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Astrocyte activation in the anterior cingulate cortex and

altered glutamatergic gene expression during paclitaxel-

induced neuropathic pain in mice

Willias Masocha

Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced

neuropathic pain (PINP) in animal models. We examined glial fibrillary acidic protein (GFAP;

an astrocyte marker) immunoreactivity and gene expression of GFAP, glutamate

transporters and receptor subunits by real time PCR in the anterior cingulate cortex (ACC)

at 7 days post first administration of paclitaxel, a time point when mice had developed

thermal hyperalgesia. The ACC, an area in the brain involved in pain perception and

modulation, was chosen because changes in this area might contribute to the

pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold and

GFAP immunoreactivity increased in the ACC of paclitaxel-treated mice. The 6 glutamate

transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2) quantified were not

significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor

subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1) were

significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not

significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic

receptor subunits analysed only mGLuR8 was significantly elevated. In conclusion, during

PINP there is astrocyte activation, no change in glutamate transporter expression and

differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting

astrocyte activation and the glutamatergic system might be another therapeutic avenue

for management of PINP.
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1 Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene 

2 expression during paclitaxel-induced neuropathic pain in mice

3 Abstract

4 Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain 

5 (PINP) in animal models. We examined glial fibrillary acidic protein (GFAP; an astrocyte 

6 marker) immunoreactivity and gene expression of GFAP, glutamate transporters and receptor 

7 subunits by real time PCR in the anterior cingulate cortex (ACC) at 7 days post first 

8 administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. The 

9 ACC, an area in the brain involved in pain perception and modulation, was chosen because 

10 changes in this area might contribute to the pathophysiology of PINP. GFAP transcripts levels 

11 were elevated by more than fivefold and GFAP immunoreactivity increased in the ACC of 

12 paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, 

13 VGLUT-1 and VGLUT-2) quantified were not significantly altered by paclitaxel treatment. Of 

14 the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, 

15 GLuK3, GLuK5 and GLuN1) were significantly up-regulated, whereas GLuA2, GLuK1, 

16 GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. 

17 Amongst the 8 metabotropic receptor subunits analysed only mGLuR8 was significantly 

18 elevated. In conclusion, during PINP there is astrocyte activation, no change in glutamate 

19 transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. 

20 Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic 

21 avenue for management of PINP.
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26 Introduction

27 The anterior cingulate cortex (ACC) is a cortical area in the brain that has been described to be 

28 involved with pain possibly including both perception and modulation (Vogt 2005; Xie et al. 

29 2009; Zhuo 2008). It is a component of the medial pain pathway. The afferent inputs to the ACC 

30 are from midline and intralaminar thalamic nuclei, whilst the ACC sends projections into various 

31 areas including the intralaminar thalamic nuclei and periaqueductal grey (PAG, which is 

32 involved in control of descending pain) (Senapati et al. 2005; Sewards & Sewards 2002; Vogt 

33 2005). Neuroimaging studies have shown increased activity in the ACC during chronic pain, 

34 including neuropathic pain (Hsieh et al. 1995; Peyron et al. 2000; Tseng et al. 2013). 

35 Neurophysiological and molecular changes have also been observed in the ACC during chronic 

36 or neuropathic (Wrigley et al. 2009; Xu et al. 2008; Yamashita et al. 2014). 

37 One of the changes that has been observed in the ACC during chronic or neuropathic pain is the 

38 activation of astrocytes or astrogliosis (Chen et al. 2012; Kuzumaki et al. 2007; Lu et al. 2011; 

39 Narita et al. 2006; Yamashita et al. 2014). Astrocytes are the most numerous non-neuronal cells 

40 in the brain involved in modulation of neuronal activities e.g. extracellular and synaptic cleft 

41 neurotransmitter level regulation, release of neuroactive molecules amongst other activities 

42 (Maragakis & Rothstein 2006; Seifert et al. 2006). Astrocytes express transporters which remove 

43 neurotransmitters such as γ-aminobutyric acid (GABA) and glutamate from the extracellular 

