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Climate change enlarges China�s Great Bustards� ( Otis tarda

dybowskii ) suitable wintering distribution in the 21st century

Chunrong Mi, Huettmann Falk, Yumin Guo

Rapidly changing climate makes humans realize that there is a critical need to rethink the

current conservation and incorporate climate change adaptation into conservation

planning. Whether Great Bustards� (Otis tarda dybowskii), a globally endangered species

whose population is approximately 1,500~2,200 individuals in China, would survive in a

changing climate environment is an important protection issue. In this study, we selected

the most suitable species distribution model for bustards from four machine learning

models, combining two modelling approaches (TreeNet and Random Forest) with two sets

of variables (correlated variables removed or not), using common evaluation methods

(AUC, Kappa and TSS) and independent testing data. We found Random Forest with all

environmental variables outperformed in all assessment methods. Projected the best

model to the latest IPCC-CMIP5 climate scenarios (RCP 2.6, 4.5 and 8.5 in BCC-CSM1-1), we

found suitable wintering habitats in the current bustards distribution would increase during

the 21st century, and dramatically extend eastwards, lightly northwards and westwards,

with ongoing climate change. Northeast Plain and the south of North China and the North

of East China would become two major suitable wintering habitats of bustards. However,

some current suitable habitats will experience a reduction, such as in Middle and Lower

Yangtze. Although our results suggest the habitats quantity and quality would widen with

climate changing, greater efforts should be undertaken on human disturbance, such as

pollution, hunting, unsuitable agriculture development, infrastructure construction, habitat

fragmentation, oil and mine exploitation. All of which are negatively and intensely linked

with global change.
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ABSTARCT 1 

Rapidly changing climate makes humans realize that there is a critical need to rethink the 2 

current conservation and incorporate climate change adaptation into conservation planning. 3 

Whether Great Bustards9 (Otis tarda dybowskii), a globally endangered species whose 4 

population is approximately 1,500~2,200 individuals in China, would survive in a changing 5 

climate environment is an important protection issue. In this study, we selected the most 6 

suitable species distribution model for bustards from four machine learning models, 7 

combining two modelling approaches (TreeNet and Random Forest) with two sets of 8 

variables (correlated variables removed or not),  using common evaluation methods (AUC, 9 

Kappa and TSS) and independent testing data. We found Random Forest with all 10 

environmental variables outperformed in all assessment methods. Projected the best model to 11 

the latest IPCC-CMIP5 climate scenarios (RCP 2.6, 4.5 and 8.5 in BCC-CSM1-1), we found 12 

suitable wintering habitats in the current bustards distribution would increase during the 21st 13 

century, and dramatically extend eastwards, lightly northwards and westwards, with ongoing 14 

climate change. Northeast Plain and the south of North China and the North of East China 15 

would become two major suitable wintering habitats of bustards. However, some current 16 

suitable habitats will experience a reduction, such as in Middle and Lower Yangtze. Although 17 

our results suggest the habitats quantity and quality would widen with climate changing, 18 

greater efforts should be undertaken on human disturbance, such as pollution, hunting, 19 

unsuitable agriculture development, infrastructure construction, habitat fragmentation, oil and 20 

mine exploitation. All of which are negatively and intensely linked with global change. 21 

Keywords: Climate change, Species distribution models (SDMs), Great Bustards (Otis tarda 22 
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INTRODUCTION 1 

Climate is among the most dominant factors that affect species distributions across broad 2 

spatial scales (Woodward 1987, Pearson and Dawson 2003) and ecological niche models are 3 

able to successfully quantify these relationships (Drew et al. 2011). Long-term studies 4 

indicate that the anomalous climate of the last half-century is already affecting the physiology, 5 

distribution, and phenology of many species, especially for many of the already endangered 6 

species in ways that are consistent with theoretical predictions (Sykes and Prentice 1996, 7 

Hughes 2000). Increasing attention has been given to the ability to predict potential species 8 

distributions under various climate change scenarios (Dyer 1995, Iverson and Prasad 1998, 9 

Prasad et al., 2006, Wu et al., 2012). A major challenge in conservation planning for these 10 

species, in particular, is to incorporate climate change impacts into species conservation 11 

strategies (Araújo and Rahbek  2006, Strange et al., 2011). 12 

Species distribution represents an essential foundation in conservation biology (Araujo and 13 

Guisan 2006, Tanneberger et al., 2010, Drew et al., 2011). Understanding where species 14 

emerge temporally and spatially across large geographic areas is important to conserving, 15 

monitoring, and managing species effectively (Wu and Smeins 2000). For this purpose, 16 

species distribution models (SDMs), including process-based and bioclimatic envelope 17 

approaches, have been suggested as an effective tool to meet these needs (Guisan and 18 

