
Comments on “Researcher Bias: The Use
of Machine Learning in Software Defect
Prediction”
Chakkrit Tantithamthavorn1, Shane McIntosh2, Ahmed E. Hassan3, and
Kenichi Matsumoto4

1Nara Institute of Science and Technology, Japan.
2McGill University, Canada
3Queen’s University, Canada
4Nara Institute of Science and Technology, Japan.

ABSTRACT

Shepperd et al. (2014) find that the reported performance of a defect prediction model shares a strong
relationship with the group of researchers who construct the models. In this paper, we perform an
alternative investigation of Shepperd et al. (2014)’s data. We observe that (a) researcher group shares
a strong association with the dataset and metric families that are used to build a model; (b) the strong
association among the explanatory variables introduces a large amount of interference when interpreting
the impact of the researcher group on model performance; and (c) after mitigating the interference, we
find that the researcher group has a smaller impact than the metric family. These observations lead us to
conclude that the relationship between the researcher group and the performance of a defect prediction
model may have more to do with the tendency of researchers to reuse experimental components (e.g.,
datasets and metrics). We recommend that researchers experiment with a broader selection of datasets
and metrics to combat potential bias in their results.
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1 INTRODUCTION
Shepperd et al. (2014) study the extent to which the researcher group that performs a defect prediction
study associates with the reported performance of defect prediction models. Through a meta-analysis of
42 primary studies, they find that the reported performance of a defect prediction model shares a strong
relationship with the group of researchers who construct the models.

In this paper, we perform an alternative investigation of Shepperd et al.’s data. More specifically, we set
out to investigate (1) the strength of the association among the explanatory variables, e.g., research group
and metric family (Section 2); (2) the interference that these associations introduce when interpreting
the impact that the explanatory variables have on the outcome (Section 3); and (3) the impact that the
explanatory variables have on the outcome after we mitigate the interference introduced by strongly
associated explanatory variables (Section 4).

2 THE PRESENCE OF COLLINEARITY
We suspect that researcher groups are likely to reuse experimental components (e.g., datasets, metrics, and
classifiers) in several studies. This tendency to reuse experimental components would introduce a strong
association among the explanatory variables of Shepperd et al. (2014). To investigate our suspicion, we set
out to measure the strength of the association between each pair of the explanatory variables that are used
by Shepperd et al. (2014), i.e., ResearcherGroup, DatasetFamily, MetricFamily, and ClassifierFamily.
Approach. Since the explanatory variables are categorical, we first use a Pearson χ2 test (Agresti,
1996) to check whether a statistically significant association exists between each pair of explanatory
variables (α = 0.05). Then, we compute Cramer’s V (Cramér, 1999) to quantify the strength of the
association between each pair of two categorical variables. The value of Cramer’s V ranges between
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Table 1. The association among explanatory variables.

Pair Cramer’s V Magnitude
ResearcherGroup & MetricFamily 0.65∗∗∗ Strong
ResearcherGroup & DatasetFamily 0.56∗∗∗ Relatively strong
MetricFamily & DatasetFamily 0.55∗∗∗ Relatively strong
ResearcherGroup & ClassifierFamily 0.54∗∗∗ Relatively strong
DatasetFamily & ClassifierFamily 0.34∗∗∗ Moderate
MetricFamily & ClassifierFamily 0.21∗∗∗ Moderate
Statistical significance of the Pearson χ2 test:
◦p ≥ .05; * p < .05; ** p < .01; *** p < .001

0 (no association) and 1 (strongest association). We use the convention of Rea and Parker (2014) for
describing the magnitude of an association. To compute the Pearson’s χ2 and Cramer’s V values, we use
the implementation provided by the assocstats function of the vcd R package (Meyer et al., 2015).
Results. Researcher group shares a strong association with the dataset and metrics that are used.
Table 1 shows the Cramer’s V values and the p-value of the Pearson χ2 test for each pair of explanatory
variables. The Cramer’s V values indicate that researcher group shares a strong association with the dataset
and metrics that are used. Indeed, we find that 13 of the 23 researcher groups (57%) only experiment
with one dataset family, where 9 of them only use one NASA dataset, which contains only one family
of software metrics (i.e., static metrics). Moreover, 39% of researcher groups only use the static metric
family of the NASA dataset in several studies. The strong association among researcher groups, dataset,
and metrics confirms our suspicion that researchers often reuse experimental components.

