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Shepperd et al. find that the reported performance of a defect prediction model shares a

strong relationship with the group of researchers who construct the models. In this paper,

we perform an alternative investigation of Shepperd et al.’s data. We observe that (a)

research group shares a strong association with other explanatory variables (i.e., the

dataset and metric families that are used to build a model); (b) the strong association

among these explanatory variables makes it difficult to discern the impact of the research

group on model performance; and (c) after mitigating the impact of this strong association,

we find that the research group has a smaller impact than the metric family. These

observations lead us to conclude that the relationship between the researcher group and

the performance of a defect prediction model are more likely due to the tendency of

researchers to reuse experimental components (e.g., datasets and metrics). We

recommend that researchers experiment with a broader selection of datasets and metrics

to combat any potential bias in their results.
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Abstract—Shepperd et al. find that the reported performance
of a defect prediction model shares a strong relationship with the
group of researchers who construct the models. In this paper, we
perform an alternative investigation of Shepperd et al.’s data.
We observe that (a) research group shares a strong association
with other explanatory variables (i.e., the dataset and metric
families that are used to build a model); (b) the strong association
among these explanatory variables makes it difficult to discern
the impact of the research group on model performance; and
(c) after mitigating the impact of this strong association, we
find that the research group has a smaller impact than the
metric family. These observations lead us to conclude that the
relationship between the researcher group and the performance
of a defect prediction model are more likely due to the tendency
of researchers to reuse experimental components (e.g., datasets
and metrics). We recommend that researchers experiment with a
broader selection of datasets and metrics to combat any potential
bias in their results.

I. INTRODUCTION

Recently, Shepperd et al. [16] study the extent to which
the research group that performs a defect prediction study
associates with the reported performance of defect prediction
models. Through a meta-analysis of 42 primary studies, they
find that the reported performance of a defect prediction model
shares a strong relationship with the group of researchers who
construct the models. Shepperd et al.’s findings raise several
concerns about the current state of the defect prediction field.
Indeed, their findings suggest that many published defect pre-
diction studies are biased, and calls their validity into question.

In this paper, we perform an alternative investigation of
Shepperd et al.’s data. More specifically, we set out to investi-
gate (1) the strength of the association among the explanatory
variables, e.g., research group and metric family (Section II);
(2) the interference that these associations introduce when
interpreting the impact that explanatory variables have on the
reported performance (Section III); and (3) the impact that the
explanatory variables have on the reported performance after
we mitigate the strong associations among the explanatory
variables (Section IV).

II. THE PRESENCE OF COLLINEARITY

We suspect that research groups are likely to reuse ex-
perimental components (e.g., datasets, metrics, and classi-
fiers) in several studies. This tendency to reuse experimental
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TABLE I: The association among explanatory variables.

Pair Cramer’s V Magnitude
ResearcherGroup & MetricFamily 0.65∗∗∗ Strong
ResearcherGroup & DatasetFamily 0.56∗∗∗ Relatively strong
MetricFamily & DatasetFamily 0.55∗∗∗ Relatively strong
ResearcherGroup & ClassifierFamily 0.54∗∗∗ Relatively strong
DatasetFamily & ClassifierFamily 0.34∗∗∗ Moderate
MetricFamily & ClassifierFamily 0.21∗∗∗ Moderate
Statistical significance of the Pearson χ2 test:
◦p ≥ .05; * p < .05; ** p < .01; *** p < .001

components would introduce a strong association among the
explanatory variables of Shepperd et al. [16]. To investigate
our suspicion, we measure the strength of the association
between each pair of the explanatory variables that are used
by Shepperd et al. [16], i.e., ResearcherGroup, DatasetFamily,
MetricFamily, and ClassifierFamily.
Approach. Since the explanatory variables are categorical, we
first use a Pearson χ2 test [1] to check whether a statistically
significant association exists between each pair of explanatory
variables (α = 0.05). Then, we compute Cramer’s V [4] to
quantify the strength of the association between each pair of
two categorical variables. The value of Cramer’s V ranges
between 0 (no association) and 1 (strongest association). We
use the convention of Rea et al. [14] for describing the
magnitude of an association. To compute the Pearson’s χ2

and Cramer’s V values, we use the implementation provided
by the assocstats function of the vcd R package [10].
Results. Research group shares a strong association with
the dataset and metrics that are used. Table I shows the
Cramer’s V values and the p-value of the Pearson χ2 test for
each pair of explanatory variables. The Cramer’s V values
indicate that research group shares a strong association with
the dataset and metrics that are used. Indeed, we find that 13
of the 23 research groups (57%) only experiment with one
dataset family, where 9 of them only use one NASA dataset,
which contains only one family of software metrics (i.e., static
metrics). Moreover, 39% of researcher groups only use the
static metric family of the NASA dataset in several studies.
The strong association among research groups, dataset, and
metrics confirms our suspicion that researchers often reuse
experimental components.

