
Efficiently extracting full parse trees using1

regular expressions with capture groups2

Niko Schwarz1, Aaron Karper1, and Oscar Nierstrasz1
3

1Software Composition Group, University of Bern, Switzerland4

ABSTRACT5

Regular expressions with capture groups offer a concise and natural way to define parse trees over the
text that they are parsing, however classical algorithms only return a single match for each capture group,
not the full parse tree. We describe an algorithm based on finite-state automata that extracts full parse
trees from text in Θ(nm) time and Θ(dn+m) space (where n is the size of the text, m the size of the
pattern, and d the number of groups in the pattern). It is the first to do so in a single pass with complete
control over greediness. This allows the algorithm to process streaming data using all constructs familiar
to users of regular expressions.

6

Keywords: Regular expressions, Parsing, Algorithms.7

1 INTRODUCTION8

Regular expressions are widely used as a simple and intuitive mechanism to search for patterns in large9

bodies of text. Standard regexes also allow you to specify and match text fragments of interest by10

surrounding them in parentheses — these are known as“capture groups”. Very efficient algorithms have11

been developed to match regexes, but these only provide you with the final matching text fragments, not12

the entire tree of matches.13

For example, ((.*?),(\d+);)+ might describe a dataset of ASCII names with their numeric label.14

Matching the regular expression on “TomLehrer,1;AlanTuring,2;” confirms that the list is well-formed,15

but the match contains only “TomLehrer” for the second capture group and “1” for the third. That is, the16

parse tree found by the POSIX is seen in Figure 1a.17

Tom Lehrer , 1 ; Alan Turing , 2 ;

2 3

0

1

(a) Initial parse tree produced by POSIX-compatible
matching.

Tom Lehrer , 1 ; Alan Turing , 2 ;

2 3

0

1 1

32

(b) Full parse tree produced by our approach.

Figure 1. Parse trees produced by matching regex ((.*?),(\ d+);)+ against input
“TomLehrer,1;AlanTuring,2;”.

We propose a new algorithm based on finite-state automata that can reconstruct a full parse tree after18

the matching phase is completed, as seen in Figure 1b. The worst-case run time of our approach is Θ(nm),19

the same as the algorithm extracting only single matches. It is the first algorithm to achieve this bound,20

while extracting parse trees with specified greediness.21

In section 2, we review various approaches to regex matching based on non-deterministic finite state22

automata (NFAs), deterministic automata (DFAs), and “tagged” automata (TNFAs and TDFAs) that track23

when capture groups start and end. Section 3 presents our approach to efficiently extracting full parse24

trees for regular expressions with capture groups. Stacks are used to simulate backtracking, coroutines25

are used to explore different parses pseudo-concurrently, and “histories” log the successful starts and26

ends of capture groups. Section 4 presents a proof of correctness of the algorithm that adopts the simple27

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

Name Example Repetitions Description
literal a 1

character ranges [a-z] 1
any of the characters in the range

match

negated character ranges [ˆa-z] 1
anything except for the characters

in the range match
? operator a? 0 or 1
* operator a* 0−∞ Prefer more matched
+ operator a+ 1−∞

?? operator a?? 0 or 1
? operator a? 0−∞ Prefer less matched
+? operator a+? 1−∞

alternation operator a|b 1 match one or the other, prefer left

capture groups (a) 1
treat pattern as single element,

extract match

Table 1. Summary of regular expression elements

backtracking algorithm as the baselines for correctness. We show that the new algorithm is faithful to the28

backtracking one. Section 5 presents the implementation and performance benchmarks, and section 629

briefly concludes.30

2 MOTIVATION AND RELATED WORK31

Regular expressions originated with Kleene in the 1950s [Sipser (2005)]. They make for scalable and32

efficient lightweight parsers [Karttunen et al. (1996)]. While there is no shortage of books discussing the33

usage of regular expressions, the implementation side of regular expression has not been so lucky. As34

Cox (2007, 2009, 2010) argues, innovations have repeatedly been ignored and later reinvented, not least35

because the publication medium of source code without an accompanying article was chosen.36

The best known algorithms, including the one presented here, run in O(min(nm,2m +n)), where n is37

the length of the string to be matched against and m is the length of the pattern [Sedgewick (1990)]. The38

input to the algorithm is both the regular expression and the string to match, so let s = n+m be the input39

size to the algorithm, then the overall run time in s is O(s2).40

A curious aspect of the literature is that many authors perceive regular expression parsing to be a41

linear problem — linear in the length of the string with a constant for the pattern size. However, there42

are valid applications to use regular expression matching for large regular expressions.1 It is not known43

if there is any algorithm that beats the O(s2) matching, but in Section 4, we prove a lower bound of44

Θ(s min(s, |Σ|)), where |Σ| is the size of the alphabet.45

Regular expressions and capture groups46

Table 1 summarizes the key elements of regular expressions. Note that the option (?), star (*) and plus (+)47

operators are greedy, that is, they consume as much input as they can, while their non-greedy alternatives48

(??, *? and +?) attempt to match as few repetitions as possible. In a backtracking implementation,49

guessing the right path is an important efficiency feature and for all capturing implementation the path50

taken influences the captured groups.51

Capture groups (i.e., patterns enclosed in parentheses) are treated as a single element, thus (ab)*52

captures “ab”, but not “aba”. After the match, the capture groups can be extracted: a(b*)c will extract53

“bbb” when matched against “abbbc”, and the empty string when matched against “ac”.54

In POSIX, the regular expression a((bc+)+) yields “bcbccc” when matched to the string “abcbccc”55

for the outer capture group and “bc” for the inner capture group — the leftmost occurrence of outer56

capture groups is kept and within that substring, the leftmost occurrence of the inner group is kept. Instead57

1For example, think of a program that tries to determine the file type of a file. A plausible implementation is to construct
one regular expression for each file type. Then, given regular expressions ek, one for each file type, the regular expression
/(e1)|(e2)|...|(ek)/ could be used to determine the file type in one pass only.

2/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

we would like all occurrences to be kept and returned in a tree structure: The outer capture group should58

contain “bcbccc” and the inner matches should yield “bc” and “bccc”.59

The relevance of greedy and non-greedy matches becomes apparent now: The regular expression60

a(.*)c? matched to the string “abc” captures “bc” in the group, while a(.*?)c? captures only “b”.61

This is because the parse is ambiguous without specifying the greediness of the match — both “b” and62

“bc” would be valid answers.63

Backtracking64

Backtracking provides an intuitive and extensible algorithm for determining whether a string matches a65

regular expression. More importantly, the backtracking algorithm gives an intuitive definition for what the66

correct submatches are, depending on the greediness operators.67

Algorithm 1 is used in some form in many languages, such as Java2, Python3, or Perl [Cox (2007)].68

Algorithm 1 Overview of backtracking
function MATCH-BT(string, pattern)

if string and pattern empty then
return matches

else if string or pattern empty then
return no match

else if first element of pattern is the greedy repetition a∗ then
− x[1:] means removing the first element of the list
− Greedily try to match inner first
if a matches first element of string then

return match-bt(string[1:], pattern)
else

return match-bt(string, pattern[1:])
end if

else if first element of pattern is the non-greedy repetition a∗? then
− Try to match rest first
if match-bt(string, pattern[1:]) matches then

return it
else

return match-bt(string[1:], pattern)
end if

else if . . . then
. . .