44 space or synaptic cleft (Conti et al. 1998; Danbolt 2001; Gosselin et al. 2010; Minelli et al. 1995; 

45 Wang & Bordey 2008). Astrocyte activation has been linked with increase in transporters for 
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46 GABA and a decrease in transporters for glutamate resulting in a more excitatory state in the 

47 brain (Gosselin et al. 2010; Maragakis & Rothstein 2006). Recently, we observed an increase in 

48 the transcripts of GABA transporter 1 (GAT-1) in a rodent model of paclitaxel-induced 

49 neuropathic pain (PINP) (Masocha 2015). However, it is not known whether paclitaxel induces 

50 astrocyte activation in the ACC although it has been shown to induce astrocyte activation in the 

51 spinal cord (Peters et al. 2007; Zhang et al. 2012). Paclitaxel is a chemotherapeutic agent that 

52 causes dose-dependent neuropathic pain in some patients (Scripture et al. 2006; Wolf et al. 

53 2008). In the rodent models we observed that the PINP is linked with disturbances in the 

54 GABAergic system (Masocha 2015) resulting in increased excitability of the ACC to 

55 electrophysiological stimulation (H Nashawi, IO Edafiogho, SB Kombian, W Masocha, 

56 unpublished data). GABA is the major inhibitory neurotransmitter while glutamate is the major 

57 stimulatory neurotransmitter in the brain (Meldrum 2000; Petroff 2002). It is not known whether 

58 paclitaxel causes any changes in the glutamatergic system in the ACC, although it has been 

59 shown to decrease the expression of glutamate transporters such as GLAST and GLT-1 in the 

60 spinal cord (Weng et al. 2005; Zhang et al. 2012). There are 8 known glutamate transporters, 

61 which are excitatory amino acid transporter 1 (EAAT1; referred to as GLAST in rodents), 

62 EAAT2 (GLT-1), EAAT3 (EAAC1), EAAT4, EAAT5, vesicular glutamate transporter 1 

63 (VGLUT1), VGLUT2, and VGLUT3 (Danbolt 2001; Shigeri et al. 2004). Of the transporters 

64 GLAST and GLT-1 are expressed on astrocytes (Danbolt 2001) and play an important role in 

65 removal of glutamate from the synaptic cleft and extracellular space (Danbolt 2001; Shigeri et al. 

66 2004) and if their expression is down-regulated this results in increased levels of glutamate and 

67 excitotoxicity (Danbolt 2001; Rothstein et al. 1996; Shigeri et al. 2004; Yi et al. 2005). 

68 Glutamate acts on ionotropic and metabotropic receptors. The ionotropic receptors are divided 
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69 into alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionate (AMPA), kainate and N-methyl-D-

70 aspartate (NMDA) receptors which have 18 subunits GLuA1 to 4, GLuK1-5 and GLuN1, 

71 GLuN2A to D, GLuN3A and B, and GLuD1 and 2 (Collingridge et al. 2009). There are 8 

72 subunits of the metabotropic receptors mGLUR1 to 8 (Conn & Pin 1997; Niswender & Conn 

73 2010). 

74 Astrocyte activation, which has been observed in the ACC in models of chronic and neuropathic 

75 pain (Chen et al. 2012; Kuzumaki et al. 2007; Lu et al. 2011; Narita et al. 2006; Yamashita et al. 

76 2014), might occur in the ACC during PINP together with molecular changes in the 

77 glutamatergic system contributing to the pathogenesis or maintenance of PINP. Thus, in this 

78 study, astrocyte activation and the gene expression of molecules of the astrocyte marker (glial 

79 fibrillary acidic protein (GFAP), glutamate transporters and receptors in the ACC were evaluated 

80 in mice at a time point when the mice had paclitaxel-induced thermal hyperalgesia (Nieto et al. 

