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The two major brain networks, i.e. the default mode network (DMN) and the task positive network, 

typically reveal negative and variable connectivity in resting-state. In the present study, we examined 

whether the connectivity between the DMN and different components of the task positive network 

were modulated by other brain regions by using physiophysiological interaction (PPI) on resting-state 

functional magnetic resonance imaging data. Spatial independent component analysis was first 

conducted to identify components that represented networks of interest, including the anterior and 

posterior DMNs, salience, dorsal attention, left and right executive networks. PPI analysis was 

conducted between pairs of these networks to identify networks or regions that showed modulatory 

interactions with the two networks. Both network-wise and voxel-wise analyses revealed reciprocal 

positive modulatory interactions between the DMN, salience, and executive networks. Together with 

the anatomical properties of the salience network regions, the results suggest that the salience network 

may modulate the relationship between the DMN and executive networks. In addition, voxel-wise 

analysis demonstrated that the basal ganglia and thalamus positively interacted with the salience 

network and the dorsal attention network, and negatively interacted with the salience network and the 

DMN. The results demonstrated complex modulatory interactions among the DMNs and task positive 

networks in resting-state, and suggested that communications between these networks may be 

modulated by some critical brain structures such as the salience network, basal ganglia, and thalamus.
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Modulatory Interactions between the Default Mode Network 
and Task Positive Networks in Resting-State

The two major brain networks, i.e. the default mode network (DMN) and the task positive 

network, typically reveal negative and variable connectivity in resting-state. In the present 

study, we examined whether the connectivity between the DMN and different components of 

the task positive network were modulated by other brain regions by using physiophysiological 

interaction (PPI) on resting-state functional magnetic resonance imaging data. Spatial 

independent component analysis was first conducted to identify components that represented 

networks of interest, including the anterior and posterior DMNs, salience, dorsal attention, left 

and right executive networks. PPI analysis was conducted between pairs of these networks 

to identify networks or regions that showed modulatory interactions with the two networks. 

Both network-wise and voxel-wise analyses revealed reciprocal positive modulatory 

interactions between the DMN, salience, and executive networks. Together with the 

anatomical properties of the salience network regions, the results suggest that the salience 

network may modulate the relationship between the DMN and executive networks. In 

addition, voxel-wise analysis demonstrated that the basal ganglia and thalamus positively 

interacted with the salience network and the dorsal attention network, and negatively 

interacted with the salience network and the DMN. The results demonstrated complex 

modulatory interactions among the DMNs and task positive networks in resting-state, and 

suggested that communications between these networks may be modulated by some critical 

brain structures such as the salience network, basal ganglia, and thalamus.
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Introduction

The human brain is intrinsically organized as different networks as generally revealed by resting-

state functional magnetic resonance imaging (fMRI) (Beckmann et al., 2005; Golland et al., 

2008; Yeo et al., 2011).  Brain regions within a network generally convey relatively higher 

connectivity than regions from different networks (Biswal et al., 1995; Cordes et al., 2000; 

Greicius et al., 2003), thus constituting modular organizations of brain functions (Salvador et al., 

2005; Meunier et al., 2009; Doucet et al., 2011).  On the other hand, brain regions that belonged 

to different networks generally have weaker connectivity, however, between network 

communications are considered to be critical to support complex brain functions which need to 

integrate resources from different brain systems (Bullmore and Sporns, 2012; Cole et al., 2013). 

There are two major systems in the brain, the task positive network shows consistent 

activations across different tasks (Shulman et al., 1997a), while the default mode network (DMN) 

shows consistent deactivations (Shulman et al., 1997b).  These two systems reveal moment to 

moment anticorrelation even when the subject isn't performing explicit tasks (Fox et al., 2005).  