end if
end function

For all its advantages and ease of implementation the main problem is that it takes Θ(2n m) time in69

the worst case. If we match the pattern (x*)*y against the string4 “xn”, we see that it cannot match, but70

it takes exponential time doing so.71

In this paper, we think of the match returned by the backtracking algorithm as the correct behaviour.72

It is what most regular expression matchers in the wild do (Java, Perl, ...), even if it does contradict73

the POSIX definition of a correct match. Its popularity may be due to the advantages of being easy74

to implement, efficient if back-tracking guesses correctly, and the resulting match being comparatively75

intuitive, compared to the POSIX-prescribed match.76

Memoization77

Backtracking makes for easy implementations, but exponential run-time for many patterns. Norvig (1991)78

showed that this can be avoided by using memoization for context free grammars. This allows for O(n3 m)79

time parsing. While this is significantly higher than the O(min(nm,2m + n))of the automata-based80

2java.util.regex
3The module re
4xn means x repeated n times

3/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

approaches, it is also more general, because more than just regular grammars can be parsed with this81

approach. This approach is taken by combinatoric parsers such as the Parsec library.5 It should be noted82

however that while this approach has been known for some time now and promises exponential speed-up,83

it is not a standard optimization for backtracking-based regular expression implementations. In the wild,84

regular expressions are tweaked until they no longer need any backtracking at all, and then memoization85

leads to a dramatic performance loss.86

The backtracking implementation, if it never needs to backtrack, can match input nearly as fast as it87

can be read from RAM. Practical regex implementations have no room for per-character overhead.88

The memoization approach can be extended further to so-called packrat parsing [Medeiros et al.89

(2012)] based on Parsing Expression Grammars (PEG), to obtain O(nm), but the memoization gives a90

space overhead that is O(n), with a big constant [Ford (2002)] — or to put it in another way: The original91

string is stored several times over. This makes them flexible and fast parsers for small input, for example92

for the grammars of programming languages, but Packrat parsers have a large space overhead that make93

them infeasible for large inputs such as data analysis.694

S2

S1

Alternation — S1|S2
S

Plus operation — S+

S

Optional — S?

Star operation — S*?

S

Figure 2. Thompson (1968) construction of the automaton: Descend into the abstract syntax tree of the
regular expression and expand the constructs recursively.

Finite-state automata95

An alternative with much-improved worst-case bounds to the backtracking approach discussed in Sec-96

tion 2 is to pre-process the regular expression and convert it into an NFA (non-deterministic finite state97

automaton) using the classical approach by Thompson (1968) shown in Figure 2.98

The NFA thus obtained contains O(m) states and to check if a given string matches the regular99

expression, we can now simply run the NFA on it. For each character in the input string, we follow all100

transitions possible from our current states and save the accessible states as a set. In the next iteration, we101

consider the transitions from any of these states. This allows us to match in O(min(nm,2m +n))time.102

Dissatisfied with the multiplicative O(m) overhead, we can construct a DFA (deterministic finite state103

automaton) from the NFA before matching using the power set construction [Sipser (2005)], which has104

time complexity Θ(2m). The idea is to replace all states by the set reachable from it with only ε-transitions105

— therefore a DFA state represents a set of NFA states. The transitions simulate a step in the original NFA,106

so they point to another set of states. After compilation, string matching takes O(n) time. This approach107

is only useful if the regular expression is statically known or small, because constructing the full DFA is108

exponential in the regular expression size in the best case.109

The power set construction simulates every transition possible in the NFA, but that is actually110

unnecessary: Instead we can intertwine the compilation and the matching to only expand new DFA states111

that are reached when parsing the string. At most one new DFA state is created after each character read112

and if necessary the whole DFA is constructed, after which the algorithm is no different from the eager113

DFA. The time complexity of the match is then O(min(nm,2m +n)). This is the best known result for114

matching [Cox (2007, 2009, 2010)].115

5The memoization stems from the common subexpression optimization of Haskell.
6Becket and Somogyi (2008): “The Java parser generated by Pappy requires up to 400 bytes of memory for every byte of input.”

4/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

Tagged finite state automata116

The algorithms we have seen so far did not extract capture groups, because they have no information117

about where a capture group starts or ends. In order to extract this information, we need to store it in some118

way while we traverse the automaton.119

NFA interpretation can be understood as being performed by competing coroutines running in lockstep120

with each other, consuming at each step exactly one character of the input string. This implies that some121

form of instructions are executed on a transition, so it is possible to add other instructions that allow us to122

store the capture groups. This is the idea of a tagged finite state automaton (TNFA) [Laurikari (2000)],123

which attaches general tags to transitions that modify the coroutine’s memory. We can store the position124

of the start and end of each match in the memory of the coroutine, whenever we encounter a transition125

that corresponds to the respective start or end of the capture group.126

To simplify the algorithm, we will assume that it contains at least one character so that the reading127

step is executed at least once.7128

Side effects, such as storing the current location, make coroutines using different routes to the same129

state differ in meaning. Consider the regular expression (a)|(.). Reading the string “a”: depending130

on the path chosen, our capture groups will contain “a” in the first or second capture group. Since we131

consider the match returned by the backtracking algorithm as the only correct one, the correct match132

stores a in the first capture group, and nothing in the second. This requires us to define a unique order for133

expanding coroutines on each state, so that we can avoid this ambiguity. This is done by giving a negative134

priority [Laurikari (2000)] to one of the transitions or require one to consume a character, whenever we135

have an out-degree of two.8136

The priorities intuitively mean that for example in .a|.. we will try to follow the path of .a first137

before checking ... Only if we fail on that track we will consider the second path.138

Closely related to priorities is greediness control: consider again ((.*?),(\d+);)+. The question139

mark sets the .* part of the regular expression to non-greedy, which means that it matches as little as140

possible while still producing a valid match, if any. Without provisioning .* to be non-greedy, matching141

this regular expression against input “TomLehrer,1;AlanTuring,2;” would match as much as possible142

into the first capture group, including the record separator “,”. Thus, the first capture group would suddenly143

contain only one entry, and it would contain more than just names, namely “TomLehrer,1;AlanTuring”.144

This is, of course, not what we expect. Non-greediness, here, ensures that we obtain “TomLehrer”, then145

