 Bajorath 2007; Gasteiger 2003; Maldonado et al. 2006)) suggests that drugs should bear structural 

144 similarities to endogenous metabolites, and this is found to be the case (Dobson et al. 2009b; O'Hagan & 

145 Kell 2015b; O'Hagan et al. 2015). This led us to wonder whether any aspects of 8metabolite-likeness9 

146 might be related to Caco-2 permeability. However, we found no simple relationship of this type, 

147 whether (as illustrated) in terms of the closest Tanimoto similarity (Fig 3A) or (for the 61 molecules for 

148 which this was true) the count of endogenites exceeding a Tanimoto similarity of 0.65 (Fig 3B). (There 

149 was a very weak positive correlation, r2 = 0.156, with the number of endogenites exceeding a Tanimoto 

150 similarity of 0.75, for the 21 molecules that had at least one, data not shown.) One interpretation of this 

151 is that while in some cases a rather small number of transporters are typically involved in drug uptake 
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152 (e.g. (Winter et al. 2014)), in many cases a considerably greater number contribute (e.g. (Kell et al. 2013; 

153 Lanthaler et al. 2011)). While well enough known in general (Mestres & Gregori-Puigjané 2009), such 

154 8promiscuity9 has become much more manifest using modern chemical biology approaches to detect 

155 protein binding directly (e.g. (Li et al. 2010; Niphakis et al. 2015)). 

156 Finally, we wondered whether a standard machine learning approach (a random forest learner (Breiman 

157 2001; Knight et al. 2009; O'Hagan & Kell 2015b)) might be able to predict Caco-2 permeabilities using a 

158 couple of fingerprint methods for encoding drug structures. Even this very powerful method had 

159 negligible predictive power as judged by its out-of-bag error (Fig 5). It must be concluded that the ability 

160 to pass through Caco-2 cells is a very heterogeneous property, that cannot be accounted for via simple 

161 biophysical properties (e.g. those contributing to log P), and is best explained by the intermediacy of a 

162 very heterogeneous set of transporters.

163 Discussion and conclusions

164 A recent publication (Matsson et al. 2015a; Matsson et al. 2015b), using exceptionally high values of Papp 

165 for verapamil and propranolol, claimed that  the apparent permeability values were such that they could 

166 not be supported by known (random) transporters at random expression level, Km and kcat values. It was 

167 stated (Matsson et al. 2015a) that such rates <are possible in the absence of transmembrane diffusion, 

168 but only under very specific conditions that rarely or never occur for known human drug transporters=. 

169 While we showed that this was simply not the case (quite the opposite) (Mendes et al. 2015), it 

170 prompted us to ask the question as to what typical rates of Papp might be for marketed drugs more 

171 generally. By bringing together tabulated data from 15 studies, we found that the commonest values are 

172 just ca 3-4 . 10-6 cm.s-1, and that the median value is ca 16 . 10-6 cm.s-1. Thus, transporters alone can 

173 easily account for these. There was no significant correlation of Papp values with either the values of 

174 various biophysical descriptors or measures of endogenite-likeness, and even powerful machine learning 

175 methods could not predict the permeabilities from the drug structures. The most obvious reason for this 

176 is simply that there is no unitary explanation (such as simplistic phospholipid bilayer diffusion), as most 

177 drugs exploit multiple but often unknown transporters with overlapping specificities. Which they are 

178 and how much each contributes to a given Caco-2 permeability must be determined by varying their 

179 activities as independent variables (Kell 2015; Kell & Oliver 2014; Kell et al. 2015), whether by using 

180 inhibitors (e.g. (Han et al. 2015; Ming et al. 2009)) or genetically. This latter activity has been initiated in 

181 other cell lines (e.g. (Giacomini et al. 2010; Han et al. 2015; Lanthaler et al. 2011; Winter et al. 2014)). 

182 The availability of powerful mammalian genome editing tools such as variants of the CRISPR/Cas9 

183 system (e.g. (Kleinstiver et al. 2015; Maeder et al. 2013; Wang et al. 2014; Zhou et al. 2014)) imply that 

184 we may soon expect to see this strategy applied with great effect to the Caco-2 system.

185

186
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193 Figures and legends to figures

194 Figure 1. A compilation of 15 review articles on Caco-2 permeability measurements. A. Full dataset, 

195 including outliers. B. Reduced dataset after removal of the data from (Avdeef et al. 2005). C. Cumulative 

196 plot and smoothed histogram of the Caco-2 permeabilities in the reduced dataset. In Figure 1C data for 

197 identical drugs were averaged. Data were extracted from the following papers. 1 (Bergström et al. 

