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Problems in using p-curve analysis and text-mining to detect

rate of p-hacking and evidential value

Dorothy V Bishop, Paul A Thompson

Background: The p-curve is a plot of the distribution of p-values reported in a set of

scientific studies. Comparisons between ranges of p-values have been used to evaluate

fields of research in terms of the extent to which studies have genuine evidential value,

and the extent to which they suffer from bias in the selection of variables and analyses for

publication, p-hacking. Methods: P-hacking can take various forms. Here we used R code

to simulate the use of ghost variables, where an experimenter gathers data on several

dependent variables but reports only those with statistically significant effects. We also

examined a text-mined dataset used by Head et al. (2015) and assessed its suitability for

investigating p-hacking. Results: We first show that when there is ghost p-hacking, the

shape of the p-curve depends on whether dependent variables are intercorrelated. For

uncorrelated variables, simulated p-hacked data do not give the "p-hacking bump" just

below .05 that is regarded as evidence of p-hacking, though there is a negative skew when

simulated variables are inter-correlated. The way p-curves vary according to features of

underlying data poses problems when automated text mining is used to detect p-values in

heterogeneous sets of published papers. Conclusions: The absence of a bump in the p-

curve is not indicative of lack of p-hacking. Furthermore, while studies with evidential

value will usually generate a right-skewed p-curve, we cannot treat a right-skewed p-curve

as an indicator of the extent of evidential value, unless we have a model specific to the

type of p-values entered into the analysis. We conclude that it is not feasible to use the p-

curve to estimate the extent of p-hacking and evidential value unless there is considerable

control over the type of data entered into the analysis. In particular, p-hacking with ghost

variables is likely to be missed.
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20 Abstract

21 Background: The p-curve is a plot of the distribution of p-values reported in a set of scientific 

22 studies. Comparisons between ranges of p-values have been used to evaluate fields of research 

23 in terms of the extent to which studies have genuine evidential value, and the extent to which 

24 they suffer from bias in the selection of variables and analyses for publication, p-hacking. 

25 Methods: P-hacking can take various forms. Here we used R code to simulate the use of ghost 

26 variables, where an experimenter gathers data on several dependent variables but reports only 

27 those with statistically significant effects. We also examined a text-mined dataset used by Head 

28 et al. (2015) and assessed its suitability for investigating p-hacking.  Results: We first show that 

29 when there is ghost p-hacking, the shape of the p-curve depends on whether dependent 

30 variables are intercorrelated. For uncorrelated variables, simulated p-hacked data do not give 

31 the "p-hacking bump" just below .05 that is regarded as evidence of p-hacking, though there is 

32 a negative skew when simulated variables are inter-correlated. The way p-curves vary according 

33 to features of underlying data poses problems when automated text mining is used to detect p-

34 values in heterogeneous sets of published papers. Conclusions: The absence of a bump in the 

35 p-curve is not indicative of lack of p-hacking. Furthermore, while studies with evidential value 

36 will usually generate a right-skewed p-curve, we cannot treat a right-skewed p-curve as an 

37 indicator of the extent of evidential value, unless we have a model specific to the type of p-

38 values entered into the analysis. We conclude that it is not feasible to use the p-curve to 

39 estimate the extent of p-hacking and evidential value unless there is considerable control over 

40 the type of data entered into the analysis. In particular, p-hacking with ghost variables is likely 

41 to be missed.
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43 Background

44 Statistical packages allow scientists to conduct complex analyses that would have been 

45 impossible before the development of fast computers. However, understanding of the 

46 conceptual foundations of statistics has not always kept pace with software (Altman 1991; 

47 Reinhart 2015), leading to concerns that much reported science is not reproducible, in the 

48 sense that a result found in one dataset is not obtained when tested in a new dataset (Ioannidis 

49 2005). The causes of this situation are complex and the solutions are likely to require changes, 

50 both in training of scientists in methods and revision of the incentive structure of science 

51 (Ioannidis 2014; Academy of Medical Sciences et al. 2015). 

52 Two situations where reported p-values provide a distorted estimate of strength of evidence 

53 against the null hypothesis are publication bias and p-hacking. Both can arise when scientists 

54 are reluctant to write up and submit unexciting results for publication, or when journal editors 

55 are biased against such papers. Publication bias occurs when a paper reporting positive results 

56 � e.g., those that report a significant difference between two groups, an association between 

57 variables, or a well-fitting model of a dataset � are more likely to be published than null results 

58 (Ioannidis et al. 2014).  Concerns about publication bias are not new (Greenwald 1975; 

59 Newcombe 1987; Begg & Berlin 1988), but scientists have been slow to adopt recommended 

60 solutions such as pre-registration of protocols and analyses. 