81 2008; Parvathy & Masocha 2013). 
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82 Materials and Methods

83 Animals 

84 Ninety eight female BALB/c mice (8 to 12 weeks old) supplied by the Animal Resources Centre 

85 (ARC) at the Health Sciences Center (HSC), Kuwait University were used. The animals were 

86 housed and handled in compliance with the Kuwait University, HSC, ARC guidelines and 

87 published ethical guidelines for research in experimental pain with conscious animals 

88 (Zimmermann 1983). All animal experiments were approved by the Ethical Committee for the 

89 use of Laboratory Animals in Teaching and in Research, HSC, Kuwait University.

90 Paclitaxel administration 

91 Paclitaxel (Cat. No. 1097, Tocris, Bristol, UK) was dissolved in a solution made up of 50% 

92 Cremophor EL and 50% absolute ethanol to a concentration of 6 mg/ml and then diluted in 

93 normal saline (NaCl 0.9%), to a final concentration of 0.2 mg/ml just before administration. The 

94 vehicle for paclitaxel, thus, constituted of about 1.7% Cremophor EL and 1.7% ethanol in normal 

95 saline. Paclitaxel 2 mg/kg or its vehicle were administered to mice intraperitoneally (i.p.), daily 

96 for 5 consecutive days. This treatment regimen has been reported to produce painful neuropathy 

97 and thermal hyperalgesia in mice (Nieto et al. 2008; Parvathy & Masocha 2013). 

98 Hot plate test 

99 Reaction latencies to hot plate test were measured before (baseline latency) and on day 7 after 

100 first administration of paclitaxel. Briefly, mice were placed on a hot plate (Panlab SL, Barcelona, 

101 Spain) with the temperature adjusted to 55 ± 1 °C. The time to the first sign of nociception, paw 
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102 licking or flinching, was recorded and the animal immediately removed from the hot plate. A 

103 cut-off period of 20 seconds was maintained to avoid damage to the paws.

104 ACC tissue preparation 

105 The mice were anesthetized with isoflurane and sacrificed by decapitation. ACC was dissected 

106 and prepared for RNA extraction on day 7 post first administration of paclitaxel�a time point 

107 when mice had developed thermal hyperalgesia (Parvathy & Masocha 2013)�, as described 

108 previously (Masocha 2015)

109 Real time RT-PCR

110 Gene transcripts of the astrocyte marker GFAP, 6 glutamate transporters (GLAST, GLT-1, 

111 EAAC1, EAAT4, VGLUT1, VGLUT2), 12 ionotropic glutamate receptor subunits (GLuA1 to 4, 

112 GLuK1 to 5, GLuN1, GLuN2A and GLuN2B) and 8 metabotropic glutamate subunits (mGluR1 

113 to 8) were quantified in the ACC of vehicle-treated or paclitaxel-treated by real time PCR. Total 

114 RNA was extracted from the fresh frozen ACC using the RNeasy Kit (Qiagen GmbH), reverse-

115 transcribed, and the mRNA levels were quantified on an ABI Prism® 7500 sequence detection 

116 system (Applied Biosystems) as previously described (Masocha 2009). The primer sequences 

117 which were used, listed in Table 1, were ordered from Invitrogen (Life Technologies) and/or 

118 synthesized at the Research Core Facility (RCF), HSC, Kuwait University. The amplification 

119 and detection were performed as follows: a first hold at 50 ºC for 2 min, a second hold at 95 ºC 

120 for 2 min followed by 40 cycles at 95 ºC for 15 s and 63 ºC for 1 min. Threshold cycle (Ct) 

121 values for all cDNA samples were obtained and the amount of mRNA of individual animal 

122 sample (n = 6 to 24 per group) was normalized to cyclophilin (housekeeping gene) (ΔCt). The 
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123 relative amount of target gene transcripts was calculated using the 2-ΔΔCt method as described 

124 previously (Livak & Schmittgen 2001). 