“AlanTuring” as the matches of the first capture group.146

Implementing this with backtracking is trivial, but in order to keep the coroutines in lockstep, we147

need to order the NFA states in the DFA state so that the coroutines travelling the left path are always148

scheduled before the coroutines on the right path so that the scheduling corresponds to trying the left side149

before the right side in backtracking.150

To complicate things further, we want coroutines that have travelled further to have higher priority151

than the ones that stayed further behind — in backtracking this would be depth-first-search. Take for152

example (a??)(a??) on the string “a”: without the depth-first-search, we’d capture “a” in the first153

capture group, where it should be in the second group.154

Automata-based extraction of parse trees155

Memoization is a powerful tool to achieve theoretically fast parsers, but they have a space-overhead in156

order of the input instead of the parse tree size, which slows down the parser on actual hardware. The157

other approach to parsing — finite state automata — offers a remedy. These approaches, including the one158

we present in this paper, use TNFAs to achieve both speed and low memory usage. The approaches differ159

in: what parse tree is produced, whether greediness control is supported, how the parse tree is stored, and160

how the NFA can be compiled into a DFA (see table 2).161

The rivaling memory layouts are lists of changes and an array with a cell for each group. The former162

makes it hard to compile the TNFA to a TDFA with aggressive reuse of states via mapping (as described163

in algorithm 4), but has lower space consumption. The mapping in terms of cells for each group is easy,164

but costs a factor m space overhead.165

Another problem is greediness. Kearns, Dubé, and Nielsen cannot guarantee the greediness of the166

winning parse. Grathwohl’s contribution allows Dubé’s algorithm to run with greedy parses. Our priorities167

7The empty string can be modelled as containing only the ‘\0’ character.
8Note that in the Thompson construction, we have an out-degree of at most two.

5/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

Author Stores Automaton Parse time Space overhead
Kearns (1991) Path choices NFA O(nm) O(nm)

Dubé and Feeley (2000) Capture groups in
linked list

NFA O(nm) O(nm2)

Nielsen and Henglein (2011) Bit-coded trees of
capture groups

O(nm log(m))

Grathwohl et al. (2013)
Laurikari (2000) Capture group in

array
DFA O(n+2m) O(d m)

This paper Capture group in
array of linked lists

lazy DFA O(min(nm,2m +n)) O(nd +m)

Table 2. Comparison of automata-based approaches to regular expression parsing. n is the length of the
string, m is the length of the regular expression, and d is the number of subexpressions. Note that
Laurikari (2000) does not produce parse trees.

allow for arbitrary mixes of greedy and non-greedy operators.168

Finally when dealing with large n, one might be interested in passing over the string as few times as169

possible. Kearns, Dubé, and Nielsen do this in three passes to find the beginning and ending of capture170

groups, whereas Grathwohl only uses two passes. Our algorithm captures the positions of the capture171

groups in a single pass. This might seem like a negligible improvement, but certain scenarios only open up172

with this, such as the possibility to efficiently parse a string larger than the memory of a single machine.173

3 EFFICIENT REGEX MATCHING WITH CAPTURE GROUPS174

Given our basic algorithm 1 for matching regular expressions with backtracking, we will now present an175

approach that is less wasteful. The algorithm we present is a specific case of the tagged non-deterministic176

finite state automaton (TNFA) matching algorithm for regular expressions with added logging of the177

start and end of capture groups. Stacks are used to simulate backtracking, coroutines are used to explore178

different parses pseudo-concurrently, and “histories” log the successful starts and ends of capture groups.179

We first show how to generate a TNFA from the AST of the regular expression by extending Thomp-180

son’s standard construction. After showing how to simulate backtracking with TNFA interpretation, we181

present the algorithm for matching capture groups using histories of commit tags. This algorithm is182

O(min(nm,2m+n)u(m)), where u(m) describes the amortized cost of logging a single opening or closing183

of a capture group. A persistent treap allows us to achieve u(m) = logm, and using the data structure184

described by Driscoll et al. (1989), we can improve this to u(m) = 1. This gives us O(min(nm,2m+n))run185

time for the complete algorithm, which is the best known run time for NFA algorithms.186

We follow with an example illustrating the executing of our algorithm with the interpretation of commit187

tags. We also consider practical problems such as caching current results, just-in-time compilation, and188

compact memory usage.189

Conceptually, our approach consists of four stages:190

1. Parse the regular expression string into an AST191

2. Transform the AST to a TNFA192

3. Transform the TNFA to a TDFA193

4. Compactify the TDFA194

In reality, things are a little more involved, since the transformation to TDFA is lazy, and the195

compactification only happens after no lazy compilation has occurred in a while. Also compactification196

can be undone if needed. Since the essence of the algorithm consists in steps 2 and 3, we start with them197

and we will discuss steps 1 and 4 as part of the implementation in Section 5.198

6/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

S

Capture group — (S)

S2

S1

-

Alternation — S1|S2

S

-

Optional — S?

S -

Plus operation — S+

S

-
Non-greedy plus operation — S+?

Non-greedy star
operation — S*?

S

-

Star operation — S*?

S

-

-

Figure 3. Modified Thompson (1968) construction of the automaton: Descend into the abstract syntax
tree of the regular expression and expand the constructs recursively. In comparison to the simple
construction in figure 2, the forward transitions from the top state in the star operators should be
surprising, but they are necessary if S has a prioritized path that captures the empty string: We cannot
return to the start state, because we expanded it already, but we can proceed anyway.

Transforming the AST to a TNFA199

We transform the abstract syntax tree (AST) of the regular expression into a TNFA by extending Thomp-200

son’s NFA construction (figure 3). The additions are needed for greediness control and capture groups. In201

the diagram, “−” stands for low priority. Tagged transitions mark the beginning or end of capture groups202

or control the prioritization. τn ↑ is the opening tag for capture group n, likewise, τ1 ↓ is the closing tag203

for capture group n.204

1 2 3

4

6 7

8 9 11 12 1310

5

Figure 4. Automaton for ((.*?),(\d+);)+

In the NFA, we model greedy repetition or non-greedy repetition of an expression in two steps:205

1. We construct an NFA graph for the expression, without any repetition. Figure 4 shows how this206

plays out in our running example (figure 4), which contains the expression .*?. An automaton for207

the expression . is constructed. The expression . is modeled as just two nodes labeled 3 and 4, and208

a transition labeled “any” between them.9209

2. We add prioritized transitions to model repetition. In our example, repetition is achieved by adding210

two ε transitions: one from 4 back to 3, to match more than one time any character, and another211

one from 3 to 5, to enable matching nothing at all. Importantly, the transition from 4 back to 3 is212

marked as low priority (the “–” sign) while the transition leaving the automaton, from 3 to 5, is213

unmarked, which means normal priority. This means that the NFA prefers to leave the repeating214

expression rather than stay in it. If the expression were greedy, then we would mark the transition215

from 3 to 5 as low-priority, and the NFA would prefer to match any character repeatedly.216

9NB: this is not minimized; a semantically equivalent automaton with just a single node with a any transition to itself is smaller.