61 The second phenomenon, p-hacking, is the focus of the current paper. It has much in 

62 common with publication bias, but whereas publication bias affects which studies get 

63 published, p-hacking is a bias affecting which data and/or analyses are included in a publication 

64 arising from a single study. P-hacking has also been known about for many years; it was 

65 described, though not given that name, in 1956 (de Groot, 2014).  The term p-hacking was 

66 introduced by Simonsohn et al. (2014) to describe the practice of reporting only that part of a 

67 dataset that yields significant results, making the decision about which part to publish after 

68 scrutinising the data. There are various ways in which this can be done: e.g., deciding which 

69 outliers to exclude, when to stop collecting data, or whether to include covariates. Our focus 

70 here is on what we term ghost variables: dependent variables that are included in a study but 
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71 then become invisible in the published paper after it is found that they do not show significant 

72 effects.  

73 Although many researchers have been taught that multiple statistical testing will increase 

74 the rate of type I error, lack of understanding of p-values means that they may fail to appreciate 

75 how use of ghost variables is part of this problem. If we compare two groups on a single 

76 variable and there is no genuine difference between the groups in the population, then there is 

77 a one in 20 chance that we will obtain a false positive result , i.e. on a statistical test the means 

78 of the groups will differ with p  < .05. If, however, the two groups are compared on ten 

79 independent variables, none of which differs in the overall population, then the probability that 

80 at least one of the measures will yield a 'significant' difference at p < .05 is 1-(1-0.05)10, i.e.,  

81 .401 (de Groot, 2014).  So if a researcher does not predict in advance which measure will differ 

82 between groups, but just looks for any measure that is 'significant', there is a 40 per cent 

83 chance they will find at least one false positive. If they report data on all 10 variables, then 

84 statistically literate reviewers and editors may ask them to make some correction for multiple 

85 comparisons, such as the Bonferroni correction, which requires a more stringent significance 

86 level when multiple exploratory tests are conducted. If, however, the author decides that only 

87 the significant results are worth reporting, and assigns the remaining variables to ghost status, 

88 then the published paper will be misleading in implying that the results are far more unlikely to 

89 have occurred by chance than is actually the case, because the ghost variables are not reported.  

90 It is then likely that the result will be irreproducible.  Thus use of ghost variables potentially 

91 presents a major problem for science because it leads to a source of irreproducibility that is 

92 hard to detect, and is not always recognised by researchers as a problem (Kraemer, 2013; 

93 Motulsky 2015).

94 Simonsohn et al. (2014) proposed a method for diagnosing p-hacking by considering the 

95 distribution of p-values obtained over a series of independent studies. Their focus was on the p-

96 curve in the range below .05, i.e., the distribution of probabilities for results meeting a 

97 conventional level of statistical significance. The logic is that a test for a group difference when 

98 there is really no effect will give a uniform distribution of obtained p-values. In contrast, when 

99 there is a true effect, repeated studies will show a right-skewed p-curve, with p-values 
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100 clustered at the lower end of the distribution (see Figure 1). As shown by Simonsohn et al. 

101 (2014), the degree of right skew will be proportional to sample size (N), as we have more power 

102 in the study to detect real group differences when N is large (Cohen 1992). 

103 Simonsohn et al (2014) went on to show that under certain circumstances, p-hacking can 

104 lead to a left-skewing of the p-curve, with a rise in the proportion of p-values that are just less 

105 than .05. This can arise if researchers adopt extreme p-hacking methods, such as modifying 

106 analyses with covariates, or selectively removing subjects, to push 'nearly' significant results 

107 just below the .05 threshold.

108

109 Figure 1: P-curve: Expected distribution of p-values when no effect (null) vs true effect size of 0.3 

110 with low (N = 20 per group) or high power (N = 200 per group)

111

112 Demonstrations of the properties of p-curves has led to interest in the idea that they might 

113 be useful to detect whether p-hacking is present in a body of work. Although p-curves have 

114 been analysed using curve-fitting (Masicampo and Lalande, 2012), it is possible to use a simple 

115 binomial test to detect skew near .05, characteristic of p-hacking and, conversely, to use the 

116 amount of right skew to estimate the extent to which a set of studies gives results that are 
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117 likely to be reproducible, i.e., has evidential value.  In a recent example, Head et al. (2015) used 

118 text-mined p-values from over 111 000 published papers in different scientific disciplines.  For 

119 each of 14 subject areas, they selected one p-value per paper to create a p-curve that was then 

120 used to test two hypotheses. First, they used the binomial test to compare the number of 

121 significant p-values in a lower bin (between 0 and .025) with the number in a higher bin 

122 (between .025 and .05). As shown in Figure 1, if there are no true effects, then we expect equal 

123 proportions of p-values in these two bins. They, therefore, concluded that if there were 

124 significantly more p-values in the lower bin than the higher bin, this was an indication of 

125 'evidential value', i.e. results in that field were true findings. Next, they compared the number 

126 of p-values between two adjacent bins near the significance threshold of .05: a far bin (.04 < p <  

127 .045) and a near bin  (.045 < p <.05). If there were more p-values in the near bin than the far 

128 bin, they regarded this as evidence of p-hacking. 