125 Immunohistochemistry 

126 Fresh-frozen brains were cut on a cryostat into 25 µm thick sections and thaw-mounted on 

127 chrome-alum gelatin�coated slides. The sections at a level of the lateral ventricles and the ACC 

128 were fixed in 4% formalin and 14% picric acid in PBS for 30s at 4oC, rinsed in PBS, fixed in 

129 acetone for 30 s at �20oC, and then rinsed in PBS. All sections were preincubated with 1% 

130 bovine serum albumin and 0.3% Triton X-100 in PBS (solution used as diluent for primary and 

131 secondary antibodies) for 30 min at room temperature. Sections were incubated with rabbit anti- 

132 GFAP (1:100; DAKO, Glostrup, Denmark) for 2 h at room temperature to immunostain 

133 astrocytes. Sections were then rinsed in PBS and incubated with DyLight 594-conjugated 

134 Affinipure donkey Anti-rabbit IgG (H+L) (1:100, Jackson ImmunoResearch Laboratories, West 

135 Grove, PA, USA) for 1 h. The sections were rinsed in PBS and mounted in ProLong® Gold 

136 antifade reagent (Invitrogen, USA). Sections were examined and analysed using a LSM 700 laser 

137 scanning confocal microscope. Images were taken from the ACC using an Axio imager (Carl 

138 Zeiss MicroImaging GmbH, Germany).

139

140 Statistical analyses

141 Statistical analyses were performed using unpaired two-tailed Student�s t-test using Graph Pad 

142 Prism software (version 5.0). The differences were considered significant at p < 0.05. The results 

143 in the text and figures are expressed as the means ± S.E.M.
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144 Results 

145 Paclitaxel-induced thermal hyperalgesia

146 Mice developed thermal hyperalgesia on day 7 after first administration of paclitaxel as we 

147 previously described (Masocha 2014; Parvathy & Masocha 2013) i.e. paclitaxel-treated mice had 

148 significant reduction in response latency time in the hot plate test on day 7 compared to the 

149 baseline latency and vehicle-treated animals (6.23 ± 0.28 s compared to 9.66 ± 0.16 s and 9.00 ± 

150 0.38 s, respectively; n = 10 vehicle-treated mice and 16 paclitaxel treated-mice; p < 0.05 for both 

151 comparisons).

152

153 Astrocyte activation in the ACC at 7 days after paclitaxel administration

154 The mRNA expression and immunoreactivity of the astrocyte marker, GFAP, were analysed in 

155 the ACC at day 7, a time when the mice had developed thermal hyperalgesia. Treatment with 

156 paclitaxel significantly increased the expression of GFAP transcripts (p = 0.02) by more than 

157 fivefold compared to vehicle-treated controls (Fig. 1). Confocal microscopy images showed that 

158 in paclitaxel-treated mice there was increased GFAP immunoreactivity in the ACC compared to 

159 vehicle-treated controls (Fig. 2). However, the change in GFAP immunoreactivity in paclitaxel-

160 treated animals varied across the ACC and animals i.e. it was not robust in all animals and did 

161 not cover most of the ACC. 

162

163
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164 Expression of transcripts of glutamate transporters in the ACC at 7 days after paclitaxel 

165 administration 

166 .There were no differences observed in the transcript levels of all the six glutamate transporters 

167 analysed (Fig. 3) in the ACC of paclitaxel-treated mice compared to vehicle-treated mice. Using 

168 the unpaired two-tailed Student�s t-test the p values obtained are: 0.7243 for GLAST, 0.6608 for 

169 GLT-1, 0.7575 for EAAC1, 0.5925 for EAAT4, 0.8885 for VGLUT-1 and 0.0858 for VGLUT-

170 2..

171

172 Expression of transcripts of glutamate receptors in the ACC at 7 days after paclitaxel 

173 administration 

174 Amongst the AMPA receptor subunits GLuA4 was lowly expressed in the ACC and mRNA 

175 expression was not detected after 40 cycles in the real time RT-PCR in 12 out of 16 vehicle- and 

176 paclitaxel-treated animals analysed. Treatment with paclitaxel did not significantly alter the 

177 mRNA expression of the AMPA receptor subunit GLuA2 (p = 0.9720), but significantly 

178 increased the expression of GLuA1 (p = 0.0166) and GLuA3 (p = 0.0243) subunits compared to 

179 vehicle-treated controls (Fig. 4A). 