The negative correlation between the DMN and the task positive network becomes stronger after 

adolescence (Barber et al., 2013; Chai et al., 2014), and may serve as a suppression mechanism 

that inhibits unwanted thoughts, thus making behavior responses more reliable (Kelly et al., 

2008; Spreng et al., 2010; Anticevic et al., 2012; Wen et al., 2013).  Although the original study 

of anticorrelation has been questioned because of global regression in data processing (Murphy et 

al., 2009), further studies have shown that the negative correlation between the DMN and the task 

positive network is still present without global regression (Fox et al., 2009; Chai et al., 2012), and 

thought to be of neuronal origins (Keller et al., 2013).  However, the controversies of negative 

correlation may partially due to the fact that the connectivity between the DMN and the task 

positive network are highly variable (Chang and Glover, 2010; Kang et al., 2011). 
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The negative connectivity between the task positive network and DMN has been shown to 

be modulated or mediated by other networks, which may provide hints on the variability of the 

negative correlation.  Sridharan and colleagues showed that the salience network (Seeley et al., 

2007) activated the executive network which is part of the task positive network, and deactivated 

the DMN during both task performing conditions and resting-state (Sridharan, Levitin, and 

Menon, 2008).  In addition, Spreng and colleagues suggested that the relationship between the 

DMN and the dorsal attention network was mediated by regions of the frontoparietal control 

network (Spreng et al., 2013).  Thus, the task positive network could be further divided into 

different sub-networks such as the salience network, dorsal attention network, and (left and right) 

executive networks, and these networks may convey complex interactions with the DMN.  In the 

present study, we aimed to investigate whether the relationship between two networks was 

modulated by other networks (or regions) by using physiophysiological interaction (PPI) (Friston 

et al., 1997; Di and Biswal, 2013a), which might provide a novel avenue to characterize complex 

relationships among these networks. 

Specifically, we sought to systematically investigate the modulatory interaction between 

the DMN and task positive networks using PPI analysis on resting-state fMRI data.  Spatial 

independent component analysis (ICA) was first performed to identify the networks of interest, 

including the anterior and posterior DMNs, salience, dorsal attention, left executive, and right 

executive networks.  PPI analysis was then performed between each two of the networks using 

both network-wise and voxel-wise analyses.  This between-network PPI analysis was used to 

identify networks or regions that modulate the dynamic relationship between the two predefined 

networks.  Based on notion that the salience network played an important role in switching of 

large scale brain networks (Sridharan, Levitin, and Menon, 2008; Menon and Uddin, 2010), we 

predicted that the salience network might show interaction effects with the DMN and executive 

networks. 
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Methods

Subjects

The resting-state fMRI data was derived from the Beijing_Zang dataset of the 1000 functional 

connectomes project (http://fcon_1000.projects.nitrc.org/) (Biswal et al., 2010).  This dataset 

originally contained 198 subjects.  The first 64 subjects without large head motions were included 

in the current analysis (40 female/ 24 male).  The mean age of these subjects was 21.1 years 

(range from 18 to 26 years of age). This study involves analyzing public available dataset, which 

doesn't need IRB approval. Further, we didn't use any patient identification features in this study.

Scanning parameters

The MRI data were acquired using a SIEMENS Trio 3-Tesla scanner from Beijing Normal 

University.  230 resting-state functional data were acquired for each subject using TR of 2 s.  The 

resolution of the fMRI images was 3.125 x 3.125 x 3 mm3 with 64 x 64 x 36 voxels.  T1-

weighted three-dimensional magnetization-prepared rapid gradient echo (MP-RAGE) images 

were acquired for all the subject using the following parameters: 128 slices, TR = 2530 ms, TE = 

3.39 ms, slice thickness = 1.33 mm, flip angle = 7°, inversion time = 1100 ms, FOV = 256 × 256 

mm2.

Functional MRI data analysis 

Preprocessing

The fMRI image preprocessing and analysis were conducted using SPM8 package 

(http://www.fil.ion.ucl.ac.uk/spm/) under MATLAB 7.6 environment 

(http://www.mathworks.com).  For each subject, the first two functional images were discarded, 

resulting in 228 images for each subject.  Firstly, the functional images were motion corrected 

using the realign function.  The head motion estimates in any of the three translational or three 

rotational directions for all the subjects were less than 2 mm or 2o.  Next, the functional images 
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were linearly coregistrated to the subject’s own high resolution anatomical image using the 

coregister function.  Next, subject’s anatomical images were normalized to the T1 template 

provided by SPM package in MNI space (Montreal Neurological Institute).  Then, the 

normalization parameters were used to normalize all the functional images into MNI space, and 

the functional images were resampled into 3 x 3 x 3 mm3 voxels.  Finally, all the functional 

images were smoothed using a Gaussian kernel with 8 mm full width at half maximum (FWHM).