Thuiller 2005, Elith et al., 2006, Hu and Jiang 2010). There has been rapid progress in this 19 

field of SDMs, and tools and workflows are now available to assess distributions and the 20 

impacts of climate change on species and habitats (Peterson et al., 2002, Hijmans and 21 

Graham 2006, Drew et al., 2011). Most of the traditionally used models are too complex for 22 
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parameterization, model fit, assessment of met assumptions, and validation in model 1 

application (Pearson and Dawson 2003, Li et al., 2015). Although the bioclimatic envelope 2 

models have various limitations (such as the assumption of equilibrium, the assumption of 3 

complete sampling of species niche, and insufficient inclusion of adaptation, evolution, and 4 

dispersal), they are still applied by many researchers (Huntley et al., 2010, Araújo and 5 

Peterson 2012). With a good understanding of the modelling techniques, careful choice of 6 

explanatory predictors, and appropriate model validation and testing, these SDMs can still 7 

provide important information on the potential impact of climate change on species range 8 

shifts, and help inform conservation decisions in a changing climate (Hijmans and Graham 9 

2006, Araújo and Peterson 2012). The use of machine learning specifically offers a great 10 

extension of traditional SDMs, see for instance Drew et al. (2011) and Kamel et al. (2015). 11 

The Great Bustard is one of the world9s heaviest flying birds, occupying grassland habitats; 12 

it is categorized as a globally threatened (VU) species according to the IUCN. Its world 13 

population for 2010 was estimated to be 44,100 to 57,000 individuals; approximately 4~10% 14 

of the global population is located in China and is believed to be declining (Alonso and 15 

Palacín 2010). The Great Bustard is divided into two subspecies: Otis tarda tarda and Otis 16 

tarda dybowskii. The O. t. dybowskii population is small and consists of approximately 17 

1,500~2,200 individuals (Goroshko 2010). This subspecies is distributed throughout eastern 18 

Asia in areas such as Russia, Mongolia, China, and South and North Korea (Kong and Li 19 

2005). In China, O. t. dybowskii makes for a typical agricultural steppe bird, distributed 20 

during winter in Heilongjiang, Jilin, Inner Mongolia, and Hebei (Jiang 2003, Wang and Yan 21 

2002).  22 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1263v1 | CC-BY 4.0 Open Access | rec: 26 Jul 2015, publ: 26 Jul 2015

P
re
P
ri
n
ts



6 

 

In the recent 10 years and more, we found it9s hard for humans to observe this subspecies 1 

in the middle and lower reaches of the Yangtze River (such as Poyang Lake and Dongting 2 

Lake) where they were known stay during winter in early times. We think there must be many 3 

reasons for this change, such as habitat loss, hunting and climate change etc. Here we 4 

investigate the wintering distribution of O. t. dybowskii and how they may be affected by 5 

climate change. We employed species distribution models based on machine learning 6 

(TreeNet and Random Forest). According to our knowledge, this is the first predictive, spatial 7 

model of wintering Great Bustards. It presents a step toward developing a national or 8 

Northeast Asia conservation effort to assess management uncertainties. More specifically, the 9 

goal of this study is to estimate the spatial impacts of climate change on the future wintering 10 

distribution of Great Bustards. The results of this study will provide information on what 11 

habitat changes may occur, and guide future sampling, surveying, and conservation efforts 12 

across China. We try to infer for the wider status of this bird during times of Global Change. 13 

MATERIALS AND METHODS 14 

Study area and data 15 

The species data we used in this study was from our own fieldwork investigations of 2012 16 

and 2013. Also we used previously published literature data and mapped it in ArcGIS10.1 17 

(see Supplement S1. Overall, we used 102 geo-referenced bird sighting locations for a time 18 

period 1990-2013 across China and used them as confirmed presence points to explore the 19 

relationships between the Great Bustard and bioclimatic variables for a climate envelope. To 20 

accommodate potential species dispersal under future climate change, we extended the study 21 

area to all of China (Figure 1).  22 
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Put Figure 1 here 1 

Nineteen bioclimatic variables at a 30s resolution were obtained from the Worldclim 2 

database (Hijmans et al., 2005, http://www.worldclim.org/) for current climate (1950–2000) 3 

and future climate scenarios for 2050 and 2070 (average for 2041-2060 and 2061–2080). The 4 

data applied here are the most recent IPCC-CMIP5 climate projections from Global 5 