129 Questions have, however, been raised as to whether p-curves provide a sufficiently robust 

130 foundation for such conclusions. Simonsohn et al (2014) emphasised the assumptions 

131 underlying p-curve analysis, and the dangers of applying the method when these were not met. 

132 Specifically, they stated, �For inferences from p-curve to be valid, studies and p-values must be 

133 appropriately selected�. selected p-values must be (1) associated with the hypothesis of 

134 interest, (2) statistically independent from other selected p-values, and (3) distributed uniform 

135 under the null" (p. 535) (i.e., following the flat function illustrated in Figure 1).  Gelman and 

136 O�Rourke (2013) queried whether the requirement for a uniform distribution was realistic. They 

137 stated: �We argue that this will be the case under very limited settings", and �The uniform 

138 distribution will not be achieved for discrete outcomes (without the addition of subsequent 

139 random noise), or for instance when a t.test is performed using the default in the R software 

140 with small sample sizes (unequal variances).� (p. 2-3)

141 The question, therefore, arises as to how robust p-curve analysis is to violations of 

142 assumptions regarding the underlying data, and under what circumstances it can be usefully 

143 applied to real-world data. To throw light on this question we considered one factor that is 

144 common in reported papers: use of correlated dependent variables. We use simulated data to 

145 see how correlation between dependent measures affects the shape of the p-curve when ghost 
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146 p-hacking is adopted (i.e., several dependent measures are measured but only a subset with 

147 notionally 'significant' results is reported). We show that, somewhat counterintuitively, ghost p-

148 hacking induces a leftward skew in the p-curve when the dependent variables are 

149 intercorrelated, but not when they are independent. 

150 Another parameter in p-curve analysis is the number of studies included in the p-curve. The 

151 study by Head et al. (2015) exemplifies a move toward using text-mining to harvest p-values for 

152 this purpose, and their study therefore was able to derive p-curves based on a large number of 

153 studies. When broken down by subject area, the number of studies in the p-curve ranged from 

154 around 100 to 62 000. It is therefore of interest to consider how much data is needed to have 

155 reasonable power to detect skew.

156 Finally, with text-mining of p-values from Results sections we can include large numbers of 

157 studies, but this approach introduces other kinds of problems: not only do we lack information 

158 about the distributions of dependent variables and correlations between these; we cannot even 

159 be certain that the p-values are related to the main hypothesis of interest. We conclude our 

160 analysis with scrutiny of a subset of studies used by Head et al. (2015), showing that their 

161 analysis included p-values that were not suitable for p-curve analysis, making it unfeasible to 

162 use the p-curve to quantify the extent of p-hacking or evidential value.

163 Materials and methods

164 Simulations

165 A script, Ghostphack, was written in R to simulate data and derive p-curves for the situation 

166 when a researcher compares two groups on a set of variables but then reports just those with 

167 significant effects. We restrict consideration to the p-curve in the range from 0 to .05. 

168 Ghostphack gives flexibility to vary the number of variables included, the effect size, the inter-

169 correlation between variables, the sample size, the extent to which variables are normally 

170 distributed, and whether or not p-hacking is used. P-hacking is simulated by a model where the 

171 experimenter tests X variables but only reports the subset that have p < .05; both one-tailed 

172 (directional) and two-tailed versions can be tested.  
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173 As illustrated in Appendix 1, each run simulates one study in which a set of X variables is 

174 measured for N subjects in each of two groups.  In each run, a set of random normal deviates is 

175 generated corresponding to a set of dependent variables. In the example, we generate 40 

176 random normal deviates, which correspond to four dependent variables measured on five 

177 participants in each of two groups, A and B.  The first block of five participants is assigned to 

178 group A and the second block to group B. If we are simulating the situation where there is a 

179 genuine difference between groups on one variable, an effect size, E, is added to one of the 

180 dependent variables for group A only.  A t-test is then conducted for each variable to test the 

181 difference in means between groups, to identify variables with p < .05. In practice, there may 

182 be more than one significant p-value per study, and we would expect that researchers would 

183 report all of these; however, for p-curve analysis, it is a requirement that p-values are 

184 independent (Simonsohn et al. 2014), and so only one significant p-value is selected at random 

185 per study for inclusion in the analysis. The analysis discards any studies with no significant p-

186 values. The script yields tables that contain information similar to that reported by Head et al. 

187 (2015): the number of runs with p-values in specific frequency bins. 

188 All simulations reported here were based on 100 000 runs, each of which simulated a study 

189 with either 3 or 8 dependent variables for two groups of subjects. Two power levels were 

190 compared: low (total N of 40, i.e., 20 per group) and high (total N of 400, i.e., 200 per group).  