180 Amongst the 5 kainate receptor subunits analysed treatment with paclitaxel significantly 

181 increased the expression of the 3 subunits GluK2 (p = 0.0136), GluK3 (p = 0.0026) and GluK5 

182 (p = 0.0011), but not 2 subunits GluK1 (p = 0.4367) and GluK4 (p = 0.2785), compared to 

183 vehicle-treated controls (Fig. 4B). 
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184 Amongst the 3 NMDA receptor subunits analysed treatment with paclitaxel significantly 

185 increased the expression of GluN1 (p = 0.0209) only, but not 2 subunits GluN2A (p = 0.0612) 

186 and GluN2B (p = 0.1105), compared to vehicle-treated controls (Fig. 4C). 

187 Of all the eight metabotropic glutamate receptors subunits quantified only mGLuR8 was 

188 significantly altered (p = 0.0144) in the ACC by treatment with paclitaxel compared to treatment 

189 with vehicle (Figure 4E-F). Using the unpaired two-tailed Student�s t-test the p values obtained 

190 are: 0.4439 for mGLuR1, 0.1340 for mGLuR2, 0.3201 for mGLuR3, 0.9971 for mGLuR4, 0.3375 

191 for mGLuR5, 0.9693 for mGLuR6 and 0.2780 for mGLuR7.

192
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193 Discussion

194 This is the first study to report on the quantification and/or changes in the transcript levels and 

195 immunoreactivity of the astrocyte marker GFAP, transcript levels of glutamate transporters and 

196 receptors in the ACC, an area associated with pain perception and modulation (Vogt 2005; Xie et 

197 al. 2009; Zhuo 2008), during paclitaxel-induced neuropathic pain (PINP).

198 Increased expression of GFAP in the brain is a marker of astrocyte activation (Aldskogius & 

199 Kozlova 1998). Various studies have reported increased expression of GFAP mRNA and protein 

200 in the ACC during pain (Chen et al. 2012; Kuzumaki et al. 2007; Lu et al. 2011). Astrocyte 

201 activation has also been observed in the ACC in other models of neuropathic pain (Xu et al. 

202 2008; Yamashita et al. 2014) but had not been reported in PINP. However, astrocyte activation in 

203 the spinal cord has been reported to contribute to PINP in rodents (Ruiz-Medina et al. 2013; 

204 Zhang et al. 2012). In the current study the expression of GFAP transcripts and immunoreactivity 

205 in the ACC was increased in mice treated with PINP. During peripheral nerve injury neurons 

206 have been reported to release neurotransmitters such substance P and glutamate and neuronal 

207 chemokines that cause astrocyte activation in the CNS (Milligan & Watkins 2009; Wang et al. 

208 2009; Watkins et al. 2007). Activated astrocytes in turn release molecules that contribute to the 

209 pathophysiology of pain through modulation of neuronal functioning (Milligan & Watkins 2009; 

210 Wang et al. 2009; Watkins et al. 2007). Thus, the current results suggest that astrocyte activation 

211 in the ACC might also contribute to the pathophysiology of PINP.

212 The activation of astrocytes in the spinal cord induced by paclitaxel has been reported to be 

213 accompanied with a decrease in the expression of the glial glutamate transporters GLAST and 

214 GLT-1 (Zhang et al. 2012) as well as an increase in the GABA transporter GAT-1 (Yadav et al. 
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215 2015). In the current study, there were no changes in the transcript levels of glutamate 

216 transporters in the ACC of paclitaxel-treated mice. However, in a recent study, we observed 

217 elevated transcripts of GAT-1 in the ACC of mice with PINP (Masocha 2015). This suggests that 

218 astrocyte activation and increased expression of GAT-1, but not glutamate transporters, in the 

219 ACC play a role in the pathogenesis in PINP. This would result in an imbalance in the inhibitory 

220 (GABA) and excitatory (glutamate) neurotransmitters, which might result in increased 

221 excitability of the ACC.  Increased neuronal excitability in the ACC might contribute to the 

222 increased activity observed in the ACC during neuropathic pain in both humans and animal 

223 models (Hsieh et al. 1995; Peyron et al. 2000; Tseng et al. 2013; Wrigley et al. 2009; Xu et al. 