Circulation Models (BCC-CSM1-1, develops by China) under three representative 6 

concentration pathways (RCP 2.6, 4.5 and 8.5). Other environmental variables that are 7 

considered to be important drivers of Great Bustards distributions were also used to build the 8 

bustards9 habitat distribution model, including topographical factors (altitude, slope, and 9 

aspect), water factors (distance to river, distance to lake, distance to coastline), inference 10 

factor (distance to road, distance to rail road, and distance to settlement), and land-cover. 11 

Aspect and slope layer were derived from altitude layer in ArcGIS10.1, which was obtained 12 

from Worldclim database; Road, rail road, river, lake and coastline and settlement map were 13 

obtained from Natural Earth database; Land cover map was from ESA database (detailed 14 

information is provided in Supplement S2)All spatial layers of these environmental variables 15 

were resampled to a resolution of 30s to correspond to that of bioclimatic variables. Because 16 

reliable future projections of these variables (land cover, distance to road, rail road, settlement, 17 

river, and lake) are not available, and because including static variables in SDMs alongside 18 

dynamic variables can improve model performance (Stanton et al., 2012), we kept these 19 

variables static in our projections. Therefore, our future scenarios are underestimates for these 20 

stressors and the situation overall. To address the argument of potentially overfitting of in the 21 

models, we first calculated correlations among 19 bioclimatic variables and other 10 22 
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environmental variables in ArcGIS. We removed a variable when correlation 1 

coefficient >|0.90| was obtained (see correlation matrix in Supplement S3 (Costa et al., 2010). 2 

A total of 11 bioclimate variables were removed, 4 bioclimatic variables and 10 3 

environmental variables were left. Consequently, we constructed two sets of bustard 4 

distribution models: one was based on the result of correlation test that kept the 4 bioclimatic 5 

variables and 10 environmental predictors were used to construct SDMs; the other approach 6 

was to use all of the 19 bioclimatic and 10 environmental variables for model construction. 7 

Species distribution modeling and testing 8 

Species distribution models combine information from point occurrence data and 9 

environmental variables to predict the geographical distribution of species and communities. 10 

Various statistical approaches have been employed in this type of modelling whereas 11 

simplistic linear methods have been shown to perform less optimal (Elith et al., 2006 and 12 

Fernandez-Delgado et al., 2014). Therefore, we chose TreeNet (hereafter TN, also called 13 

boosted regression trees (BRT), stochastic gradient boosting, Friedman 2002) and Random 14 

Forest (hereafter RF, Breiman 2001) as our species distribution models. TN and RF are 15 

stand-alone software products from Salford Systems Ltd (Salford Predictive Modeler (SPM)), 16 

and each performs one specific techniques. Boosting is based on the concept in machine 17 

learning that many weak learners allow for a superior learner. It employs an optimized set of 18 

trees in a sequence where each new tree explains the unexplained variance of the previous 19 

tree (Friedman 2002). Bagging is based on a similar concept, but it uses each time a specific 20 

subset of rows and predictors, and then averages out these trees for the best outcome 21 

(Breiman 2001 and Hegel et al., 2010 for overview). These two approaches have shown to be 22 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1263v1 | CC-BY 4.0 Open Access | rec: 26 Jul 2015, publ: 26 Jul 2015

P
re
P
ri
n
ts



9 

 

two of the best performing models in predicting ecological species distributions with 1 

presence-absence data (Zhai and Li 2003, Elith et al., 2006, Lei et al., 2011). It also has been 2 

extensively applied to project species range and vegetation shifts under climate change (Drew 3 

et al., 2011). For more details on TreeNet and Random Forest, we refer readers to read the 4 

userguide (https://www.salford-systems.com/products/spm/userguide). About 10,000 5 

pseudo-absence points were taken by random sampling across China by using the freely 6 

available Geospatial Modeling Environment (GME; Hawth9s Tools). We used 10 fold 7 

cross-validation procedure for TreeNet, where it divided our dataset using 80% of the data for 8 

model calibration and retaining 20% of the data for evaluation; and out of bag (OOB) data 9 

used to test Random Forest. In addition, balanced was set as class weights, and 1000 trees 10 

were built for all models to find the optimum. The test and background points were used to 11 

calculate receiver operating characteristic (ROC) curves, the Kappa Statistic (Kappa) and the 12 

True Skill Statistic (TSS) (Graham and Hijmans 2006). The area under the ROC curve (AUC) 13 

is commonly used to evaluate models in species distributional modelling (Manel et al., 2001, 14 

McPherson et al., 2004). A ROC curve is created by plotting the true-positive fraction against 15 

the false-positive fraction for all test points across all possible probability thresholds 16 