Spatial ICA

Spatial ICA was conducted to define networks for the PPI analysis using Group ICA of fMRI 

Toolbox (GIFT) (http://icatb.sourceforge.net/) (Calhoun et al., 2001).  Twenty components were 

extracted.  Among the 20 ICA maps (see supplementary Figure S1), we identified the DMN and 

task positive network components by visually comparing the IC maps with previous studies 

(Biswal et al., 2010; Cole, Smith, and Beckmann, 2010).  Two components were identified as 

DMN, with one more anteriorly localized (Figure 1A) and the other more posteriorly localized 

(Figure 1B).  We also identified four components that represented different task positive 

networks, i.e. the salience, dorsal attention, left executive, and right executive networks (Figure 

1C through 1F).  Time series associated with these six components were obtained for each subject 

for following PPI analysis.  To aid interpretations of the PPI results, simple correlations among 

the six networks were calculated for each subject.  The correlation values were transformed into 

Fisher's z, and statistical significances were tested across subjects using one sample t-test.

[Insert Figure 1 here]

PPI analysis

Physiophysiological interaction analysis, along with its variant psychophysiological interaction, 

were first proposed by Friston and colleagues to characterize modulated connectivity by another 

region or a psychological manipulation (Friston et al., 1997).  The present analysis focused on the 
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modulation of connectivity by other regions or networks.  Specifically, time series of two 

networks were used to define an interaction model using a linear regression framework.

εβββ +⋅⋅+⋅+⋅= 212211 NNPPINNNN xxxxy

Where 
1Nx
and 

2Nx
 represented the time series of two networks.  Critically, we were interested in 

whether the interaction term of the two time series was correlated with the time series of a given 

voxel or region 
y

 (the effect of 
PPIβ

).  A positive interaction effect implies that the connectivity 

between the resultant region and one of the network is positively modulated by the other network. 

While a negative interaction effect implies that the connectivity between the resultant region and 

one of the network is negatively modulated by the other network.  It should be noted that the PPI 

analysis is different from partial correlation analysis, which simply examines a linear relationship 

between two regions by controlling the activity of a third region (Marrelec et al., 2006).  A partial 

correlation is similar to the effects of 
1Nβ
 and 

2Nβ
 in the current model where the activity of 

2Nx
 or 

1Nx
is controlled, respectively, which cannot directly examine the interaction of the two 

variables.  

In practice, the time series of the two networks were deconvolved with a hemodynamic 

response function (hrf), so that the PPI term was calculated in the neuronal level but not 

hemodynamic level (Gitelman et al., 2003).  The deconvolution procedure can in principle 

minimize noises when calculating PPI terms (Gitelman et al., 2003), and has been shown to 

provide better statistical results in previous empirical analysis (Di and Biswal, 2013a).
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Before PPI analysis, the time series of each network were preprocessed in following steps. 

Six rigid-body motion parameters, the first principle component time series of white matter 

(WM) signal, and the first principle component time series of cerebrospinal fluid (CSF) signal 

were regressed out from the original time series by using linear regression model.  The subject 

specific WM and CSF masks were derived from their own segmented WM and CSF images, with 

a threshold of 0.99 to make sure that GM voxels were excluded from the masks.  Next, a high-

pass filter of 0.01 Hz was applied on the time series to minimize low frequency scanner drift.  