III. THE INTERFERENCE OF COLLINEARITY

The strong association among explanatory variables that we
observe in Section II may introduce interference when one
studies the impact that these explanatory variables have on
the outcome [7, 18]. Furthermore, this interference among
variables may cause impact analyses, such as ANOVA, to
report spurious relationships that are dependent on the ordering
of variables in the model formula. Indeed, ANOVA is a
hierarchical model that first attributes as much variance as it
can to the first variable before attributing residual variance to
the second variable in the model formula [12]. If two variables
share a strong association, the variable that appear first in the
model formula will have the brunt of the variance associated
with it. Hence, we set out to investigate the interference that is
introduced by the strong association among explanatory vari-
ables.
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Fig. 1: Distribution of the partial η2 values for each explana-
tory variable when it appears at each position in the model
formula.

Approach. To investigate this interference, we use a boot-
strap analysis approach, which leverages aspects of statistical
inference [5]. We first draw a bootstrap sample of size N
that is randomly drawn with replacement from an original
dataset that is also of size N . We train linear regression
models with the data of the bootstrap sample using the
implementation provided by the lm function of the stats
R package [13]. For each bootstrap sample, we train multi-
way ANOVA models with all of the 24 possible ordering
of the explanatory variables (e.g., ANOVA(ResearcherGroup
× DatasetFamily × MetricFamily × ClassifierFamily) versus
ANOVA(DatasetFamily × ResearcherGroup × MetricFamily
× ClassifierFamily)). Following the prior study [16], we com-
pute the partial η2 values [15], which describe the proportion
of the total variance that is attributed to an explanatory variable
for each of the 24 models. We use the implementation provided
by the etasq function of the heplots R package [6]. We
repeat the experiment 1,000 times for each of the 24 models
to produce a distribution of the partial η2 values for each
explanatory variable.
Results. The strong association among the explanatory
variables introduces interference when interpreting the
impact that research group has on model performance.
Figure 1 shows the distributions of the partial η2 values for
each explanatory variable when it appears at each position
in the model formula. Each boxplot is derived from the
models of the 24 possible variable ordering combinations.
The results show that there is a decreasing trend in partial
eta-squared values when collinearity is not mitigated. Indeed,
research group and dataset family tend to have the largest
impact when they appear in earlier positions in the model
formula, indicating that the impact that explanatory variables
have on the outcome depends on the ordering of variables in
the model formula. Moreover, we observe that research group
and dataset family tend to have comparable partial η2 values,
indicating that the strong association introduces interference.
In particular, a model with DatasetFamily in the first position

TABLE II: Partial η2 values of the multi-way ANOVA analysis
with respect to the Eclipse dataset family.

ResearcherGroup Model MetricFamily Model
Adjusted R2 0.19 0.36

AIC -77 -105

Partial η2 Partial η2

Research Group 0.127 (medium) †
Metric Family † 0.235 (large)

Classifier Family 0.122 (medium) 0.113 (medium)
Research Group:Classifier Family 0.022 (small) -
Metric Family:Classifier Family - 0.162 (large)
†Strong association variables

and ResearcherGroup in the second position in the model
formula would lead us to believe that DatasetFamily plays
a bigger role than the ResearcherGroup. However, once we
flip the positions of DatasetFamily and ResearcherGroup, we
would reach a different conclusion, i.e., that ResearcherGroup
plays a bigger role in the model. On the other hand, the
moderate association between the metric and classifier families
introduces much less interference.

IV. MITIGATING COLLINEARITY

In the study of Shepperd et al., Table 13 is derived from
a one-way ANOVA analysis (y = xn) for each of the
explanatory variables and Table 14 is derived from a multi-
way ANOVA analysis (y = x1 × ... × xn). One of the main
assumption of ANOVA analysis is that the explanatory vari-
ables must be independent. The prior sections show that such
strong association among the explanatory variables (Section
II) introduces interference when we interpret the impact that
the explanatory variables have on the outcome (Section III).
However, Shepperd et al.’s multi-way ANOVA analysis did not
mitigate for the collinearity between the explanatory variables.