(Fielding & Bell, 1997); Kappa (Cohen 1960) is a measure of model performance, the 17 

advantages of kappa are its simplicity, the fact that both commission and omission errors are 18 

accounted for in one parameter, and its relative tolerance to zero values in the confusion 19 

matrix (Manel et al., 2001, Allouche et al., 2006); whereas the True Skill Statistic (TSS) was 20 

also used to evaluate the model performance. TSS is increasingly applied as a simple and 21 

intuitive measure for the performance of species distribution models that are built from 22 
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presence-only data and binary predictions are produced by applying thresholds (Allouche et 1 

al., 2006). The best suitable SDM for bustards was finally determined by comparing the AUC, 2 

Kappa and TSS of all models, and also boxplots with 95% confidence intervals of relative 3 

index of occurrence (RIO) for independent testing data (see Supplement S4 from literature 4 

(the Threaten Birds of Asia, Collar et al., 2001). Subsequently, we applied the 5 

sensitivity-specificity equality approach (Liu et al., 2005) as the most suitable threshold to 6 

define the presence–absence distribution of great bustards wintering habitats, after comparing 7 

three approaches (Kappa maximization approach (Liu et al., 2005), the sensitivity-specificity 8 

equality approach (Liu et al., 2005),  and lowest presence threshold approach (Pearson et al., 9 

2007, see Supplement S5). A GCM (BCC-CSM1-1, developed by China) was used to 10 

produce locally valid probability outputs for each scenario (RCP 2.6, 4.5 and 8.5). The 11 

overall work flow for great bustards9 best suitable model select and project to future climate 12 

scenarios is presented in Figure 2. 13 

Habitat suitability and classification 14 

We adopted the thresholds of 0.5, 0.7 and 0.85 (0.85 created by sensitivity-specificity 15 

equality approach, see Supplement S5) to identify the distributions of four different classes of 16 

habitat suitability for great bustards9 final model. Our selection of thresholds was based on 17 

our knowledge for great bustards9 true current distribution across China. Finally, we 18 

reclassified bustards9 habitats into unsuitable, marginally suitable, moderately suitable and 19 

highly suitable. 20 

Spatial analysis of potential effects of climate change 21 

We applied ArcGIS 10.1 to calculate the area of different classes of great bustards habitats for 22 
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three periods of time (current, 2050 and 2070) in three scenarios (RCP 2.6, 4.5 and 8.5). We 1 

also used the tabulate area analysis (in ArcGIS 10.1) to assess the distribution patterns and 2 

potential changes of different classes of the Great Bustard habitats. This allowed us to 3 

identify areas of the habitat range that are projected to be lost, gained or remain under future 4 

climate scenarios. While these projections do not take into account stochastic and other 5 

effects yet, they allow to access business as usual scenarios using best-available science. In 6 

addition, we can locate the directionality of these habitat changes and where they move, e.g. 7 

east, south, west and north to obtain the birds9 distribution shift trends. 8 

Put Figure 2 here 9 

RESULTS 10 

The high AUC values (>0.91) for all four models of great bustards (Table 1) indicated that 11 

our models can accurately capture bustards relationships, and values above 0.75 generally 12 

indicate adequate model performance for most applications (Pearce and Ferrier 2000). AUCs 13 

of Random Forest model were higher than TreeNet, and SDMs with 29 variables were higher 14 

than more parsimonious models with 14 variables. Values of what consist of acceptable 15 

max-Kappa vary in the literature, but generally 0.6 and above are considered8good9 16 

(Czaplewski and Forest 1994, Fielding and Bell, 1997). Therefore, TreeNet models did not 17 

perform suitable enough in this study for bustards. The high TSS (>0.82) for this subspecies 18 

also indicated that our model performs well in projecting bustards habitat distributions. TSS 19 

had the same trends as AUC and Kappa, Random Forest performed better than TreeNet, more 20 

predictors (29) models were better than relative few predictors (14) model (14 predictors are 21 

still a high number of predictors in model studies). Boxplots created by the independent 22 
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testing data from literature (the Threaten Birds of Asia) (Figure 3) indicated same results than 1 

above, Random Forest showed a higher relative index of occurrence (hereafter RIO) than 2 

TreeNet, and a stronger focus on a narrow range of values (>0.9), 29 variables models 3 

performed a little better than the 14 variables model. According to the above four consistent 4 

results, we selected Random Forest model with 29 predictors as our final SDM and projected 5 

to future climate. 6 

Put Table 1 here 7 

Put Figure 3 here 8 

Our results indicated that climate change would enlarge the suitable area of great bustards 9 

wintering habitats (Figure 4 and Table 2). Under the IPCC CMIP5 representative 10 

concentration pathway (RCP) 8.5 climate change scenario, the total habitat area for great 11 

bustards would improve from the current 0.92 million km2 to 2.07 million km2 by 2050, an 12 

improvement of 124.06%; to 2.47 million km2 by 2070, an improvement of 19.10% from 13 