The preprocessed time series of two networks were first deconvolved with the hrf using a simple 

empirical Bayes procedure, so that the resulting time course represented an approximation to 

neural activity (Gitelman et al., 2003).  Next, the two neural time series were detrended and point 

multiplied, so that the resulting time series represented the interaction of neural activity between 

two networks.  And lastly, the interaction time series was convolved with the hrf, resulting in an 

interaction variable in BOLD level.  The PPI terms were calculated for each pair of the six 

networks. 

Network-wise PPI analysis was first conducted to directly examine the relationships 

among networks, which is similar to von Kriegstein and Giraud (von Kriegstein and Giraud, 

2006).  In the network-wise analysis, the dependent variable was the time series of a network 

rather than the time series of every voxel in the brain.  In the PPI linear regression model, the 

main effects of the two networks, and the PPI effects between them were added as independent 

variables along with a constant regressor.  After model estimation, cross-subject one-sample t-

tests were performed on the beta values of PPI effects.  The critical p value was set as p < 0.05 

after Bonferroni correction (corresponding to a raw p value of 8.33 x 10-4 after correcting for 

totally 60 comparisons).  

In addition, voxel-wise PPI analysis was also performed to identify regions across the 

whole brain that were associated with a PPI effect.  PPI terms were calculated for each pair of the 
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six networks, resulting in 15 PPI effects.  Then separate PPI models were built for each subject 

using the general linear model (GLM) framework.  The GLM model contained two regressors 

representing the main effects of two networks' time series, one regressor representing the PPI 

effect, two regressors representing WM and CSF signals, and six regressors representing head 

motion effects.  An implicit high pass filter of 1/100 Hz was used.  For each PPI effect, a 2nd-

level one sample t-test was conducted to make group-level inference.  Simple t contrast of 1 or -1 

was defined to reveal positive or negative PPI effects, respectively.  The resulting clusters were 

first height thresholded at p < 0.001, and cluster-level false discovery rate (FDR) corrected at p < 

0.0033 based on random field theory (Chumbley and Friston, 2009).  The cluster-level p value 

was chosen to take into account the totally 15 PPI effects.  The resulting clusters were labeled 

according to their peak coordinates using Talairach Daemon (Lancaster et al., 2000), after taking 

into account the discrepancies between MNI space and Talairach space (Lancaster et al., 2007).  

Results

Simple correlations among networks

The mean correlations among the six networks are listed in Table 1.  There was a positive 

correlation between the anterior and the posterior DMNs (MFisher's z = 0.359).  However, the 

correlations among the four task positive networks were mixed.  The salience network revealed a 

positive correlation with the dorsal attention network (MFisher's z = 0.333), but a negative 

correlation with the right executive network (MFisher's z = -0.142).  There was a positive correlation 

between the left and right executive networks (MFisher's z = 0.427).  The correlations between DMN 

components and task positive components were also mixed.  The anterior DMN showed negative 

correlations with the salience network (MFisher's z = -0.299) and the dorsal attention network 

(MFisher's z = -0.530), while positive correlations with the left executive network (MFisher's z 0.184) 

and the right executive network (MFisher's z = 0.247).  Similarly, the posterior DMN revealed a 
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negative correlation with the salience network (MFisher's z = -0.251), while positive correlations 

with the left executive network (MFisher's z = 0.320) and the right executive network (MFisher's z = 

0.188).

[Insert Table 1 here]

Network-wise PPI analysis

Significant network-wise modulatory interactions are illustrated in Figure 2 (see also 

supplementary Table S1 for a full list of statistics).  First, positive modulatory interactions were 

observed among the DMNs, the salience network, and the executive networks.  Positive 

modulatory interactions were observed among the anterior DMN, salience, and right executive 

networks in all of the three ways.  The time series of anterior DMN were correlated with the 

interactions of the salience and right executive networks (Mbeta = 0.060; t = 4.77, p = 1.14 x 10-5). 