3 THE INTERFERENCE OF COLLINEARITY
The strong association among explanatory variables that we observe in Section 2 may introduce interfer-
ence when one studies the impact that these explanatory variables have on the outcome (Grewal et al.,
2004; Tu et al., 2005). Furthermore, this interference among variables may cause impact analyses, such as
ANOVA, to report spurious relationships that are dependent on the ordering of variables in the model
formula. Indeed, ANOVA is a hierarchical model that first attributes as much variance as it can to the first
variable before attributing residual variance to the second variable (R. Clifford, 1978). If two variables
share a strong association, the variable that appear first in the model formula will have the brunt of the
variance associated with it. Hence, we set out to investigate the interference that is introduced by the
strong association among explanatory variables.
Approach. To investigate this interference, we use a bootstrap analysis approach, which leverages
aspects of statistical inference (Efron and Tibshirani, 1993). We first draw a bootstrap sample of size
N that is randomly drawn with replacement from an original dataset that is also of size N. We train
a linear regression model with the data of the bootstrap sample using the implementation provided by
the lm function of the stats R package (R Core Team, 2013). For each bootstrap sample, we train
models with all of the 24 possible ordering of the explanatory variables (e.g., ANOVA(ResearcherGroup,
DatasetFamily, MetricFamily, ClassifierFamily) versus ANOVA(DatasetFamily, ResearcherGroup, Met-
ricFamily, ClassifierFamily)). Following the prior study (Shepperd et al., 2014), we compute the partial
η2 values (Richardson, 2011), which describe the proportion of the total variability that is attributed to
an explanatory variable for each of the 24 models. We use the implementation provided by the etasq
function of the heplots R package (Friendly, 2015). We repeat the experiment 1,000 times for each of
the 24 models to produce a distribution of the partial η2 values for each explanatory variable.
Results. The strong association among the explanatory variables introduces a large amount of
interference when interpreting the impact that researcher group has on model performance. Figure
1 shows the distributions of the partial η2 values for each explanatory variable when it appears at each
position in the model formula. The results show that researcher group and dataset family tend to have the
largest impact when they appear in earlier positions in the model formula, indicating that the impact that
explanatory variables have on the outcome depends on the ordering of variables in the model formula.
Moreover, we observe that researcher group and dataset family tend to have comparable partial η2 values,
indicating that the strong association introduces a large amount of interference. In particular, a model
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Figure 1. Distribution of the partial η2 values for each explanatory variable when it appears at each
position in the model formula.

with DatasetFamily in the first position and ResearcherGroup in the second position in the model formula
would lead us to believe that DatasetFamily plays a bigger role than the ResearcherGroup. However, once
we flip the positions of DatasetFamily and ResearcherGroup, we would reach a different conclusion —
ResearcherGroup plays a bigger role in the model. On the other hand, the moderate association between
the metric and classifier families introduces much less interference.

4 MITIGATING THE COLLINEARITY
The prior sections show that the strong association among the explanatory variables (Section 2) introduces
a large amount of interference when we interpret the impact that the explanatory variables have on the
outcome (Section 3). In this section, we set out to investigate the impact that the explanatory variables
have on the reported performance after mitigating the interference introduced by strongly associated
explanatory variables. Our earlier analysis indicates that we cannot have all three explanatory variables in
the same model. Instead, we should only include two of these three variables in our models. Hence, we
opt to focus on one studied dataset in order to control the dataset family metric by holding it constant.
Approach. To mitigate the interference, we first select the Eclipse dataset family, which is the second-
most popular dataset family in the studied dataset. We choose the Eclipse dataset family instead of
selecting the NASA dataset family because Section 2 reveals that 39% of the researcher groups only
use the static metric family of the NASA dataset in several studies. Overall, the Eclipse dataset family
contains 6 metrics families, which are used by 7 researcher groups who fit defect prediction model using
6 classifier families. While controlling the dataset family metric, only researcher group, metric family,
and classifier family will be included in the model formulas. Since the dataset family metric is now a
constant, it is excluded from our model formula.

Since Table 1 shows that researcher group shares a strong association with the metric family, we build
two different linear regression models by removing one of the two strongly associated variables, i.e., one
model uses the researcher group and classifier family variables, while another model uses the metric
family and classifier family variables.

To confirm the absence of the collinearity in the models, we perform a redundancy analysis (Harrell Jr.,
2002) in order to detect redundant variables prior to constructing the models. We use the implementation
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Table 2. Partial η2 values of the ANOVA analysis with respect to the Eclipse dataset family.

ResearcherGroup Model MetricFamily Model
Adjusted R2 0.20 0.28

AIC -80 -95
Partial η2 Partial η2

Researcher Group 0.124 (medium) †
Metric Family † 0.201 (large)

Classifier Family 0.120 (medium) 0.096 (medium)
†Strong association variables

provided by the redun function in the rms R package (Harrell Jr., 2015).
To assess the fit of our models, we compute the adjusted R2 and the Akaike Information Criterion

(AIC) (Akaike, 1974). The adjusted R2 measures the amount of variability, while AIC measures the
goodness-of-fit based on information entropy. In general, higher adjusted R2 and lower AIC values
correspond to a better fit of the model to the underlying data.