2050. Under RCP4.5, a median radiative forcing, climate change would result in a habitat 14 

increase of 81.33% by 2050, 11.96% again by 2070 from 2050. And under RCP 2.6, the 15 

lowest radiative forcing, the habitat area would still increase by 71.44% by 2050 and by 1.26% 16 

to 2070 (Table 2). 17 

Put Figure 4 here 18 

In addition to an increase in the predicted area of suitable habitat, climate change would 19 

also enhance habitat quality. The moderately suitable habitats are likely to be affected the 20 

most by climate change. Under RCP 2.6, moderately suitable habitats would increase from 21 

the current 0.27 million km2 to 0.56 million km2 by 2050, and to 0.58 million km2 by 2070 22 
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(Table 2). Marginally suitable and highly suitable habitats would also increase in proportion 1 

obviously, although it wouldn9t increase so much as moderately suitable habitats. In contrast, 2 

the unsuitable area would lightly decrease in proportion but dramatically in area (Table 2). 3 

RCP 8.5 and RCP 4.5 would produce even more positive impacts on great bustards9 habitats 4 

than RCP 2.6 (Table 2). Detailed information of different classes of suitable habitats 5 

transformed between the current and three RCPs by 2050 and 2070 could see in Table 3. 6 

Under all three RCPs, over 45% marginally suitable habitats would become moderately 7 

suitable, 16% become highly suitable area, and 45% original moderately suitable habitats 8 

transform to highly suitable range from current to 2050. From 2050 to 2070, 16% marginally 9 

suitable habitats would change to moderately suitable habitats, highly suitable area gained 10 

above 7% from moderately suitable land. In addition, according to the information of Figure 11 

4, under RCP 2.6, the highly suitable habitats in Northeast Plain would increase and the 12 

quality would enhance. This makes it an important and large habitat for wintering bustards 13 

such as the habitats in the south of North China and the northern part of East China 14 

(including areas south of Hebei, Henan, west of Shandong, north of Anhui and west of 15 

Jiangsu Province) and the Hetao Plain (the central part of Inner Mongolia). However, the 16 

habitat in the Middle and Lower Yangtze (bustards major distribution areas in Poyang and 17 

Donting Lakes) would suffer the most severe fragmentation under future climate changes 18 

(Figure 4). RCP 4.5 and RCP 8.5 shows similar impacts on great bustards9 habitats with RCP 19 

2.6. 20 

Put Table 2 here 21 

Put Table 3 here 22 
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Moreover, climate change would lead to both horizontal and vertical changes in Bustards 1 

habitat distribution, with the three RCPs producing similar trends of impact (Figure 4 and 2 

Table 4). More specifically, in the Northeast Plain, projected habitat area gains to the east, 3 

particularly in the east of Heilongjiang Province, the boundary between China and Russia 4 

(Figure 4). In the western part, it would produce a westward shift of marginally suitable 5 

habitats raised in Xinjiang Province where possibly the distribution range is located for Otis 6 

tarda tarda living in China (Figure 4). Table 4 illustrated that the highly suitable habitats of 7 

Great bustards would dramatically shift eastward (nearly by 7°) in all three RCPs, lightly 8 

moving northward (32-2 °) and westward (192- 1° 282). It should be noted that the habitats of 9 

North Plain, and the habitat in south of North China and Northwest of East China would 10 

become two major wintering distribution range of Great Bustards.  11 

Put Table 4 here 12 

DISCUSSION 13 

Effective conservation of great bustards requires protection and restoration of their suitable 14 

habitats. Our model is the first to predict and map, with high accuracy (AUC: 0.982, Kappa: 15 