191 Effect of correlated data on the P-value distribution

192 In the example in Appendix 1, the simulated variables are uncorrelated. In practice, 

193 however, studies are likely to include several variables that show some degree of 

194 intercorrelation (Meehl 1990). We therefore compared p-curves based on situations where the 

195 dependent variables had different degrees of intercorrelation. We considered situations where 

196 researchers measure multiple response variables that are totally uncorrelated, weakly 

197 correlated, or strongly correlated with each other, and then only report one of the significant 

198 ones.
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199 An evaluation of text-mined p-curves 

200 Text-mining of published papers makes it possible to obtain large numbers of studies for p-

201 curve analysis. In the final section of this paper, we note some problems for this approach, 

202 illustrated with data from Head et al. (2015).

203 Results

204 Simulations: correlated vs uncorrelated variables

205 Figure 2 shows output from Ghostphack for low (N = 20 per group) and high (N = 200 per 

206 group) powered studies when data are sampled from a population with no group difference. 

207 The upper panels show the situation when there are 3 variables, and the lower panels with 8 

208 variables. Intercorrelation between the simulated variables was set at 0, .5, or .8. Directional t-

209 tests were used; i.e. a variable was treated as a ghost variable only if there was a difference in 

210 the predicted direction, with greater mean for group 2 than for group 1.

211 For uncorrelated variables, using data generated with a null effect, the p-hacked p-curve is 

212 flat, whereas for correlated variables, it has a negative skew, with the amount of slope a 

213 function of the strength of correlation. The false positive rate is around 40 per cent when 

214 variables are uncorrelated, but drops to around 12 per cent when variables are intercorrelated 

215 at r = .8.  Figure 2 also shows how the false positive rate increases when the number of 

216 variables is large (8 variables vs 3 variables) � this is simply a consequence of the well-known 

217 inflation of false positives when there are multiple comparisons. 

218
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219 Figure 2: P-curve for ghost p-hacked data when true effect size is zero (panels A and C) versus 

220 when true effect is 0.3 (panels B and D). Continuous line for low power (N = 20 per group) and 

221 dashed line for high power (N = 200 per group). Different levels of correlation between variables 

222 are colour coded.

223

224

225 The slope of the p-curve with correlated variables is counterintuitive, because if we plot all 

226 obtained p-values from a set of t-tests when there is no true effect, this follows a uniform 

227 distribution, regardless of the degree of correlation. The key to understanding the skew is to 
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228 recognise it arises only when we sample only one p-value per paper. When variables are 

229 intercorrelated, so too are effect sizes and p-values associated with those variables. It follows 

230 that for any one run of Ghostphack, the range of obtained p-values is smaller for correlated 

231 than uncorrelated variables, as shown in Table 1. In the limiting case where variables are 

232 multicollinear, they may be regarded as indicators of a single underlying factor, represented by 

233 the median p-value of that run. Across all runs of the simulation, the distribution of these 

234 median values will be uniform. However, sampling according to a cutoff from correlated p-

235 values will distort the resulting distribution: if the median p-value for a run is well below .05, as 

236 in the 2nd row of panel B (Table 1), then most or all p-values from that run will be eligible. 

237 However, if the median p-value is just above .05, as in the final row of panel B, then only values 

238 close to the .05 boundary are eligible for selection. In contrast, when variables are 

239 uncorrelated, there are no constraints on any p-values, and all values below .05 are equally 

240 likely. See also comment by de Winter and van Assen on preprint �version 2- of this paper, 

241 which elaborates on this point. 

242
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243

244 Table 1: Rank-ordered p-values for 10 runs of simulation with (a) r = 0, and (b) r = .8. Values less 

245 than .05 which are candidates for inclusion in p-curve are shown with pink highlight.