The time series of salience network were correlated with the interactions of the anterior DMN 

and right executive network (Mbeta = 0.054; t = 4.09, p = 1.25 x 10-4).  And the time series of the 

right executive network were correlated with the interactions of the anterior DMN and salience 

network (Mbeta = 0.109; t = 8.27, p = 1.19 x 10-11).  The left executive time series were also 

correlated with the interactions of the anterior DMN and salience network (Mbeta = 0.048; t = 

3.67, p = 4.98 x 10-4).  In addition, the time series of the right executive network were correlated 

with the interactions of the posterior DMN and salience network (Mbeta = 0.045; t = 3.81, p = 

3.17 x 10-4).  Second. a negative modulatory interaction was also observed among the anterior 

DMN, posterior DMN and right executive network.  The time series of the anterior DMN were 

negatively correlated with the interactions of the posterior DMN and right executive network 

(Mbeta = -0.039; t = -0.404, p = 1.48 x 10-4).  Lastly, positive modulatory interactions were also 

observed among task positive networks.  The left executive network time series were correlated 

with the interactions of the salience and right executive network (Mbeta = 0.046; t = 4.01, p = 

1.66 x 10-4), and the right executive network times series were correlated with the interactions of 
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the salience and left executive network (Mbeta = 0.053; t = 3.94, p = 2.06 x 10-4).  The right 

executive network time series were also correlated with the interaction effects of the dorsal 

attention and left executive networks (Mbeta = 0.058; t = 4.31, p = 5.91 x 10-5).

[Insert Figure 2 here]

Voxel-wise PPI analysis

The voxel-wise PPI results of the anterior DMN with the four task positive networks are 

illustrated in Figure 3.  A full list of regions that showed significant PPI effects in all the fifteen 

voxel-wise analyses can also been found in supplementary Table S2.  The regions that revealed 

positive modulatory interactions with the anterior DMN and salience network mainly resembled a 

typical task positive network (Figure 3A).  These regions included the bilateral dorsolateral 

prefrontal cortex (mainly the middle and superior frontal gyrus, BA 9 and 10), bilateral parietal 

lobule (mainly the precuneus and inferior parietal lobule, BA 7 and 40), and left middle temporal 

gyrus (BA 37).  Additionally, a small cluster in the posterior cingulate (BA 29) also revealed 

positive modulatory interactions.  In contrast, several regions showed negative modulatory 

interactions, including the middle portion of cingulate gyrus (BA 24), bilateral putamen, and right 

insula (BA 13).  For the modulatory interactions of the anterior DMN and dorsal attention 

network, positive effects were observed in the bilateral dorsolateral prefrontal cortex (mainly the 

middle and superior frontal gyrus, BA 9, and 47), and bilateral parietal lobule (mainly the inferior 

parietal lobule and supramarginal gyrus, BA 40) (Figure 3B).  No negative effects were observed. 

Only one region located in the right inferior parietal lobule (BA 40) revealed negative modulatory 

interactions with the anterior DMN and left executive network (Figure 3C).  No positive effects 

were observed.  For the modulatory interactions of the anterior DMN and right executive network 

(Figure 3D), positive effects were observed in the bilateral insula (BA 13), middle portion of 

cingulate gyrus (BA 24), right inferior parietal lobule (BA 40), and right middle frontal gyrus 

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

PeerJ reviewing PDF | (v2013:11:1000:1:0:NEW 18 Mar 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.124v2 | CC-BY 3.0 Open Access | received: 18 Mar 2014, published: 18 Mar 2014

P
re
P
rin

ts



(BA 10).  The bilateral insula and cingulate gyrus resembled the typical salience network.  

Negative effects were observed in the right middle frontal gyrus (BA 6). 

[Insert Figure 3 here]

The voxel-wise PPI results of the posterior DMN with the four task positive networks are 

shown in Figure 4.  Only positive effects were observed in the modulatory interactions of the 

posterior DMN and salience network, which were localized in the anterior portion of cingulate 

gyrus (BA 32), posterior portions of cingulate gyrus (BA 31), and left inferior parietal lobule (BA 

40) (Figure 4A).  For the modulatory interactions of the posterior DMN and dorsal attention 

network, only positive effects were observed, which were localized in the right middle occipital 

gyrus (BA 19), left inferior and middle frontal gyrus (BA 44/47), right cerebellum, and left 

supramarginal gyrus (BA 40) (Figure 4 B).  No significant modulatory interactions were found 

between the posterior DMN and left or right executive networks.