0.704, TSS: 0.94), the wintering distribution of O. t. dybowskii in China. Our results indicated 16 

that these suitable wintering habitats in the current bustard distribution would increase during 17 

the 21st century (Table 2 and 3), and dramatically extend eastwards, lightly northwards and 18 

westwards, with ongoing climate change (Figure 4 and Table 4). However, some current 19 

suitable habitats will experience a reduction, such as in Middle and Lower Yangtze, where 20 

birds9 observers haven9t seen great bustards in recent ten years.  Such a finding is very 21 

relevant for the improved understanding and for prioritizing conservation efforts. 22 
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Furthermore, these results can also be used in the future for impact studies similar to Nielsen 1 

et al., (2008) following spatial Population Viability Analysis (sPVA). 2 

Though the suitable habitats of bustards were projected to increase, this does by no means 3 

mean that it will have the same trend in population size. That9s because the population size of 4 

the birds is correlated with other factors in addition to climate, particularly one should 5 

consider human disturbance (including pollution, hunting, unsuitable agriculture development, 6 

infrastructure construction, habitat loss, habitat fragmentation, oil and mine exploitation for 7 

instance). 8 

According to our modelling, the Northeast Plain would become one of the major wintering 9 

distribution areas for this species. Originally, there actually were several male individuals 10 

overwintering in the Northeast Plain (Liu 1997). Here we speculated that more bustards, both 11 

male and female individuals, may remain there. Based on this result, we inferred this habitat 12 

will become a residential area or that bustards will have a shorter distance for migration than 13 

in earlier times. This situation has already been observed in the Red-crowned Crane 14 

(Masatomi et al., 2007) and the Oriental White Stork (Yang et al., 2007). 15 

The suitable wintering habitats of bustards in Northeast Plain are located southeast of the 16 

Greater Khingan, southwest of the Lesser Khingan Mountains as well as northwest of the 17 

Changbai Mountains. It is possible that these mountains might become a natural barrier to the 18 

habitat expansion of this subspecies. These areas are used for agriculture and susceptible to 19 

urban expansion, thus the question of how to leave enough space and how to protect and 20 

maintain this species under such a situation should be taken into serious consideration before 21 

new policies and conservation plans are made. 22 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1263v1 | CC-BY 4.0 Open Access | rec: 26 Jul 2015, publ: 26 Jul 2015

P
re
P
ri
n
ts



16 

 

To our knowledge, ecological applications of TreeNet (also named BRT, ) or Random 1 

Forest prediction models for birds are still not widespread (but see Booms et al., 2010, Drew 2 

et al., 2011, Hardy et al., 2011, Steen and Powell 2012). Increasingly though researchers have 3 

used MaxEnt (Hu et al., 2010, Shao et al., 2011, Wu et al., 2012), and remain using 4 

Generalized Additive Models (GAMs) (Li et al., 2010), Generalized Linear Models (GLMs) 5 

(de Boer et al., 2011, Zhang et al., 2011) and Discriminant Function Analysis (DFA) (Wang et 6 

al., 2011, Xia et al., 2012). However, there are several advantages of TreeNet and Random 7 

Forest of Salford9s SPM software (Herrick 2013), when compared with other techniques that 8 

are often used for building habitat models such as GLM or DFA: (i) it is non-parametric, (ii) 9 

the GUI is very user friendly but powerful, (iii) it automatically selects the important 10 

predictor variables thus no prior variable selection or data reduction is required, (iv) the 11 

results are quite invariant with regard to modifications of the data such as transformation or 12 

rescaling,(v) it approaches missing values automatically and in a good possible way, (vi) it is 13 

quite immune to outliers in predictors or the target variable, i.e., if samples are coded 14 

incorrectly and the model prediction starts to diverge substantially from observed data, the 15 

data will not be used in further updates. TreeNet and Random Forest construct models 16 

conveniently and without the time consuming pre-processing of the data. Furthermore, they 17 

are remarkably resistant to overfitting (Wickert 2007, Breiman 2001). 18 

Despite the statistical superiority of Random Forest (Fernandez-Delgado et al., 2014), care 19 

is needed in deciding whether to use climatic variables for prediction models because they 20 

may emphasize the fundamental rather than the realized niche. However, habitat and climate 21 

models can provide new insights into factors limiting species distributions and how they may 22 
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respond to climate change (Suárez‐Seoane et al., 2004). Our results show that model 1 

construction does not have to remove correlation variables first; it means to loose information 2 

to obtain better predictions! In the process of model building, we found models with 3 

correlation variables (29 predictors9 models) could be more accurate than model without 4 

correlate variables (Table 1 and Figure 3), which stands clearly against the notion of 5 

parsimony (Burnham and Anderson 2002).  6 

In summary, there is a critical need to rethink the current approach to parsimony and 7 

conservation, and to incorporate climate change adaptation into our conservation planning 8 

with a rapidly changing climate. Based on concrete data and a robust modelling approach, our 9 

model would be useful to managers currently addressing conservation issues in China. For 10 

example, the model could be more combined with existing regionalized IPCC climate models 11 

to forecast future O. t. dybowskii population size and changes under varying climate scenarios. 12 