A. Correlation between variables = 0

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 Median 

p

Range

0.030 0.208 0.259 0.564 0.715 0.807 0.832 0.875 0.895 0.969 0.761 0.939

0.049 0.050 0.276 0.332 0.472 0.479 0.785 0.804 0.936 0.974 0.475 0.925

0.085 0.164 0.383 0.456 0.470 0.481 0.600 0.615 0.718 0.839 0.476 0.754

0.006 0.181 0.202 0.244 0.315 0.325 0.359 0.443 0.471 0.635 0.320 0.629

0.332 0.351 0.411 0.426 0.505 0.611 0.648 0.713 0.884 0.913 0.558 0.581

0.076 0.160 0.266 0.276 0.309 0.328 0.342 0.346 0.422 0.964 0.319 0.888

0.046 0.053 0.105 0.227 0.508 0.508 0.800 0.819 0.885 0.973 0.508 0.927

0.048 0.101 0.234 0.264 0.414 0.433 0.606 0.709 0.788 0.968 0.424 0.921

0.051 0.113 0.282 0.445 0.452 0.456 0.656 0.670 0.736 0.757 0.454 0.705

0.082 0.202 0.221 0.241 0.297 0.383 0.387 0.717 0.955 0.982 0.340 0.900

B. Correlation between variables = .8

0.110 0.172 0.375 0.449 0.508 0.575 0.633 0.644 0.747 0.787 0.541 0.677

0.001 0.004 0.006 0.007 0.007 0.010 0.012 0.013 0.043 0.060 0.009 0.059

0.602 0.775 0.820 0.853 0.859 0.889 0.933 0.942 0.950 0.956 0.874 0.353

0.128 0.211 0.227 0.229 0.252 0.255 0.342 0.368 0.450 0.571 0.253 0.443

0.218 0.249 0.328 0.338 0.392 0.489 0.557 0.561 0.604 0.877 0.441 0.660

0.519 0.801 0.848 0.893 0.903 0.939 0.948 0.984 0.990 0.997 0.921 0.477

0.179 0.260 0.331 0.344 0.385 0.425 0.455 0.608 0.758 0.765 0.405 0.585

0.569 0.575 0.627 0.639 0.746 0.749 0.780 0.901 0.906 0.920 0.747 0.351

0.210 0.284 0.379 0.418 0.474 0.570 0.593 0.654 0.670 0.790 0.522 0.580

0.013 0.084 0.091 0.099 0.121 0.154 0.156 0.36 0.435 0.439 0.137 0.426

246 Figure 2 (panels B and D) also shows the situation where there is a true but modest effect (d 

247 = .3) for one variable. Here we obtain the signature right-skewed p-curve, with the extent of 

248 skew dependent on the statistical power, but little effect of the number of dependent variables. 

249 Appendix 2 shows analogous p-curves for plots simulated with the same parameters and no p-

250 hacking: the p-curve is flat for the null effect; for the effect of 0.3, a similar degree of right-
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251 skewing is seen as in Figure 2, but in neither case is there any influence of correlation between 

252 variables (see Appendix 2). For completeness, Appendix 2 also shows p-curves with the y-axis 

253 expressed as percentage of p-values, rather than counts.

254 In real world applications we would expect p-values entered into a p-curve to come from 

255 studies with a mixture of true and null effects, and this will affect the ability to detect the right 

256 skew indicative of evidential value, as well as the left skew. Lakens (2014) noted that a right-

257 skewed p-curve can be obtained even when the proportion of p-hacking is relatively high. 

258 Nevertheless, the left-skewing caused by correlated variables complicates the situation, 

259 because when power is low and we have highly correlated variables, inclusion of a proportion 

260 of p-hacked trials can cancel out the right skew because of the left skew induced by p-hacking 

261 with correlated variables (see Figure 3). This is just one way in which the combination of 

262 parameters can yield unexpected effects on a p-curve: this illustrates the difficulty of 

263 interpreting p-curves in real-life situations where parameters such as proportion of p-hacked 

264 studies, sample size and number and correlation of dependent variables are not known. Such 

265 cases appear to contradict the general rule of Simonsohn et al. (2014) that: "all combinations of 

266 studies for which at least some effects exist are expected to produce right-skewed p-curves." (p. 

267 536), because the right skew can be masked if the set of p-values includes a subset from low-

268 powered null studies that were p-hacked from correlated ghost variables. 
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269 Figure 3: Illustration of how right skew showing evidential value can be masked if there is a high 

270 proportion of p-hacked studies and low statistical power. Colours show N, and continuous line is 

271 non-hacked, dotted line is p-hacked

272

273

274 Power to detect departures from uniformity in the range p = 0 to .05

275 We have noted how power of individual studies will affect p-curves, but there is another 

276 aspects of power that also needs to be considered, namely the power of the p-curve analysis 

277 itself. We restrict consideration here to the simple method adopted by Head et al. (2015), 

278 where the number of p-values is compared across two ranges. For instance, to detect the 

279 'bump' in the p-curve just below .05, we can compare the number of p-values in the bins .04 < p 

280 < .045 (far) vs .045 < p < .05 (near). These numbers will depend on (a) the number of studies 

281 included in the p-curve analysis; (b) the proportion of studies where ghost p-hacking was used; 

282 (c) the number of variables in the study; (d) the sample size and (e) the correlation between 
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283 variables. Consider an extreme case, where we have no studies with a true effect, with ghost-

284 hacking in all studies, and eight variables with inter-correlation of .8. This set of parameters 

285 leads to clear left-skewing of the p-curve (Figure 3). Simulated data were used to estimate the 

286 proportions of p-values in the near and far bins close to .05, and hence to derive the statistical 

287 power to detect such a difference. To achieve 80% power to detect a difference, a total of 

288 around 1 200 p-values in the range between .04 and .05 is needed. Note that to find this many 

289 p-values, considerably more studies would be required. In the simulation used for Figure 4, only 

290 4% of simulated studies had p-values that fell in this range. It follows that to detect the p-

291 hacking bump with 80% power in this situation, where the difference due to ghost p-hacking is 

292 maximal, we would need p-values from 30 000 studies. 