198 2003); 2 (Hou et al. 2004); 3 (Corti et al. 2006); 4 (Balimane et al. 2006); 5 (Gozalbes et al. 2011); 6 (Peng 

199 et al. 2014); 7 (Press 2011); 8 (Usansky & Sinko 2005); 9 (Marino et al. 2005); 10 (Avdeef et al. 2005); 11 

200 (Hayeshi et al. 2008); 12 (Wang et al. 2010); 13 (Uchida et al. 2009); 14 (Skolnik et al. 2010); 15 (Lin et al. 

201 2011)

202 Figure 2. Relative lack of effect of efflux inhibitors on Caco-2 permeabilities of marketed drugs. Data are 

203 taken from (Lin et al. 2011) and shown as paired values.

204 Figure 3. Lack of relationship between Caco-2 cells and simple biophysical parameters. A. Caco-2 

205 permeability as a function of MW. B. Caco-2 permeability as a function of SlogP. C. Caco-2 permeability 

206 as a function of Total Polar Surface Area. D. Lack of relationship between Total Polar Surface Area and S 

207 log P. 

208 Figure 4. Lack of relationship between Caco-2 cell permeability and measures of endogenite-likeness. A. 

209 Lack of relationship between the Papp of a drug in Caco-2 cells and its greatest Tanimoto similarity to any 

210 endogenite molecule in Recon2. B. Lack of relationship between the Papp of a drug and the number of 

211 endogenous metabolites (endogenites) in Recon2 possessing a Tanimoto similarity greater than 0.65.

212 Figure 5. Lack of relationship between experimental Caco-2 permeabilities and those predicted (via out-

213 of-bag estimation) from a random forest learner. Drug properties were encoded using either the 

214 MACCS166 encoding (O'Hagan et al. 2015) or the full DES encoding (O'Hagan & Kell 2015b), each 

215 together with the molecular properties encoded in the CDK KNIME node (Beisken et al. 2013). 

216

217 Supplemental Table S1.

218 Set of Caco-2 permeabilities and RDKit descriptors used herein. Excel file.  

219 Drugs_Caco2_compilation_with_descriptors_2.xls

220

221
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1

A compilation of 15 review articles on Caco-2 permeability measurements.

A. Full dataset, including outliers.
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2

A compilation of 15 review articles on Caco-2 permeability measurements.

B. Reduced dataset after removal of the data from ( Avdeef et al. 2005 ) .
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3

A compilation of 15 review articles on Caco-2 permeability measurements.

C. Cumulative plot and smoothed histogram of the Caco-2 permeabilities in the reduced

dataset. In Figure 1C data for identical drugs were averaged. Data were extracted from the

following papers. 1 ( Bergström et al. 2003 ) ; 2 ( Hou et al. 2004 ) ; 3 ( Corti et al. 2006 ) ; 4 (

Balimane et al. 2006 ) ; 5 ( Gozalbes et al. 2011 ) ; 6 ( Peng et al. 2014 ) ; 7 ( Press 2011 ) ; 8

( Usansky & Sinko 2005 ) ; 9 ( Marino et al. 2005 ) ; 10 ( Avdeef et al. 2005 ) ; 11 ( Hayeshi et

al. 2008 ) ; 12 ( Wang et al. 2010 ) ; 13 ( Uchida et al. 2009 ) ; 14 ( Skolnik et al. 2010 ) ; 15 (

Lin et al. 2011 )
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4

Relative lack of effect of efflux inhibitors on Caco-2 permeabilities of marketed drugs.

Data are taken from ( Lin et al. 2011 ) and shown as paired values.
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5

Lack of relationship between Caco-2 cells and simple biophysical parameters.

A. Caco-2 permeability as a function of MW.
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6

Lack of relationship between Caco-2 cells and simple biophysical parameters .

B. Caco-2 permeability as a function of SlogP.
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7

Lack of relationship between Caco-2 cells and simple biophysical parameters.

Caco-2 permeability as a function of Total Polar Surface Area.
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Lack of relationship between Caco-2 cells and simple biophysical parameters.

D. Lack of relationship between Total Polar Surface Area and S log P.
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9

Lack of relationship between Caco-2 cell permeability and measures of endogenite-

likeness.

A. Lack of relationship between the Papp of a drug in Caco-2 cells and its greatest Tanimoto

similarity to any endogenite molecule in Recon2.
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Lack of relationship between Caco-2 cell permeability and measures of endogenite-

likeness.

B. Lack of relationship between the Papp of a drug and the number of endogenous metabolites

(endogenites) in Recon2 possessing a Tanimoto similarity greater than 0.65.
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11

Lack of relationship between experimental Caco-2 permeabilities and those predicted

(via out-of-bag estimation) from a random forest learner.

Drug properties were encoded using either the MACCS166 encoding ( O'Hagan et al. 2015 )

or the full DES encoding ( O'Hagan & Kell 2015b ) , each together with the molecular

properties encoded in the CDK KNIME node ( Beisken et al. 2013 ) .
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