7/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

Algorithm 2 Tagged transition execution.
− Returns a list of coroutines that consumed the character
function runtagged(coroutines, char)
− coroutines is a list of coroutines in order as returned here.
− char is a character
Put all coroutines on the low stack
Initialize empty buffer stack
Initialize empty list R − the returned list of coroutines
while the stacks are not both empty do

if high is not empty then
Pop c from the high stack

else
Pop c from the low stack
Flush buffer into R − thus reversing the order

end if
for all transitions that consume char from c to state s do

push s to buffer − remember the state for the next turn
end for
for all ε-transitions from c to state s with tag t do

if no coroutine in state s exists in coroutines then
copy the coroutine c to c′

INTERPRET(t, c′)
end if
if transition is normal priority then

add a coroutine r in state s with memory m to the high stack
else

add a coroutine r in state s with memory m to the low stack
end if

end for
end while
return R

end function

Simulating backtracking for regular expressions217

Algorithm 2 illustrates how backtracking can be simulated with TNFA interpretation, which is an original218

contribution of this paper.219

In order to simulate backtracking correctly, we need all paths reachable from the state after the220

prioritized transition to be processed first, even if they are interrupted by the need to consume another221

character. This prioritization is achieved by using a buffer that reverses the order of high-priority runs.222

Without the buffer, the routines are scheduled in the order in which the states are seen. This gives223

wrong results, if the state further behind can catch up to one further down, for example in (a*?)(a*?),224

the second group should contain the match.225

Logging capture groups in a TNFA226

We now lay out the storage required by the coroutines and the interpretation of the tags that we introduced227

in algorithm 2. To model capture groups in the NFA, we add commit tags to the transition graph. The228

transition into a capture group is tagged by a commit, and the transition to leave a capture group is tagged229

by another commit. We distinguish opening and closing commits. The NFA keeps track of all times that a230

transition with an attached commit was used, thus recording the history of each commit. After parsing231

succeeds, the list of all histories can then be used to reconstruct all matches of all capture groups.232

We model histories as singly linked lists, where the payload of each node is a position. Only the233

payload of the head, the first node, is mutable, while the rest, all other nodes, are immutable. Because the234

other nodes are immutable, they may be shared between histories. This is an application of the flyweight235

design pattern [Gamma et al. (1995)], which ensures that all of the following instructions on histories can236

be performed in constant time. Here, the position is the current position of the matcher.237

8/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

25

9

6 7

24

Figure 5. Histories are cells of singly linked lists, where only the first (here bottom-most) cell can be
edited. This is a view of the automaton in Figure 4 after the string “TomLehrer,1;AlanTuring,” has
been consumed. Only the cell for the closing of the second capture group is shown.

DFA states are denoted by a capital letter, e.g., Q, and contain multiple coroutines. For example,

Q = [(q1,(([0], [12]),([9,1], [10,2]),([], []))),
(q2,(([0], []),([1], [2]),([1], [2])))]

means that the current DFA state has one coroutine in NFA state q1 with histories (([0], [12]), ([9,1],238

[10,2])) and another coroutine in NFA state q2 with the histories (([0], []),([1], [2]),([1], [2])). Note239

that histories can be shared across coroutines if they have the same matches. The order of the240

coroutines is relevant, and a DFA state is thus a list of NFA states.241

Histories are linked lists, where each node stores a position in the input text. (See figure 5.) The head is242

mutable, and the rest is immutable. Therefore, histories can share any node except their heads. We243

write h = [x1, . . . ,xm] to describe that matches have occurred at the positions x1, . . . ,xm.244

Coroutines are denoted as pairs (qi,h), where qi is some NFA state, and h = (h1, . . . ,h2n) is an array of245

histories, where n is the number of capture groups. Each coroutine has an array of 2n histories. In246

an array of histories ((h1,h2), . . .(h2n−1,h2n)), history h1 is the history of the openings of the first247

capture group, and h2 is the history of the closings of the first capture group, and so on.248

Transitions are understood to be between NFA states, so q1→ q2 means a transition from q1 to q2.249

Take for example the regular expression (..)+ matching pairs of characters, on the input string250

“
0
a
1
b
2
c
3
d”. The history array of the finishing coroutine is ((h1 = [0],h2 = [3]),(h3 = [2,0],h4 = [3,1])).251

Histories h1 and h2 contain the positions of the entire match, i.e., positions 0 through 3. Histories h3 and252

h4 contain the positions of all the matches of capture group 1, in reverse. That is: one match from 0253

through 1, and another from 2 through 3.254

Our engine executes instructions at the end of every interpretation step. There are four kinds of255

instructions:256

h← p Stores the current position into the head of history h.257

h← p+1 Stores the position after the current one into the head of history h.258

h′ 7→ h Sets head.next of h to be head.next of h′. This effectively copies the (immutable) rest of h to be259

the rest of h′, also.260

c ↑ (h) Prepends history h with a new node that becomes the new head. This effectively commits the261

old head, which is henceforth considered immutable. c ↑ (h) describes the opening position of the262

capture group and is therefore called the opening commit.263

c ↓ (h) This is the same as c ↑ (h) except that it denotes a closing commit marking the end of the capture264

group. This distinction is necessary, because an opening commit stores the position after the current265

character and the closing commit store the position at the current character.266

9/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

Algorithm 3 Interpretation of the tags.
− Update the coroutine, interpreting the tag
function interpret(t, c)
− t is a tag, c is a coroutine
if t is open tag of group i then
− Do not commit, in case we pass edge again
set(index+1,c.histories[i].le f t)

end if
if t is close tag of group i then

set(index,c.histories[i].right)
commit c.histories[i].le f t and c.histories[i+1].right

end if
end function

Here we provide the interpret function seen in algorithm 2.267

The states are given to the algorithm in the order visited, so that the coroutine that got furthest is268

expanded first when the next character is read. The buffer variable is a detail to ensure that the correct269

order of coroutines is produced. If our procedure is consistently used, the prioritization will lead to a270

correct match.271

Note that the ordering of coroutines inside of DFA states is relevant. In Figure 4, after reading only272

one comma as an input, state 7 can be reached from two coroutines: either from the coroutine in state 3,273

via 4, or from the coroutine in state 6.274

The two coroutines are ‘racing’ to capture state 7. Since in the starting state, the coroutine of state 6 is275

listed first, it ‘wins the race’ for state 7, and ‘captures it’. Thus, the new coroutine of state 7 is a fork of276

the coroutine of state 6, not 3. This matters, since 6 and 3 may disagree about their histories.277

The overall run time of algorithm 2 depends heavily on the forking of coroutines being efficient:278

In the worst case, it takes Θ(mTf ork(m)) time. A naive solution is a copy-on-write array, for which279

Tf ork(m) = m gives O(m2) for every character read, resulting in O(min(nm,2m +n)m) regular expression280

matching, which is only acceptable if we assume m to be fixed.281

Since at most two histories are actually changed, much of the array would not be modified and could282

be shared across the original coroutine and the forked one. This is easily achieved replacing the array by a283

persistent data structure [Driscoll et al. (1989)] to hold the array. A persistent treap, sorted by array index,284

has all necessary properties.10 With Tf ork = O(logm), the overall runtime is O(min(nm,2m +n) logm).285

With the persistent data structure described by Driscoll et al. (1989) we obtain an amortized O(1) update286

cost for the claimed O(min(nm,2m +n))overall runtime.287

Example288

We now demonstrate an example of the execution of algorithm 2 with the function interpret as defined in289

algorithm 3.290

Consider the automaton in figure 4 is in the DFA starting state

Q = [(q1,(([], []),([], []),([], [])))]

This is the case after initialization.291

The algorithm uses a high stack and a low stack, corresponding to the two priorities.292

We pretend for clarity that instructions are executed directly after they are encountered. In practice,293

the algorithm collects them and executes them after the run call to enable further optimizations and the294

storage of the instructions.295

This is the execution of run(Q, “,”):296

1. Fill the low stack with the coroutine in Q. Now, low = [(q1,(([], []),([], []),([], [])))], where the297

first element is the head of the stack. high is empty.298

10Clojure [Hickey (2008)] features a slightly more complex data structure under the name of ‘persistent vectors’. Jean Niklas
L’orange offers a good explanation in “Understanding Clojure’s Persistent Vectors”, http://hypirion.com/musings/
understanding-persistent-vector-pt-1. See chapter 3 of Karper (2014) for a more extensive discussion of suitable
data structures.