[Insert Figure 4 here]

The PPI results of networks within the DMN and within task positive networks are shown 

in Figure 5.  Only negative effects were found for the modulatory interactions between the 

anterior and posterior DMNs, which were localized in the superior frontal gyrus (BA 6), left 

middle occipital gyrus (BA 19), and right precuneus (BA 7).  For the modulatory interactions of 

the salience network and dorsal attention network (Figure 5B), positive effects were observed in 

the medial frontal gyrus (BA 6), subcortical nuclei including right thalamus and left claustrum, 

and right postcentral gyrus (BA 2).  Negative effects were observed in the left inferior frontal 

gyrus (BA 9).  For the modulatory interactions of the salience network and left executive network 

(Figure 5C), positive PPI effects were observed in the medial frontal gyrus (BA 8), left superior 

temporal gyrus (BA 39), and left middle frontal gyrus (BA 6).  No negative effects were 

observed.  For the modulatory interactions of the salience network and right executive network 

(Figure 5D), positive effects were observed in the superior frontal gyrus (BA 8), right inferior 
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frontal gyrus (BA 47), right superior temporal gyrus (BA 39), and right precentral gyrus (BA 9).  

No negative PPI effects were observed.  For the modulatory interactions of the dorsal attention 

network and left executive network (Figure 5E), positive effects were observed in the left inferior 

parietal lobule (BA 40) and left middle frontal gyrus (BA 6).  No negative effects were observed.  

Only one cluster in the right precuneus (BA 39) revealed positive modulatory interactions with 

the dorsal attention network and right executive network (Figure 5F).  Lastly, for the modulatory 

interactions of the left and right executive networks (Figure 5G), positive PPI effects were 

observed in the bilateral precuneus (BA 7).  No negative effects were observed.

[Insert Figure 5 here]

Discussion

Similar to previous studies, we observed negative correlations between the DMN and some task 

positive networks, for example between the salience network and anterior or posterior DMNs, 

and between the dorsal attention network and anterior DMN.  However, both the anterior and 

posterior DMNs revealed small to moderate positive correlations with both the left and right 

executive networks.  These results suggested complex relationships between the DMNs and 

different task positive networks.  It should be noted that the absolute correlation values are 

subject to preprocessing strategies and levels of noises (Fox et al., 2009; Weissenbacher et al., 

2009; Saad et al., 2012), so that examining the modulations of connectivity may provide 

complementary supports of functional interactions between networks or regions.  The current PPI 

results can be summarized as follows.  First, there were positive modulatory interactions among 

the DMN, the salience network and the executive networks.  Second, there were negative 

modulatory interactions among the anterior DMN, posterior DMN, and right executive network.  

Third, there were positive modulatory interactions among task positive networks, specifically the 

salience network with the left and right executive networks, and the dorsal attention network with 
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the left and right executive networks.  And finally, voxel-wise analysis also revealed some 

interesting findings, e.g. the subcortical regions such as the basal ganglia and thalamus were 

negatively associated with the interactions of the anterior DMN and the salience network, but 

were positively associated with the interactions of the salience network and the dorsal attention 

network. 

The modulatory interaction among the DMN, the salience network, and the executive 

networks were mainly among the anterior DMN, the salience network and the right executive 

network.  These results can be observed not only in the network-wise analysis, but also in the 

voxel-wise analysis.  For example, the analysis of the anterior DMN and the salience network 

revealed clusters that resembled the bilateral executive network (Figure 3A).  The analysis of the 

anterior DMN and right executive network revealed clusters that resembled the salience network 

(Figure 3D).  Lastly, the analysis of the salience network and the right executive network 

revealed clusters that were part of the DMN (Figure 5D).  The left executive network also 

showed association with the interactions of the anterior DMN and the salience network in both 

the PPI-wise and voxel-wise analyses (Figure 3A).  In addition, the right executive network 

showed interactions with the posterior DMN and the salience network in the network-wise 

analysis.  These results are consistent with our recent findings that the connectivities between the 

DMN regions and frontoparietal regions were positively modulated by the salience network 

activities, which used an independent subject sample to the current analysis (Di and Biswal, 

2013b). 