224 2008; Yamashita et al. 2014). 

225 Although we did not observe any changes in the glutamate transporters in the ACC, we observed 

226 that transcripts of various glutamate receptors and receptor subunits were elevated in the ACC of 

227 mice with PINP. The increased expression of some of the glutamate receptors and receptor 

228 subunits could have been linked to astrocyte activation since all of the up-regulated receptors are 

229 expressed on astrocytes (Geurts et al. 2005; Martínez-Lozada & Ortega 2015). Several receptors 

230 have been reported to be differentially expressed in the ACC in rodent models of PINP. We 

231 observed an increase in the expression of various GABA receptors in the ACC during PINP 

232 (Masocha 2015). Ortega et al. reported a differential expression of muscarinic-1 and −2 receptors 

233 and dopamine D1 and D2 receptors in the ACC of rodents with PINP (Ortega-Legaspi et al. 

234 2011; Ortega-Legaspi et al. 2010). The increased expression glutamate receptors in the ACC also 

235 suggest a role of the glutamatergic system in the pathogenesis of PINP.

236
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237

238 Conclusions

239 In conclusion, the results of this study show that animals with paclitaxel-induced neuropathic 

240 pain (PINP) have increased transcripts and immunoreactivity of the astrocyte marker GFAP and 

241 transcripts of some glutamate receptors and receptor subunits, but not glutamate transporters, in 

242 the ACC. In a previous study, transcripts of a GABA transporter GAT-1, whose increase has 

243 been associated with astrocyte activation in the spinal cord of rodents with PINP (Yadav et al. 

244 2015), was found increased in the ACC of mice with PINP (Masocha 2015). Thus, inhibition of 

245 astrocyte activation and GAT-1 activity and/or antagonism of specific glutamate receptors could 

246 be therapeutic modalities of managing PINP and possibly other types on chemotherapy-induced 

247 neuropathic pain.

248

249

250
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Figure 1(on next page)

Effects of paclitaxel on glial fibrillary acidic protein (GFAP) transcript levels in the

anterior cingulate cortex (ACC)

Relative GFAP mRNA expression in the ACC of BALB/c mice on day 7 after first administration of the drug or

its vehicle. Each point represents the mean i ����� �� ��� 	
���
 ���
���� ���� �� 	����������
��� �������

mice and 24 paclitaxel-treated mice. ** p < 0.01 compared to vehicle-treated control mice.
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2

Effects of paclitaxel on glial fibrillary acidic protein (GFAP) immunoreactivity in the

anterior cingulate cortex (ACC)

GFAP immunoreactivity in the ACC of BALB/c mice on day 7 after first administration of the drug or its

vehicle. GFAP immunoreactivity in astrocytes is increased in 3 paclitaxel-treated mice (D -F) compared to 3

vehicle-treated control mice (A-C) in the ACC. Note that in a paclitaxel-treated mouse (D) increased

immunoreactivity of GFAP appears to be along a blood vessel: Scale bar: 50 ���
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Figure 3(on next page)

Effects of paclitaxel on glutamate transporters transcript levels in the anterior cingulate

cortex (ACC)

Relative mRNA expression of (A) excitatory amino acid transporters GLAST, GLT-1, EAAC1, EAAT4, and (B)

vesicular glutamate transporters VGLUT1 and VGLUT2 in the ACC of BALB/c mice on day 7 after first

administration of the drug or its vehicle. Each point represents the mean a ����� � !"# $%&'#( �)!%*+#,

from 11-15 vehicle-treated control mice and 13-15 paclitaxel-treated mice .
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Figure 4(on next page)

Effects of paclitaxel on glutamate receptors transcript levels in the anterior cingulate

cortex (ACC)

Relative mRNA expression of (A) AMPA receptor subunits GLuA1 to 3, (B) kainate receptor subunits GLuK1 to