293 Figure 4: Power curve for detecting difference between near and far p-value bins in case with 

294 null effect, 100% ghost p-hacking, and eight variables with intercorrelation of 0.8. N.B. the saw-

295 tooth pattern is typical for this kind of power curve (Chernick & Liu 2002)

296
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297 Text-mined p-curves

298 For their paper entitled "The extent and consequences of P-hacking in science", Head et al. 

299 (2015) downloaded all available open access papers from PubMed Commons, categorised them 

300 by subject area, and used text-mining to locate Abstracts and Results sections, and then to 

301 search for reports of p-values in these. One p-value was randomly sampled per paper. This 

302 sampling was repeated 1 000 times, and the rounded average number of p-values in a given bin 

303 was taken as the value used in the p-curve for that paper. The number of papers included by 

304 Head et al. varied considerably from discipline to discipline, from 94 in Mathematical Sciences 

305 to over 60 000 for Medical and Health Sciences. These were divided according to whether p-

306 values came from Results or Abstracts sections. This is, to our knowledge, the largest study of p-

307 hacking in the literature. 

308 Although this approach to p-hacking has the merit of using massive amounts of data, 

309 problems arise from the lack of control over p-values entered into the analysis.

310 Ambiguous p-values in text-mined data. Some reported p-values are inherently ambiguous. 

311 In their analysis of text-mined data, Head et al. (2015) included p-values in the p-curve only if 

312 they were specified precisely (i.e. using '='). Use of a 'less than' specifier was common for very 

313 low values, e.g. p < .001, but these were omitted. We manually checked a random subset of 30 

314 of the 1 736 papers in the Head et al dataset classified as Psychology and Cognitive Sciences 

315 (see Appendix 3 for dois).  The average number of significant p-values reported in each paper 

316 was 14.1, with a range from 2 to 43. If values specified as < .01 or < .001 were included in the 

317 bin ranging from 0 to .025, then for the 30 papers inspected in detail, the average number per 

318 paper was 9.97; if they were excluded (as was done in the analysis by Head et al.) then the 

319 average number was 4.47, suggesting that around half the extreme p-values were excluded 

320 from analysis because they were specified as 'less than', even though they could accurately 

321 have been assigned to the lowest bin. However, if all these values had been included in the 

322 analysis, then Head et al. might have been accused of being biased in favour of finding extreme 

323 p-values; in this regard, the approach they adopted was very conservative, reducing the power 

324 of the test. Another problem is variability in the number of decimal places used to report p-

325 values, e.g. if we see p = .04, it is unclear if this is a precise estimate or if it has been rounded. 
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326 Head et al. (2015) dealt with this issue by including only p-values reported to at least three 

327 decimal places, but alternative solutions to the problem will give different distributions of p-

328 values.

329 Unsuitable p-values in text-mined data. As Simonsohn et al. (2014, 2015) noted, it is 

330 important to select carefully the p-values for inclusion in a p-curve. Scrutiny of the 30 papers 

331 from Head et al. (2015) selected for detailed analysis (Appendix 3) raised a number of issues 

332 about the accuracy of p-curve analysis of text-mined data:  

333 1. Perhaps the most serious issue concerns cases where p-values extracted from the mined 

334 text could exaggerate evidential value. There were numerous instances where p-values were 

335 reported that related to facts that were either well-established in the literature, or strongly 

336 expected a priori, but which were not the focus of the main hypothesis; the impression was 

337 that these were often reported for completeness and to give reassurance that the data 

338 conformed to general expectations. For instance, in paper 1, a very low p-value was found for 

339 the association between depression and suicidality � not a central focus of the paper, and not a 

340 surprising result. In paper 10, which looked at the effect of music on verbal learning, a learning 

341 effect was found with p < .001 � this simply demonstrated that the task used by the researchers 

342 was valid for measuring learning. This strong effect affected several p-values because it was 

343 further tested for linear and quadratic trends, both of which were significant (with p = .004 and 

344 p < .001). None of these p-values concerned a test of the primary hypothesis. In paper 11, a 

345 statistical test was done to confirm that negative photos elicited more negative emotion than 

346 positive photos � and gave p < .001; again, this was part of an analysis to confirm the suitability 

347 of the materials but it was not part of the main hypothesis-testing. Study 20, on Stroop effects 

348 in bilinguals, reported a highly significant Stroop effect, an effect so strong and well-established 

349 that there is little interest in demonstrating it beyond showing the methods were sound.  