10/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

http://hypirion.com/musings/understanding-persistent-vector-pt-1
http://hypirion.com/musings/understanding-persistent-vector-pt-1

2. Initialize buffer to an empty stack. This stack is used to reverse the order of states discovered while299

following high priority transitions.300

3. Initialize the DFA state under construction: R = [],301

4. Coroutine (q1,(([], []),([], []),([], []))) is popped from the high stack.302

5. We iterate over all available transitions in the NFA transition graph, and find only q1→ q2, which303

contains the tag τ1 ↑.304

(a) We need to change the opening tag of the first capture group, so we call set(1,histories[0].le f t).305

(b) We push q2 with the new memory to the high stack.306

6. Coroutine (q2,(([1], []),([], []),([], []))) is popped from the high stack.307

7. We see q2→ q3, which contains the tag τ2 ↑.308

(a) We need to change the opening tag of the first capture group, so we call set(1,histories[1].le f t).309

(b) We push q2 with the new memory to the high stack.310

8. Coroutine (q3,(([1], []),([1], []),([], []))) is popped from the stack.311

9. We see q3→ q4 with negative priority, we push q4 on the low stack.312

10. We see q3→ q5 and push q5 on the high stack.313

11. Coroutine (q5,(([1], []),([1], []),([], []))) is popped from the high stack. It contains τ2 ↓314

(a) We need to change the opening tag of the first capture group, so we call set(0,histories[1].right).315

(b) We push q6 with the new memory to the high stack.316

12. Coroutine (q6,(([1], []),([1], [0]),([], []))) is popped from the high stack.317

13. We see q6 → q7 consuming “,”. We do not push anything on the high or low stack, but put318

(q7,(([1], []),([1], [0]),([], []))) in the buffer.319

14. Our high stack is empty.320

(a) We flush the buffer into the DFA state R: R = [(q7,(([1], []),([1], [0]),([], [])))], bu f f er = []321

15. Coroutine (q4,(([1], []),([1], []),([], []))) is popped from the low stack.322

16. We see q4→ q3 consuming any character. We put (q3,(([1], []),([1], []),([], []))) on the buffer323

stack.324

17. No transitions remain.325

(a) We flush the buffer: R = [(q7,(([1], []),([1], [0]),([], []))),(q3,(([1], []),([1], []),([], []))],326

bu f f er = []327

18. R is returned.328

Some of the histories contain pairs of the kind ([1], [0]), which would be a group that starts after329

it began. This means that no character was matched, as can easily be checked by comparing it to330

/((.∗?),(nd+))+/ on the string “,”.331

11/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

Conversion to tagged DFA332

To compile the TNFA to a TDFA we have to capture the modifications that we encounter between reading333

characters. After doing so, we need to check if we are in a DFA state that we have already encountered334

and that we can create a new connection to. Equality of TDFA states cannot be the same as equality335

between DFA states — the equality of the contained NFA states does not care about the order in which336

they are visited and furthermore it does not respect that two expansions might have different executed337

instructions. This has been addressed by Laurikari (2000) by finding equivalent or mappable TDFA states.338

A mapping is a bijection of two states that needs to be found at compilation time.339

The idea of adding other instructions to the coroutines in the automaton that is the finite state machine340

(be it NFA or DFA) is not new. The first implementation using this to the authors’ knowledge is Pike341

(1987) in his text editor SAM. He used a pure tagged NFA algorithm to find one match for each capture342

group quite similar to our or Laurikari’s approach. This was only published in source code, to a great loss343

for the academic community.344

The correct handling of greediness (not of non-greediness) was implemented by Kuklewicz (2007) for345

the Haskell implementation11 of Laurikari’s algorithm. This too was only published in source code, to a346

great loss for the academic community.347

Cox calls Laurikari’s TDFA a reinvention of Pike’s algorithm, but while that is in part true, Laurikari348

introduces the mapping step described in algorithm 4. This leads Laurikari’s algorithm to contain fewer349

states and one would hope that this would lead to a better run-time than Google’s RE212, which is based350

on Pike’s algorithm.351

This is not confirmed by the benchmarks by Sulzmann and Lu (2012), but they offer an explanation:352

in their profiling, they see that all Haskell implementations spend considerable time decoding the input353

strings. In other words, the measured performance is more of an artifact of the programming environment354

used.355

Compared to RE2, our algorithm does not provide many low-level optimizations, such as limiting the356

TDFA cache size or an analysis of the pattern for common simplifications such as optimizing for one-state357

matches13. Further its algorithm to simulate the backtracking is simpler. However our algorithm does not358

require a separate pass for match detection and match extraction, which opens different scenarios — the359

reason we can avoid this is that we are able to collect the instructions and incorporate them into the lazy360

DFA state compilation. Our algorithm adds the mapping phase from Laurikari, which allows us to find361

DFA states that can be made equivalent by some additional writes.362

4 PROOFS363

We now sketch proofs of the claimed properties, first and foremost the correctness of algorithm 2 under364

the interpretation of algorithm 3.365

Correctness366

The correctness of the algorithm follows by induction over the construction: If the correct coroutine stops367

in the end state for all possible constructions of the Thompson construction under the assumption that368

simpler automata do the same, it follows that no matter how complex the automata become, the algorithm369

will have the correct output.370

To this goal, we will use backtracking as a handy definition of correctness. We will show that our371

algorithm will prefer the same paths as a backtracking implementation would. It should be noted that372

the construction is exactly set up so that it matches backtracking and in fact this can be seen as a simple373

derivation of our algorithm.374

First we need a simple formalization of the backtracking procedure, bt(e,s), where regex e is applied375

to input string s:376

11Or free interpretation, since Laurikari leaves the matching strategy open.
12https://code.google.com/p/re2/
13unambiguous NFA can be interpreted as DFA and can be matched more efficiently

12/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

https://code.google.com/p/re2/

bt(a|b,s) = bt(a,s) | bt(b,s)

bt(r∗,s) = bt(rr ∗ |ε,s)
bt(r∗?,s) = bt(ε|rr∗,s)

bt(r?,s) = bt(r|ε,s)
bt(r??,s) = bt(ε|r,s)
bt(r+,s) = bt(rr∗,s)

bt(r+?,s) = bt(rr∗?,s)
bt(ab,s) = bt(a,s)+bt(b,rest)

bt(Group(i,r),s) = [WriteOpen(i)]+bt(r,s)+ [WriteClose(i)]

bt(ab,ss′) = bt(a,s)+bt(b,s′)