Finally, we perform an ANOVA analysis and compute the partial η2 values. As suggested by
Richardson (2011) and Mittas and Angelis (2013), we use the convention of Cohen (1988) for describing
the effect size of the partial η2 values — values below 0.01, 0.06, and 0.14 describe small, medium, and
large effect sizes, respectively.
Results. When we mitigate the interference of strongly associated explanatory variables, we find
that the researcher group has a smaller impact than the metric family with respect to the Eclipse
dataset family. Table 2 shows partial η2 values of the ANOVA analysis with respect to the Eclipse
dataset family. The results show that the MetricFamily model, which achieves a higher adjusted R2

and a lower AIC, tends to represent the underlying data better than the ResearcherGroup model. The
redundancy analysis also confirms that there are no redundant variables in the MetricFamily model. The
ANOVA analysis of the MetricFamily model shows that the choice of metrics that are used to build defect
prediction models tends to have a large impact on the reported performance with respect to the Eclipse
dataset family. Moreover, since the interference has been mitigated, the ANOVA results still hold when
the explanatory variables are reordered.

5 CONCLUSIONS
The prior work of Shepperd et al. (2014) suggests that the reported performance of a defect prediction
model shares a strong relationship with the researcher group who conducted the study. In this paper, we
investigate (1) the strength of the association among the explanatory variables of Shepperd et al. (2014)’s
study; (2) the interference that these associations introduce when interpreting the impact of the explanatory
variables on the outcome; and (3) the impact that the explanatory variables have on the outcome after we
mitigate the interference introduced by strongly associated explanatory variables. We make the following
observations:

• Researcher group shares a strong association with the dataset and metrics families that are used in
building models, suggesting that researchers should experiment with a broader selection of datasets
and metrics.

• The strong association among explanatory variables introduces a large amount of interference when
interpreting the impact that researcher group has on the reported model performance, suggesting
that researchers should carefully mitigate collinearity issues prior to analysis.

• After mitigating the interference, we find that the researcher group has a smaller impact than metric
family with respect to the Eclipse dataset family, suggesting that researchers should carefully
examine the choice of metrics when building defect prediction models.
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These observations lead us to conclude that the relationship between researcher groups and the
performance of a defect prediction model may have more to do with the tendency of researchers to reuse
experimental components (e.g., datasets and metrics).

ACKNOWLEDGMENTS
We greatly appreciate that Shepperd et al. (2014) have share both their dataset and experimental scripts
online, which provided us with the means to conduct this study. In the same spirit, we also provide access
to our experimental scripts.1

REFERENCES
Agresti, A. (1996). An introduction to categorical data analysis, volume 135. Wiley New York.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic

Control, 19(6):716–723.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Academic press.
Cramér, H. (1999). Mathematical methods of statistics, volume 9. Princeton university press.
Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Springer US, Boston, MA.
Friendly, M. (2015). heplots: Visualizing hypothesis tests in multivariate linear models. http://CRAN.
R-project.org/package=heplots.

Grewal, R., Cote, J. a., and Baumgartner, H. (2004). Multicollinearity and Measurement Error in Structural
Equation Models: Implications for Theory Testing. Marketing Science, 23(4):519–529.

Harrell Jr., F. E. (2002). Regression Modeling Strategies. Springer, 1st edition.
Harrell Jr., F. E. (2015). rms: Regression modeling strategies. http://CRAN.R-project.org/
package=rms.

Meyer, D., Zeileis, A., Hornik, K., Gerber, F., and Friendly, M. (2015). vcd: Visualizing categorical data.
http://CRAN.R-project.org/package=vcd.

Mittas, N. and Angelis, L. (2013). Ranking and Clustering Software Cost Estimation Models through a
Multiple Comparisons Algorithm. IEEE Transactions on Software Engineering, 39(4):537–551.

R. Clifford, B. (1978). Tests of Hypotheses for Unbalanced Factorial Designs Under Various Regres-
sion/Coding Method Combinations. Educational and Psychological Measurement, (38):621–631.

R Core Team (2013). R: A language and environment for statistical computing. http://www.
R-project.org/.

Rea, L. M. and Parker, R. A. (2014). Designing and conducting survey research: A comprehensive guide.
John Wiley & Sons.

Richardson, J. T. E. (2011). Eta squared and partial eta squared as measures of effect size in educational
research. Educational Research Review, 6(2):135–147.

Shepperd, M., Bowes, D., and Hall, T. (2014). Researcher Bias : The Use of Machine Learning in
Software Defect Prediction. IEEE Transactions on Software Engineering, 40(6):603–616.

Tu, Y.-K., Kellett, M., Clerehugh, V., and Gilthorpe, M. S. (2005). Problems of correlations between
explanatory variables in multiple regression analyses in the dental literature. British dental journal,
199(7):457–461.

1http://sailhome.cs.queensu.ca/replication/researcher_bias_comments/

5/5

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1260v1 | CC-BY 4.0 Open Access | rec: 22 Jul 2015, publ: 22 Jul 2015

P
re
P
rin

ts

http://CRAN.R-project.org/package=heplots
http://CRAN.R-project.org/package=heplots
http://CRAN.R-project.org/package=rms
http://CRAN.R-project.org/package=rms
http://CRAN.R-project.org/package=vcd
http://www.R-project.org/
http://www.R-project.org/
http://sailhome.cs.queensu.ca/replication/researcher_bias_comments/

	Introduction
	The Presence of Collinearity
	The Interference of Collinearity
	Mitigating the Collinearity
	Conclusions
	References