350 Examples such as these could be found in virtually all the papers examined.

351 2. Some papers had evidence of double-dipping (Kriegeskorte et al. 2009), a circular 

352 procedure commonly seen in human brain mapping, when a large dataset is first scrutinised to 

353 identify a region that appears to respond to a stimulus, and then analysis is focused on that 

354 region. This is a practice that is commonplace in electrophysiological as well as brain imaging 
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355 studies; For instance, in paper 6, an event-related potentials study, a time range where two 

356 conditions differed was first identified by inspection of average waveforms, and then mean 

357 amplitudes in this interval were compared across conditions. This is a form of p-hackingthat can 

358 generate p-values well below .05. For instance, Vul et al (2009) showed that where such circular 

359 analysis methods had been used, reported correlations between brain activation and behaviour 

360 often exceeded 0.74. Even with the small sample sizes that are often seen in this field, this 

361 would be highly significant (e.g. for N = 16, p < .001). This would not be detected by looking for 

362 a bump just below .05, but rather would give the false impression of evidential value.

363 3.  For completeness we note also two other cases where p-values would not be suitable for 

364 p-curve analysis, (a) where they are associated with tests of assumptions of a method and  (b) 

365 in model-fitting contexts, where a low p-value indicates poor model fit. Examples of these were, 

366 however, rare in the papers we analysed; two papers reported values for Mauchly�s tests of 

367 sphericity of variances, but only one of these was reported exactly, as p = .001, and no study 

368 included statistics associated with model-fitting. So although such cases could give misleading 

369 indications of evidential value, they are unlikely to affect the p-curve except in sub-fields where 

370 use of such statistics in common. 

371 Discussion

372 Problems specific to text-mined data

373 Automated text-mining provides a powerful means for extracting statistics from very large 

374 databases of published texts, but the increased power that this provides comes at a price, 

375 because the method cannot identify which p-values are suitable for inclusion in p-curve 

376 analysis. Simonsohn et al. (2014, 2015) argued that p-curve analysis should be conducted on p-

377 values that meet three criteria: they test the hypothesis of interest, they have a uniform 

378 distribution under the null, and they are statistically independent of other p-values in the p-

379 curve. The text-mined data from Results section used by Head et al. (2015) do not adhere to the 

380 first requirement. Most scientific papers include numerous statistical tests, only some of which 

381 are specifically testing the hypothesis of interest. If one simply assembles all the p-values in a 

382 paper and selects one at random, this avoids problems of dependence between p-values, but it 
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383 means that unsuitable p-values will be included. Table 2 summarises the problems that arise 

384 when p-curve analysis is used to detect p-hacking and evidential value from text-mined data. 

385
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386

387 Table 2

388 Problems in quantifying p-hacking and evidential value from a p-curve using text-mined data

389

Cases where p-hacking not detected by 

binomial test

Cases where right skew not due to evidential 

value

P-values are reported as p < .05 and so 

excluded from analysis1

Where p-values used to confirm prior 

characteristics of groups being compared1,2

Limited power because few p-values between 

.04 and .05

Where p-values come from confirming well-

known effects, e.g. demonstrating that a method 

behaves as expected1,2

Where p-values ambiguous because rounded to 

two decimal places1

Where 'double-dipping' used to find 'best' data 

to analyse

P-values from model-fitting or testing of 

assumptions of statistical tests (where low p-

value indicative of poor fit, or failure to meet 

assumptions)1,2

390

391 1Problems that can potentially be overcome by analysing data from meta-analyses

392 2Problems that less likely to affect text-mined data from Abstracts

393 Most of these problems are less likely to affect text-mined data culled from Abstracts. As de 

394 Winter and Dodou (2015) noted, p-values reported in Abstracts are likely to be selected as 

395 relating to the most important findings. Indeed, studies that have used text-mining to 

396 investigate the related topic of publication bias have focused on Abstracts, presumably for this 

397 reason, e.g., Jager and Leek (2013); de Winter and Dodou (2015). However, reporting of p-

398 values in Abstracts is optional and many studies do not do this; there is potential for bias if the 

399 decision to report p-values in the Abstract depends on the size of the p-value. Furthermore, it is 

400 difficult to achieve adequate statistical power to test for the p-hacking bump. With their 

401 extremely large set of Abstracts, Head et al. (2015) found evidence of p-hacking in only two of 
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402 the ten subject areas they investigated, but in six areas there were less than 10 p-values 

403 between .04 and .05 to be entered into the analysis. 

404  As noted in Table 2, many of these problems can be avoided by using meta-analyses, where 

405 p-values have been selected to focus on those that tested specific hypotheses. Head et al. 

406 (2015) included such an analysis in their paper, precisely for this reason. However, such an 

407 analysis is labour-intensive, and has limited power to detect p-hacking if the overall number of 

408 p-values in the .04-.05 range is small (see Head et al, 2015, Table 3)

409 More general problems with drawing inferences from binomial tests on p-curves 

410 Lakens (2015) noted that to model the distribution of p-values we need to know the number 

411 of studies where the null hypothesis or alternative hypothesis is true, the nominal type I error 

412 rate, the statistical power and extent of publication bias. We would add that we also need to 

413 know whether dependent variables were correlated, whether p-values were testing a specific 

414 hypothesis, and how many p-values had to be excluded (e.g. because of ambiguous reporting). 