Second we note that the algorithm preserves the order of the coroutines after each character read. This377

means that basically a depth-first search is performed, with priorities formalizing what option is to be378

taken first.379

The correct parse is found if and only if after reading the whole string,380

1. the coroutine in the end state has consumed all characters of the string (and only those) in order, and381

2. there is such no coroutine that has taken “later” low-priority edges. This corresponds to the382

depth-first search of backtracking.383

That certain paths are cut off because the state has already been seen is equivalent to memoization in384

the backtracking procedure: if a higher priority state already found a path through this part of the parse,385

the following parse can be pruned.386

There is the possibilities of cycles, so that the depth-first solution would loop. This can be seen for387

example in the regular expression (a*?)*, where the preferred route in the graph is actually to capture388

an empty repetition of a. We tweak the Thompson construction for this scenario, by giving a path to389

the logically following state after the automaton with the same priority as from the start node for the390

star-operator, because it is the only automaton where the start state competes with a complete run through391

the pattern.392

Now the parses are analogous for our procedure and bt (see Figure 6).393

Execution time394

The main structure of any NFA-based matching algorithm is the nesting of two loops: The outer loop395

iterates over the n characters of the string, and the inner loop expands at most m states. The expansion396

produces O(1) updates per state expanded, as Thompson’s construction gives a constant out-degree for397

each state. The update cost of every coroutine is O(1). This gives a total run time of O(min(nm,2m +n)).398

Lower bound for time399

There is no known tight14 lower bound to regular expression matching.400

Theorem 1. No algorithm can correctly match regular expressions faster than Θ(n min(m, |Σ|)), where n401

is the length of the string, m is the length of the pattern, and |Σ| is the size of the alphabet.402

Proof. Let S = anxi and R = [ax1]∗ |[ax2]∗ | . . . |[axm]∗. Note that |S| = Θn and |R| = Θ(min(m, |Σ|)).403

Let further match be a valid regular expression matching algorithm, then match(S,R) is equivalent to404

finding anxi
?
∈ {anx1, . . . ,anxm}. There is no particular order to {anx1, . . . ,anxm}, so the lower bound for405

finding this is Θ(|S| |R|).406

14A lower bound l is tight, if it is the asymptotically largest lower bound.

13/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

bt(a|b,s):

1. Check a

2. Check b

1

2

b

-

a

1. Check 1→ a→ 2

2. Check 1→ b→ 2

bt(r∗,s):

1. Check r

2. Check ε

1

2

3

r

-

-
1. Check 1→ r→ 2→ 1→ 3

2. Check 1→ 3

...
...

bt(ab,s):

1. Check a

2. Check b on rest

3. Concatenate the updates

1

2

b

a

1. Run through a consuming some
characters

2. Run through b

3. All changes are written

bt(Group(i,r),s):

1. Write current position to changes

2. Check r

3. Write position after matching r to
changes

1

2

a

1. Write current position to changes

2. Run through r

3. Write the changed position to
changes

Figure 6. Backtracking compared to the generated TNFA.

5 IMPLEMENTATION407

While repeatedly calling algorithm 2 would be sufficient to reach the theoretical time bound we claimed,408

practical performance can be dramatically improved by avoiding to construct new states. Instead, we409

build a transition table that maps from old DFA states and an input range to a new DFA state, and the410

instructions to execute when using the transition. We build the transition table, including instructions, as411

we go. This is what we mean when we say that the DFA is lazily compiled.412

DFA transition table413

The DFA transition table is different from the NFA transition table in that the NFA transition table contains414

ε transitions and may have more than one transition from one state to another, for the same input range.415

DFA transition tables allow no ambiguity.416

Our transition tables, both for NFAs and DFAs, assume a transition to map a consecutive range of417

characters. If, instead, we used individual characters, the table size would quickly become unwieldy.418

However, input ranges can quickly become confusing if they are allowed to intersect. To avoid this and419

simplify the code dramatically while keeping the transition table small, we keep track of all input ranges420

that occur in the regular expression when is parsed. We then split the ranges until no two of them intersect.421

After this step, input ranges are never created again. By performing this step early in the pipeline we422

establish the invariant that it is impossible to ever come across intersecting input ranges.423

14/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

To give us a chance to ever reach a state that is already in the transition table, we check, after executing424

algorithm 2, whether there is a known DFA state that is mappable to the output of algorithm 2. If425

algorithm 2 has produced a DFA state Q, and there is a DFA state Q′ that contains the same NFA states, in426

the same order, then Q and Q′ may be mappable. If they are, then there is a set of instructions that move427

the histories from Q into Q′ such that, afterwards, Q′ behaves precisely as Q would have. Algorithm 4428

shows how we can find a mappable state, and the needed instructions. The run time of algorithm 4 is429

O(m), where m is the size of the input NFA.430

Algorithm 4 f indMapping(Q): Find a state that Q is mappable to, in order to keep the number of
states created bounded by the length of the regular expression.

1: function FINDMAPPING(Q)
Require: Q = [(qi,hi)]i=1...n is a DFA state.
Ensure: A state Q′ that Q is mappable to.

2: The ordered instructions m that reorder the memory locations of Q to Q′ and do not interfere with
each other.

3: for Q′ that contains the same NFA states as Q, in the same order do
4: − Invariant: For each history H there is at most one H ′ so that H←H ′ is part of the mapping.
5: Initialize empty bimap m − A bimap is a bijective map.
6: for qi = q′i with histories H and H ′ respectively do
7: for i = 0 . . . length(H)−1 do
8: if H(i) is in m as a key already and does not map to H ′(i) then
9: Fail

10: else
11: − Hypothesize that this is part of a valid map
12: Add H(i) 7→ H ′(i) to m
13: end if
14: end for
15: end for
16: end for
17: − The mapping was found and is in m.
18: sort m in reverse topological order so that no values are overwritten.

return Q′ and m
19: end function

DFA execution431

With these ingredients in place, the entire matching algorithm is straightforward. In a nutshell, we see432

if the current input appears in the transition table. Otherwise, we run algorithm 2. If the resulting state433

is mappable, we map. More formally, we can see this in algorithm 5. Here, algorithm 5 assumes that434

algorithm 2 does not immediately execute its instructions, but returns them back to the interpreter, both435

for execution and to feed into the transition table.436

Compactification437

The most important implementation detail, which brought a factor 10 improvement in performance, was438

the use of a compactified representation of DFA transition tables whenever possible. Compactified, here,439

means to store the transition table as a struct of arrays, rather than as an array of structs, as recommended440

by the Intel optimization handbook (Intel Corporation, 2013, section 6.5.1). The transition table is a map441

from source state and input range to target state and instructions. Following Intel’s recommendation,442

we store it as an object of five arrays: int[] oldStates, char[] froms, char[] tos,443

Instruction[][] instructions, int[] newStates, all of the same length, such that444

the ith entry in the table maps from oldStates[i], for a character greater than from[i], but smaller than to[i],445

to newStates[i], by executing instructions[i]. To read a character, the engine now searches in the transition446

table, using binary search, for the current state and the current input character, executes the instructions it447

finds, and transitions to the new state.448

However, the above structure is not a great fit with lazy compilation, as new transitions might have to449

be added into the middle of the table at any time. Another problem is that, above, the state is represented450

15/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

Algorithm 5 interpret(input): Interpretation and lazy compilation of the NFA.
1: function INTERPRET(input)

Require: input is a sequence of characters.
Ensure: A tree of matching capture groups.