In addition, distribution maps, created in-time, could overlay maps of the current and 13 

predicted locations of oil, gas, mineral, and wind resources to identify areas of potential 14 

future conflict, estimate the potential size or severity of impacts caused by a specific activity, 15 

and prioritize conservation strategies geographically (such as Marxan applications etc.; 16 

Beiring 2014 for parts of Asia). 17 
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Figure Legend: 1 

 2 

Figure 1 The study area of great bustards. 102 presence records of bustards are shown; the 3 

elevation of this study area ranges from 0 to 8,233 m. 4 

 5 

 6 

 7 
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 1 

Figure 2 The work flow for great bustards best suitable model select and project to future 2 

climate scenarios. 3 
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 1 

Figure 3 Boxplots of independent testing data from literature (the Threaten Birds of Asia) 2 

extracted from four great bustards distribution models 3 
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 1 

Figure 4 Projected wintering distributions of Great Bustards extracted from the Random 2 

Forest with 29 predictors model for the current, 2050 and 2070 in China: (a) current 3 

suitability; (b)–(d) suitability in 2050, (e)-(g) suitability in 2070 projected by GCM 4 

(BCC-CSM1-1, BC) for the three RCPs(2.6, 4.5, 8.5). 5 
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Table Legend 1 

Table 1 The AUC, Kappa and TSS value of four great bustards9 distribution models 2 

 TreeNet 14 TreeNet 29 Random Forest 14 Random Forest 29 

AUC 0.914 0.923 0.961 0.982 

Kappa 0.386 0.386 0.656 0.704 

TSS 0.828 0.846 0.922 0.965 

 3 

 4 

 5 

 6 
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 8 
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 10 
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Table 2 the patch area (km2) of great bustards9 habitats in different suitability classes and the 1 

entire habitat landscape under the current and three RCPs by 2050 and 2070 (total suitable 2 

was the sum of marginally suitable, moderately suitable and highly suitable. The percentage 3 

(%) of habitat changed was obtained from comparing three scenarios of 2050 with current 4 

situation, and scenarios of 2070 comparing with related scenarios of 2050).  5 

Time 

Period 

Unsuitable 

(km2)(%) 

Marginally 

suitable 

(km2) (%) 

Moderately 

suitable 

(km2) (%) 

Highly 

suitable 

(km2) (%) 

Total suitable 

(km2) (%) 

Current 8,671,912 362,778 274,669 290,641 928,088 

2050 

RCP2.6 

8,008,852 

(-7.65) 

584,976 

(+61.25) 

565,263 

(+105.80) 

440,910 

(+51.70) 

1,591,149 

(+71.44)  

2050 

RCP4.5 

7,917,098 

(-8.70) 

646,672 

(+78.26) 

620,788 

(+126.01) 

415,441 

(+42.94) 

1,682,901 

(+81.33)  

2050 

RCP8.5 

7,520,554 

(-13.28) 

917,185 

(152.82) 

689,439 

(+151.01) 

472,822 

(+62.68) 

2,079,446 

(+124.06)  

2070 

RCP2.6 

7,988,755 

(-0.25) 

586,750 

(+0.30) 

585,887 

(+3.65) 

438,608 

(-0.52) 

1,611,245 

(+1.26)  

2070 

RCP4.5 

7,715,845 

(-2.54) 

808,308 

(+25.00) 

670,526 

(+8.01) 

405,321 

(-2.44)  

1,884,155 

(+11.96)  

2070 

RCP8.5 

7,123,483 

(-5.28) 

1,255,645 

(+36.90) 

821,434 

(+19.15) 

399,438 

(-15.52)  

2,476,517 

(+19.10)  
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Table 3 The patch area (km2) of great bustards9 habitats in different suitability classes transformed between the current and three RCPs by 2050 
and 2070 

xxxx means the area of lower suitable habitats transformed into higher suitable habitats, xxxx means the area of original class of suitable 

habitats remained (the percentage (%) of habitats transformed was obtained from comparing three scenarios of 2050 with current situation, and 

scenarios of 2070 comparing with related scenarios of 2050).  
    2050 RCP2.6 

Current 

Unsuitable 

(km
2
)(%) 

Marginally suitable 

(km
2
) (%) 

Moderately suitable 

(km
2
) (%) 

Highly suitable 

(km
2
) (%) 

Unsuitable 7,941,160 (91.57) 481,759 (13.18) 229,776 (2.65) 19,153 (0.22) 

Marginally suitable 47,803 (13.18) 76,501 (21.09) 175,929 (48.49) 62,544 (17.24) 

Moderately suitable 13,749 (5.01) 17,746 (6.46) 112,474 (40.92) 130,764 (47.61) 