415 Our simulations raise concerns about drawing conclusions from both ends of the p-curve. In 

416 particular, we argue that the binomial test cannot be used to quantify the amount of p-hacking. 

417 These interpretive problems potentially apply to all p-curves, not just those from text-mined 

418 data. 

419 As we have shown, one form of p-hacking, ghost p-hacking, does not usually lead to a 

420 significant difference between the adjacent bins close to the .05 cutoff. In particular, where 

421 there is ghost p-hacking with variables that are uncorrelated or weakly correlated the p-curve is 

422 flat across its range. Where ghost p-hacked variables are correlated, a leftward skew is induced, 

423 which increases with the degree of correlation, but our power analysis showed that very large 

424 numbers of studies would need to be entered into a p-curve for this to be detected. In such 

425 cases, a binomial test of differences between near and far bins close to .05 will give a 

426 conservative estimate of p-hacking. Use of ghost variables is just one method of p-hacking, and 

427 the 'bump' in the p-curves observed by Head et al. could have resulted for other reasons: 

428 indeed, in an analysis of meta-analysed studies, they showed that a contributing factor was 

429 authors misreporting p-values as significant (when recomputation showed they were actually 
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430 greater than .05). Our general point, however, is that without more information about the data 

431 underlying a p-curve, it can be difficult to interpret the absence of a p-hacking 'bump'. 

432 Right skewing provides evidential value, but with heterogeneous data it is difficult to 

433 quantify the extent of this from the degree of rightward skew in a p-curve, because, as already 

434 established by Simonsohn et al. (2014), this is dependent on statistical power. In particular, as 

435 we have shown, when a dataset contains ghost p-hacked correlated variables, these have little 

436 impact when the statistical power is high, but can counteract the right skewing completely 

437 when power is low. 

438 We share the concerns of Head et al (2015) about the damaging impact of p-hacking on 

439 science. On the basis of p-curve analysis of meta-analysed data, they concluded that "while p-

440 hacking is probably common, its effect seems to be weak relative to the real effect sizes being 

441 measured." (p. 1).  As we have shown here, if we rely on a 'bump' below the .05 level to detect 

442 p-hacking, it is likely that we will miss much p-hacking that goes 'under the radar'. P-curve 

443 analysis still has a place in contexts where probabilities are compared for a set of p-values (pp-

444 values) from a series of studies that are testing a hypothesis, and which meet the criteria of 

445 Simonsohn et al (2014, 2015). However, simple comparisons between ranges of p-values in 

446 data from disparate studies do not allow us to quantify the extent of either p-hacking or real 

447 effect sizes.
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511 Appendix 1

512 Figure A1: Schematic illustrating simulation of data by the Ghostphack program, with effect size 

513 = 1.

514

515
516
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517 Appendix 2
518 Plots from Ghostphack to complement Figure 2. 

519

520 Figure A2: Simulation as for Figure 2, but with no Ghostphacking. Note that amount of covariance 

521 between variables has no effect in this situation and so all curves for a given N are superimposed.

522

523
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524 Figure A3: Simulation as for Figure 2, with y-axis as percentage of all p-values, rather than frequency

525

526
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527 Figure A4: Simulation as for Plot A, with y-axis as percentage of all p-values, rather than frequency

528

529
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530 Appendix 3

531 DOIs of 30 psychology papers included in the Head et al. 2015 analysis that were scrutinised 

532 for qualitative analysis of p-values.

533

Code first.doi

1 10.1186/1744-859X-12-15

2 10.3758/s13414-010-0033-2

3 10.1186/1744-9081-1-22

4 10.1186/1744-9081-4-36

5 10.1186/1744-9081-3-40

6 10.1186/1744-9081-5-30

7 10.1186/1744-9081-5-16

8 10.1186/1744-9081-6-7

9 10.1186/1744-9081-7-18

10 10.1186/1744-9081-10-10

11 10.1186/2045-5380-2-22

12 10.1111/j.1467-7687.2007.00620.x

13 10.1037/a0016305

14 10.3389/fpsyg.2012.00023

15 10.3389/fpsyg.2012.00533

16 10.3389/fpsyg.2012.00352

17 10.3389/fpsyg.2013.00942

18 10.3389/fpsyg.2013.00015

19 10.3389/fpsyg.2013.00452

20 10.3389/fpsyg.2012.00081

21 10.3389/fpsyg.2014.00276

22 10.3389/fpsyg.2014.00367

23 10.3389/fpsyg.2014.00170

24 10.3389/fpsyg.2014.00430

25 10.3389/fpsyg.2011.00319

26 10.3389/fpsyg.2013.00110
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27 10.1016/j.jesp.2013.05.008

28 10.1186/1747-597X-8-20

29 10.1186/1747-597X-9-13

30 10.1186/1747-597X-1-27

534

535
536

537
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