2: − Lazily compiles a DFA while matching.
3: Set Q to startState.
4: − A coroutine is an NFA state, with an array of histories.
5: Let Q be all coroutines that are reachable in the NFA transition graph by following ε transitions

only.
6: Execute instructions described in algorithm run, when walking ε transitions.
7: − Create the transition map of the DFA.
8: Set T to an empty map from state and input to new state and instructions.
9: − Consume string

10: for position pos in input do
11: Let a be the character at position pos in input.
12: if T has an entry for Q and a then
13: − Let the DFA handle a
14: Read the instructions and new state Q′ out of T
15: execute the instructions
16: Q← Q′

17: jump back to start of for loop.
18: else
19: − lazily compile another DFA state.
20: Run run(Q,a) to find new state Q′ and instructions
21: Run findMapping(Q′,T) to see if Q’ can be mapped to an existing state Q′′

22: if Q′′ was found then
23: Append the mapping instructions from findMapping to the instructions found by run
24: Execute the instructions.
25: Add an entry to T , from current state Q and a, to new state Q′′ and instructions.
26: Set Q to Q′′

27: else
28: Execute the instructions found by run.
29: Add an entry to T , from current state Q and a, to new state Q′ and instructions.
30: Set Q to Q′.
31: end if
32: end if
33: end forreturn Memory of the end state (if any)
34: end function

16/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

as an integer. However, as described in the algorithm, a DFA state is really a list of coroutines. If we need451

to lazily compile another DFA state, all of the coroutines need to be examined.452

We adopted the following compromise: the canonical representation of the transition table is a red-453

black tree of transitions, each transition containing source and target DFA state (both as the full list of454

their NFA states, and histories), an input range, and a list of instructions. This structure allows for quick455

insertion of new DFA states once they are lazily compiled. At the same time, lookups in a red-black tree456

are logarithmic. Then, whenever we read a fixed number of input characters without lazily compiling, we457

transform the transition table to the struct of arrays described above, and switch to using it as our new458

transition table. If, however, we read a character for which there is no transition, we need to de-optimize,459

throw away the compactified representation, generate the missing DFA state, and add it to the red-black460

tree.461

The above algorithm chimes well with the observation that regular expression matching usually needs462

only a handful of DFA states, and thus, compactification can be performed early, and only seldom needs463

to be undone.464

Intertwining of the pipeline stages465

Lazily compiling the DFA when matching a string allows us to avoid compiling states that might never be466

needed. This allows us to avoid the full power set construction [Sipser (2005)], which has time complexity467

of O(2m), where m is the size of the NFA.468

Parsing the regular expression syntax469

Parsing the regular expression into an abstract syntax tree is a detail that can easily be overlooked. Since470

the algorithm for matching is already very fast, preliminary experiments showed that parsing the regular471

expression, even simple ones, can take up a major portion (25% in our experiment) of the time for running472

the complete match.473

The memory model to parse a regular expression is a stack, since capture groups can be nested. The474

grammar can be formulated as right recursive and with this formulation it can be implemented with a475

simple recursive descent parser as opposed to the previous Parsec parser. The resulting parser eliminated476

the parsing of the regular expression as a bottleneck, as can be seen in figure 7 (note the log plot).477

Benchmark478

All benchmarks were obtained using Google’s caliper15, which takes care of the most obvious benchmark-479

ing blunders. It runs a warm-up before measuring, runs all experiments in separate VMs, helps circumvent480

dead-code detection by accepting the output of dummy variables as input, and fails if compilation occurs481

during experiment evaluation. The source code of all benchmarks is available, together with the sources482

of the project, on Github. We ran all benchmarks on a 2.3 GHz, i7 Macbook Pro.483

As we saw in Section 2, there is a surprising dearth of regular expression engines that can extract484

nested capture groups — never mind extracting entire parse trees — that do not backtrack. Backtracking485

implementations are exponential in their run-time, and so we see in Figure 8 (note the log plot) how the486

run-time of “java.util.regex” quickly explodes exponentially, even for tiny input, for a pathological regular487

expression, while our approach slows down only linearly. The raw data is seen in Table 3.488

n 13 14 15 16 17 18 19 20

java.util.regex 241 484 1003 1874 3555 7381 14561 30116
Our implementation 225 252 273 32 327 352 400 421

Table 3. Matching times, in microseconds, for matching a?nan against input an.

In the opposite case, in the case of a regular expression that has been crafted to prevent any back-489

tracking, java.util.regex outperforms our approach by more than factor 2, as seen in Table 4 — but bear490

in mind that java.util.regex does not extract parse trees, but only the last match of all capture groups. A491

backtracking implementation that actually does produce complete parse trees is JParsec16, which, as also492

seen in Table 4, performs on par with our approach.493

15https://code.google.com/p/caliper/
16http://jparsec.codehaus.org

17/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

https://code.google.com/p/caliper/
http://jparsec.codehaus.org

abcd
ab|cd

a*b?|c*?d*?

(a+ (a?b(c*?)))

(.*?(.*?\.)*
([A

-Z] [a
-zA-Z]*))* .*?

10
2

10
3

10
4

10
5

10
6

10
7

p
a

rs
e

 t
im

e
 i

n
 n

s

parsec

new

Figure 7. Comparison of parsec and our hand-written top-down parser to parse the regular expression
syntax. Since the measurements are very noisy, the median with the MAD (median absolute deviation)
are plotted.

18/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

time

n

Figure 8. Time in nanoseconds for matching a?nan against input an. Bottom (purple) line is our
approach, top (blue) line is java.util.regex.

Note that because java.util.regex achieves its backtracking through recursion, we had to set the JVM’s494

stack size to one Gigabyte for it to parse the input. Since default stack size is only a few megabytes, this495

makes using java.util.regex a security risk, even for unproblematic regular expressions that cannot cause496

backtracking, since an attacker can potentially force the VM to run out of stack space.497

Tool Time

JParsec 4,498
java.util.regex 1,992

Ours 5,332

Table 4. Matching regular expression ((a+b)+c)+ against input (a200bc)2000, where a200 denotes 200
times character ‘a’. Time in microseconds.