5, (C) NMDA receptor subunits GLuN1, GLuN2A and GLuN2B, and (D-F) metabotropic glutamate receptors

mGLuR 1  to  8  in the ACC of BALB/c mice on day 7 after first administration of the drug or its vehicle. Each

point represents the mean p -./.0 12 345 67895: 1;37<=5> 2?1@ ABCD 654<E85B3?5735> E1=3?18 @<E5 7=> FBCA

paclitaxel-treated mice . * p < 0.05, ** p < 0.01 compared to vehicle-treated control mice.
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Table 1(on next page)

PCR primer sequences of cyclophilin, GFAP and glutamatergic system molecules
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1 Table 1 PCR primer sequences of cyclophilin, GFAP and  glutamatergic system molecules

Polarity Gene

Sense

Sequence 5´to 3´

Anti-sense

Sequence 5´to 3´

Cyclophilin GCTTTTCGCCGCTTGCT CTCGTCATCGGCCGTGAT

GFAP ACAGCGGCCCTGAGAGAGAT CTCCTCTGTCTCTTGCATGTTACTG

GLAST ACCAAAAGCAACGGAGAAGAG GGCATTCCGAAACAGGTAACTC

GLT-1 ACAATATGCCCAAGCAGGTAGA CTTTGGCTCATCGGAGCTGA

EAAC1 CTTCCTACGGAATCACTGGCT CGATCAGCGGCAAAATGACC

EAAT4 AGCAGCCACGGCAATAGTC ATGCCAAGCTGACACCAATGA

VGLUT-1 GGTGGAGGGGGTCACATAC AGATCCCGAAGCTGCCATAGA

VGLUT-2 CCCTGGAGGTGCCTGAGAA GCGGTGGATAGTGCTGTTGTT

GLuA1 CCGTTGACACATCCAATCAGTTT GTCGATAATGCTAATGAGAGCTTCCT

GLuA2 AAATTGCCAAACATTGTGG ATGGAGCCATGGCAATATCA

GLuA3 ACACCATCAGCATAGGTGGA TCAGTGGTGTTCTGGTTGGT

GLuA4 TTGGAATGGGATGGTAGGAG TAGGAACAAGACCACGCTGA

GLuK1 TCACACCCTACGAGTGGTATAAC AGCTCCAACGCCAAACCAG

GLuK2 ATCGGATATTCGCAAGGAACC CCATAGGGCCAGATTCCACA

GLuK3 AGGTCCTAATGTCACTGACTCTC GCCATAAAGGGTCCTATCAGAC

GLuK4 CCAAGGTCGAAGTGGACATCT CTGGGGTGAAGGTTCAGGG

GLuK5 ATAGTCGCCTTCGCCAATCC GTGTCCGTGGTCTCGTACTG

GLuN1 GGCATCGTAGCTGGGATCTTC TCCTACGGGCATCCTTGTG

GLuN2A GTTTGTTGGTGACGGTGAGA AAGAGGTGCTCCCAGATGAA

GLuN2B ATGTGGATTGGGAGGATAGG TCGGGCTTTGAGGATACTTG

mGluR1 TGTCATCAACGCCATCTATGC CCCACGTAGCCAGGACATAGAG

mGluR2 CGCTCTCTGCACGCTCTATG GATGAACTTGGCCTCGTTGAA

mGluR3 AAGCCATCGCCTGTCATCTG GGAGGTCCCAAGCCCAAGT

mGluR4 GATGCTCTACATGCCCAAAGTCTAC CGGTGACAACGGCTTTGAG

mGluR5 TGACCCTGAGCCCATTGC AACGAAGAGGGTGGCTAGCA

mGluR6 TCATGGCCACCACAACTATCA CAGAGGCGCGGACTATGG

mGluR7 AAGCCTGGGCAGAGGAAGA TCCATCACAGGGCTCACAAG

mGluR8 CAGCATCTGTCTGCAGCCTG CGGTTTTCTTCCTCTCCCCA

2

3
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