A significant PPI effect can be explained as a modulation of connectivity between two 

regions by the third region, or equivalently as two regions having a nonlinear multiplicative effect 

on the third region.  Due to the nature of regression model used in PPI analysis, the role of each 

region can only be implied in conjunction with other evidences such as brain anatomy and causal 

influences.  Among the DMN, salience, and executive networks, the salience network may play a 

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

PeerJ reviewing PDF | (v2013:11:1000:1:0:NEW 18 Mar 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.124v2 | CC-BY 3.0 Open Access | received: 18 Mar 2014, published: 18 Mar 2014

P
re
P
rin

ts



critical role.  Anatomically, the salience network contains a special type of neurons termed von 

Economo neuron (Allman et al., 2010), which are spindle like bipolar neurons with thick axons.  

These properties may enable von Economo neurons to rapidly pass information from the salience 

network regions to other brain regions (Butti et al., 2009).  In terms of causal influences, studies 

using Granger causality analysis suggested that the salience network exerted influence to both the 

DMN and executive networks (Sridharan, Levitin, and Menon, 2008; Liao et al., 2010; 

Deshpande, Santhanam, and Hu, 2011; Yan and He, 2011).  Taken together, a possible 

explanation of the PPI results may be that the salience network, in addition to activating the 

executive network and deactivating the DMN (Sridharan, Levitin, and Menon, 2008), directly 

modulate the relationship between the executive network and DMN.  

The modulation may reflect that saliency signals conveyed by the salience network 

increase the communication between the executive system and internal oriented system.  

Alternatively, because the absolute connectivity between the executive network and the DMN is 

subject to preprocessing strategies, and these two networks are generally considered as 

anticorrelated (Fox et al., 2005; Chai et al., 2012; Keller et al., 2013), it is also possible that the 

modulation may reflect decreased anticorrelation between the DMN and executive networks.  

The decreased anticorrelation might suggest an absence of modulation of top-down signals from 

the DMN to central executive regions (Anticevic et al., 2012).  In line with this notion, impaired 

salience network functions in patients of schizophrenia is coincidentally associated with altered 

connectivity between the executive network and DMN (Manoliu et al., 2013, 2014).  The 

modulatory model of the salience network on the executive network and DMN may provide a 

novel avenue to understand dysfunctions of network communications in patients with 

schizophrenia (Menon, 2011).

In contrast, negative modulatory interactions were observed among the anterior and 

posterior portions of the DMN and the right executive network, which were evident in both the 
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network-wise analysis and the voxel-wise analysis of the anterior and posterior DMNs (Figure 

5A).  The voxel-wise analysis results appear similar to our previous results using the posterior 

cingulate gyrus (PCC) and medial prefrontal cortex (MPFC) as seed regions (Di and Biswal, 

2013a).  These results together with the above discussed results suggest complex relationships 

between the DMN and executive network, which differently modulated by the salience network 

and different parts of the DMN. 

In addition to the modulatory interactions between the DMN and task positive networks, 

we also observed modulatory interactions among different task positive networks.  These 

interactions were mainly among the salience network and bilateral executive networks, and 

among the dorsal attention network and bilateral executive networks.  The frontoparietal 

executive network is generally identified bilaterally when using seed-based correlations and 

cluster analysis (Dosenbach et al., 2007; Yeo et al., 2011), however, separate left and right 

lateralized frontopareital networks can be reliably identified when using ICA (Beckmann et al., 