Finally, a more realistic example, neither chosen to favor backtracking nor to avoid it, extracts all498

class names, with their package names, from the project sources itself. As seen in Table 5, our approach499

outperforms java.util.regex by 40%, even though our approach constructs the entire parse tree, and thus500

all class names, while java.util.regex outputs only the last matched class name. JParsec was not included501

in this experiment, since it does not allow non-greedy matches. Even though it is possible to build a parser502

that produces the same AST, it would necessarily look very different (using negation) from the regular503

expression.504

All Java source code and benchmarks are available under a free license on Github [Schwarz and Karper505

(2014)].17 In his dissertation, Schwarz (2014) reports on a potential application of this implementation to506

large scale clone detection. In his MSc thesis Karper (2014) also presents an implementation in Python.507

17https://github.com/nes1983/tree-regex

19/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

https://github.com/nes1983/tree-regex

Tool Time

java.util.regex 11,319
Ours 8,047

Table 5. Runtimes, in microseconds, for finding all java class names in all .java files in the project itself.
The regular expression used is /(.∗?([a−z]+n.)∗ ([A−Z][a−zA−Z]∗))∗ .∗?/.

6 CONCLUSION508

Regular expressions make for lightweight parsers and there are many cases where data is extracted this509

way. If such data is structured instead of flat, a parser that produces trees is superior to a standard regular510

expression parser. We provide such an algorithm with modern optimizations applied using results from511

persistent data-structures to avoid unnecessary memory consumption and the slow-down that this would512

produce. This algorithm is able to provide the same semantics as backtracking, but without an exponential513

worst case.514

Our approach can produce entire parse trees from matching regular expressions in a single pass over515

the string and do so asymptotically no slower than regular expression matching without any extraction.516

The practical performance is on par with traditional backtracking solutions if no backtracking ever517

happens, exponentially outperforms backtracking approaches for pathological input, and in a realistic518

scenario outperforms backtracking by 40%, even though our approach produces the full parse tree, and519

the backtracking implementation does not.520

7 ACKNOWLEDGMENTS521

We gratefully acknowledge the financial support of the Swiss National Science Foundation for the project522

“Agile Software Assessment” (SNSF project No. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015). We also523

thank Jan Kurš for his thorough review of this paper.524

REFERENCES525

Becket, R. and Somogyi, Z. (2008). DCGs + Memoing = Packrat parsing, but is it worth it? In Practical526

Aspects of Declarative Languages, volume LNCS 4902, pages 182–196. Springer.527

Cox, R. (2007). Regular expression matching can be simple and fast (but is slow in Java, Perl, PHP,528

Python, Ruby, ...). http://swtch.com/˜rsc/regexp/regexp1.html.529

Cox, R. (2009). Regular expression matching: the virtual machine approach. http://swtch.com/530

˜rsc/regexp/regexp2.html.531

Cox, R. (2010). Regular expression matching in the wild. http://swtch.com/˜rsc/regexp/532

regexp3.html.533

Driscoll, J. R., Sarnak, N., Sleator, D. D., and Tarjan, R. E. (1989). Making data structures persistent.534

Journal of Computer and System Sciences, 38(1):86–124.535

Dubé, D. and Feeley, M. (2000). Efficiently building a parse tree from a regular expression. Acta536

Informatica, 37(2):121–144.537

Ford, B. (2002). Packrat parsing: simple, powerful, lazy, linear time, functional pearl. In ICFP 02:538

Proceedings of the seventh ACM SIGPLAN international conference on Functional programming,539

volume 37/9, pages 36–47, New York, NY, USA. ACM.540

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of Reusable541

Object-Oriented Software. Addison Wesley Professional, Reading, Mass.542

Grathwohl, N. B. B., Henglein, F., Nielsen, L., and Rasmussen, U. T. (2013). Two-Pass greedy regular543

expression parsing. In Konstantinidis, S., editor, Implementation and Application of Automata, volume544

7982 of Lecture Notes in Computer Science, pages 60–71. Springer Berlin Heidelberg.545

Hickey, R. (2008). The Clojure programming language. In DLS ’08: Proceedings of the 2008 symposium546

on Dynamic languages, pages 1–1, New York, NY, USA. ACM.547

Intel Corporation (2013). Intel R© 64 and IA-32 Architectures Software Developer’s Manual. Intel,548

248966-028 edition.549

20/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp2.html
http://swtch.com/~rsc/regexp/regexp2.html
http://swtch.com/~rsc/regexp/regexp2.html
http://swtch.com/~rsc/regexp/regexp3.html
http://swtch.com/~rsc/regexp/regexp3.html
http://swtch.com/~rsc/regexp/regexp3.html

Karper, A. (2014). Efficient regular expressions that produce parse trees. Masters thesis, University of550

Bern.551

Karttunen, L., Chanod, J. P., Grefenstette, G., Schiller, A., and February, R. (1996). Regular expressions552

for language engineering. In Natural Language Engineering, pages 305–328.553

Kearns, S. M. (1991). Extending regular expressions with context operators and parse extraction. Softw:554

Pract. Exper., 21(8):787–804.555

Kuklewicz, C. (2007). Regular expressions/bounded space proposal. https://wiki.haskell.556

org/Regular_expressions/Bounded_space_proposal.557

Laurikari, V. (2000). NFAs with tagged transitions, their conversion to deterministic automata and558

application to regular expressions. In String Processing and Information Retrieval, 2000. SPIRE 2000.559

Proceedings. Seventh International Symposium on, pages 181–187. IEEE.560

Medeiros, S., Mascarenhas, F., and Ierusalimschy, R. (2012). From regexes to parsing expression561

grammars. Science of Computer Programming.562

Nielsen, L. and Henglein, F. (2011). Bit-coded regular expression parsing. In Dediu, A.-H., Inenaga,563

S., and Martı́n-Vide, C., editors, Language and Automata Theory and Applications, volume 6638 of564

Lecture Notes in Computer Science, pages 402–413. Springer Berlin Heidelberg.565

Norvig, P. (1991). Techniques for automatic memoization with applications to context-free parsing.566

Computational Linguistics, 17(1):91–98.567

Pike, R. (1987). The text editor sam. Software: Practice and Experience, 17(11):813–845.568

Schwarz, N. (2014). Scaleable Code Clone Detection. PhD thesis, University of Bern.569

Schwarz, N. and Karper, A. (2014). O(n m) regular expression parsing library that produces parse trees.570

http://dx.doi.org/10.5281/zenodo.10861.571

Sedgewick, R. (1990). Algorithms in C (paperback). Addison-Wesley Professional, 1 edition.572

Sipser, M. (2005). Introduction to the Theory of Computation. Course Technology, 2 edition.573

Sulzmann, M. and Lu, K. (2012). Regular expression sub-matching using partial derivatives. In Pro-574

ceedings of the 14th symposium on Principles and practice of declarative programming, pages 79–90.575

ACM.576

Thompson, K. (1968). Programming techniques: Regular expression search algorithm. Commun. ACM,577

11(6):419–422.578

21/21

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1248v1 | CC-BY 4.0 Open Access | rec: 20 Jul 2015, publ: 20 Jul 2015

P
re
P
rin

ts

https://wiki.haskell.org/Regular_expressions/Bounded_space_proposal
https://wiki.haskell.org/Regular_expressions/Bounded_space_proposal
https://wiki.haskell.org/Regular_expressions/Bounded_space_proposal
http://dx.doi.org/10.5281/zenodo.10861

	Introduction
	Motivation and Related Work
	Efficient Regex Matching with Capture Groups
	Proofs
	Implementation
	Conclusion
	Acknowledgments
	References