In this section, we set out to investigate the impact that
the explanatory variables have on the reported performance
after mitigating the interference that is introduced by strongly
associated explanatory variables. Thus, our earlier analysis
indicates that we cannot include all three of the explanatory
variables in the same model. Instead, we should only include
two of these three variables in our models. Hence, we opt to
focus on one studied dataset in order to control the dataset
family metric by holding it constant.
Approach. To mitigate the interference, we first select the
Eclipse dataset family, which is the second-most popular
dataset family in the studied dataset. We choose the Eclipse
dataset family instead of selecting the NASA dataset family
because Section II reveals that 39% of the research groups
only use the static metric family of the NASA dataset in
several studies. Overall, the Eclipse dataset family contains
6 metrics families, which are used by 7 research groups who
fit defect prediction model using 6 classifier families. While
controlling for the dataset family metric, only research group,
metric family, and classifier family will be included in the
model formulas. Since the dataset family metric is now a
constant, it is excluded from our model formula.

Since Table I shows that research group shares a strong
association with the metric family, we build two different
linear regression models by removing one of the two strongly
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associated variables, i.e., one model uses the research group
and classifier family variables, while another model uses the
metric family and classifier family variables.

To confirm the absence of collinearity in the models, we
perform a redundancy analysis [8] in order to detect redun-
dant variables prior to constructing the models. We use the
implementation provided by the redun function in the rms
R package [9].

To assess the fit of our models, we compute the adjusted R2

and the Akaike Information Criterion (AIC) [2]. The adjusted
R2 measures the amount of variance, while AIC measures
the goodness-of-fit based on information entropy. In general,
higher adjusted R2 and lower AIC values correspond to a
better fit of the model to the underlying data.

Finally, we perform a multi-way ANOVA analysis and
compute the partial η2 values. As suggested by Richardson et
al. [15] and Mittas et al. [11], we use the convention of
Cohen [3] for describing the effect size of the partial η2 values
— values below 0.01, 0.06, and 0.14 describe small, medium,
and large effect sizes, respectively.
Results. When we mitigate the interference of strongly
associated explanatory variables, we find that the research
group has a smaller impact than the metric family with
respect to the Eclipse dataset family. Table II shows partial
η2 values of the ANOVA analysis with respect to the Eclipse
dataset family. The results show that the MetricFamily model,
which achieves a higher adjusted R2 and a lower AIC, tends to
represent the underlying data better than the ResearcherGroup
model. The redundancy analysis also confirms that there are
no redundant variables in the MetricFamily model. Unlike
Shepperd et al.’s earlier observations, our ANOVA analysis
of the MetricFamily model shows that the choice of metrics
that are used to build defect prediction models tends to have
a large impact on the reported performance with respect to
the Eclipse dataset family. Moreover, since the interference
has been mitigated, the ANOVA results still hold when the
explanatory variables are reordered.

V. CONCLUSIONS

The prior work of Shepperd et al. [16] suggests that the
reported performance of a defect prediction model shares a
strong relationship with the research group who conducted the
study. This observation raises several concerns about the state
of the defect prediction field. In this paper, we investigate
(1) the strength of the association among the explanatory
variables of Shepperd et al.’s study [16]; (2) the interference
that these associations introduce when interpreting the impact
of the explanatory variables on the reported performance;
and (3) the impact that the explanatory variables have on
the reported performance after we mitigate the interference
introduced by strongly associated explanatory variables. We
make the following observations:

– Research group shares a strong association with the
dataset and metrics families that are used in building
models, suggesting that researchers should experiment
with a broader selection of datasets and metrics in order
to maximize external validity.

– The strong association among explanatory variables in-
troduces interference when interpreting the impact that
research group has on the reported model performance,
suggesting that researchers should carefully mitigate
collinearity issues prior to analysis in order to maximize
internal and construct validity.

– After mitigating the interference, we find that the re-
search group has a smaller impact than metric family
with respect to the Eclipse dataset family, suggesting
that researchers should carefully examine the choice of
metrics when building defect prediction models.

These observations lead us to conclude that the relationship
between research groups and the performance of a defect
prediction model have more to do with the tendency of
researchers to reuse experimental components (e.g., datasets
and metrics). Hence, a threat of bias exists if authors fixate
on studying the same datasets with the same metrics. We
recommend that research groups experiment with different
datasets and metrics rather than relying entirely on reusing
experimental components.

When adhering to our recommendation, researchers should
be mindful of the inherent trade-off between maximizing
internal and external validity in empirical research [17]. For
example, maximizing external validity by studying a large
corpus of datasets may raise threats to the internal validity
of the study (i.e., the insights may be difficult to discern due
to a broad selection of the studied systems). On the other
hand, maximizing internal validity by focusing on a highly
controlled experiment may raise threats to the external validity
of the study (i.e., the insights may be too specific to the studied
systems to generalize to other systems).
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