Highly suitable 6,139 (2.11) 8,969 (3.09) 47,084 (16.2) 228,449 (78.6) 

 

 

     2070 RCP2.6 

2050 RCP2.6 

Unsuitable 

(km2) (%) 

Marginally suitable 

(km2) (%) 

Moderately suitable 

(km2) (%) 

Highly suitable 

(km2) (%) 

Unsuitable 7,782,226 (97.16) 196,058 (2.45) 28,458 (0.36) 2,110 (0.03) 

Marginally suitable 195,946 (33.50) 284,902 (48.70) 99,124 (16.94) 5,004 (0.86) 

Moderately suitable 10,408 (1.84) 103,217 (18.26) 372,530 (65.91) 79,107 (13.99) 

Highly suitable 176 (0.04) 2,574 (0.58) 85,774 (19.45) 352,386 (79.93) 

     2050 RCP4.5 

Current 

Unsuitable 

( km
2
) (%) 

Marginally suitable 

( km
2
) (%) 

Moderately suitable 

( km
2
) (%) 

Highly suitable 

( km
2
) (%) 

Unsuitable 7,857,688 (90.62) 525,069 (6.05) 265,413 (3.06) 23,678 (0.27) 

Marginally suitable 48,427 (13.35) 85,438 (23.55) 163,123 (44.96) 65,790 (18.14) 

Moderately suitable 9,625 (3.5) 27,723 (10.09) 113,225 (41.21) 124,161 (45.20) 

Highly suitable 1,359 (0.47) 8,442 (2.90) 79,027 (27.19) 201,813 (69.44) 

      2070 RCP4.5 

2050 RCP4.5 

Unsuitable 

( km
2
) (%) 

Marginally suitable 

( km
2
) (%) 

Moderately suitable 

(km2) (%) 

Highly suitable 

( km
2
) (%) 

Unsuitable 7,631,893 (96.40) 279,050 (3.52) 6,155 (0.08) 0 (0.00) 

Marginally suitable 78,452 (12.13) 462,174 (71.48) 105,951 (16.38) 96 (0.01) 

Moderately suitable 5,452 (0.88) 63,295 (10.2) 501,935 (80.85) 50,106 (8.07) 

Highly suitable 48 (0.01) 3,789 (0.91) 56,485 (13.60) 355,120 (85.48) 

     2050 RCP8.5 

Current 

Unsuitable 

( km
2
) (%) 

Marginally suitable 

( km
2
) (%) 

Moderately suitable 

( km
2
) (%) 

Highly suitable 

( km
2
) (%) 

Unsuitable 7,488,099 (86.35) 824,696 (9.51) 328,948 (3.79) 30,105 (0.35) 

Marginally suitable 126,172 (7.21) 75,318(20.76) 195,642 (53.93) 65,646 (18.10) 

Moderately suitable 5,564 (2.03) 14,645 (5.33) 126,735 (46.13) 127,790 (46.51) 

Highly suitable 719 (0.25) 2,526 (0.87) 38,115 (13.11) 249,281 (85.77) 

      2070 RCP8.5 

2050 RCP8.5 

Unsuitable 

( km
2
) (%) 

Marginally suitable 

( km
2
) (%) 

Moderately suitable 

( km
2
) (%) 

Highly suitable 

( km
2
) (%) 

Unsuitable 7,015,358 (93.28) 493,861 (6.57) 11,335 (0.15) 0 (0.00) 

Marginally suitable 99,716 (10.87) 668,751 (72.92) 148,606 (16.20) 112 (0.01) 

Moderately suitable 7,290 (1.06) 89,419 (12.82) 551,177 (78.85) 41,552 (7.27) 

Highly suitable 1,119 (0.24) 3,613(0.76) 110,315 (23.5) 357,774 (75.50) 
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Table 4 The distribution range of highly suitable habitats shift under the current and three 1 

RCPs by 2050 and 2070   2 

 East South West North 

Current 126°16219.23 28°20238.43 104°15254.03 47°38242.03 

2050 RCP2.6 133°05227.63 28°26245.63 103°56252.83 47°48206.03 

2050 RCP4.5 133°09250.43 28°25258.83 103°05231.23 47°52240.83 

2050 RCP8.5 133°07240.83 28°23249.23 102°47213.23 47°56242.03 

2070 RCP2.6 133°06214.43 28°26213.23 103°14224.03 47°52201.23 

2070 RCP4.5 133°11234.83 28°36203.63 103°03254.03 47°59206.03 

2070 RCP8.5 133°04237.23 28°26213.23 102°48228.83 49°34226.43 

 3 

 4 
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