2005; Biswal et al., 2010).  The current analysis revealed a moderate correlation between the left 

and right executive networks (mean Fisher's z 0.43), which was the largest correlation among 

task positive networks, suggesting that the left and right executive networks are highly 

functionally related.  In addition, the modulatory interactions results suggested that the 

relationship between the left and right frontoparietal networks may be modulated by the salience 

network and the dorsal attention network.  A previous study has suggested that the left and right 

lateralized executive networks may be associated with different cognitive functions, with the left 

executive network more associated with language cognition, and the right counterpart more 

related to action inhibition and pain perception (Smith et al., 2009).  The increased connectivity 

between the bilateral networks may reflect the increased communication of resources from 

different executive systems. 
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Voxel-wise analysis also identified subcortical regions that revealed modulatory 

interactions with different networks, notably the thalamus and basal ganglia.  Specifically, the 

bilateral putamen of the basal ganglia revealed negative modulatory interactions with the anterior 

DMN and salience network (Figure 3A), while the more medial portion of the basal ganglia 

(mainly the globus pallidus) and the thalamus showed positive modulatory interactions with the 

salience and dorsal attention networks (Figure 5B).  The basal ganglia is functionally connected 

to widely distributed cortical regions (Di Martino et al., 2008) possibly supported by different 

white matter fibers (Lehéricy et al., 2004; Leh et al., 2007).  Models of basal ganglia functions 

have suggested it to be a moderator that modulate connectivity from frontal regions to posterior 

visual areas to support task switching and attention shifting (Stephan et al., 2008; den Ouden et 

al., 2010; van Schouwenburg et al., 2010).  The current results extended these notion into resting-

state, suggesting a general modulating role of the basal ganglia on connectivity between brain 

networks.  The thalamus is a critical subcortical structure that involves many functions including 

attention (O’Connor et al., 2002; Haynes, Deichmann, and Rees, 2005).  It is possible that the 

salience signal from the salience network enhance the connectivity from the thalamus to the 

dorsal attention network to allocate attention recourses to specific stimulus (Fan et al., 2005).  

Alternatively, the salience signal might modulate top-down connectivity from the dorsal attention 

network to the thalamus, thus facilitating attentional gating of the salient event (McAlonan et al., 

2000; McAlonan, Cavanaugh, and Wurtz, 2008; Fischer and Whitney, 2012).  Further studies 

using causal models are needed to further clarify the dynamic relationships among the thalamus, 

the salience network, and the dorsal attention network (Friston, Harrison, and Penny, 2003; Di 

and Biswal, 2014).

By applying PPI technique to brain networks in resting-state, the current study 

demonstrated modulatory interactions among different brain systems.  Compared with our 

previous study that examined PPI effects of two regions within the same network (Di and Biswal, 
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2013a), the current results generally revealed larger spatial extent of significant effects.  One 

possibility is that the time series extracted from whole brain IC maps are less noisy than the time 

series extracted from small spherical regions of interest.  Another possibility is that the time 

series from two regions of the same network may be highly correlated, thus the interaction is 

highly correlated with the main effects.  Alternatively, it may reflect that different brain regions 

exhibit different characterizations of modulatory interactions.  Some regions may dynamically 

connected to different regions upon task demands, while other regions may be more likely to 

stably connected to same regions.  Charactering the spatial distributions of modulatory 

interactions may strengthen our understandings of brain network dynamics.  For example, 

identifying regions that are more likely to show modulatory interactions may help to spotlight 

important regions that may serve as flexible hubs that dynamically control different task specific 

regions (Cole et al., 2013). 
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Figure 1

DMN and task positive networks used in the PPI analysis.

These networks were defined by using spatial ICA. The IC maps were z transformed, and 

thresholded at z > 1.96. Maps of all 20 ICs can be found in supplementary Figure S1.
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Figure 2

Results of the network-wise PPI analysis.

Tables indicate the PPI effects between network pairs (row vs. column ). Cells outside the 

tables represent the dependent variables of the time series of different networks (A-F). 

Colored arrows and cells indicate significant PPI effects of a given network (outside cell) and 

the interaction of two ROIs (cells in the tables). Red represents positive effects, while blue 

represents negative effects. Cells in light gray indicate effects tested but not significant. 

Statistical significance was determined as p < 0.05 after Bonferroni correction of all 60 effects 

tested.
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Figure 3

Voxel-wise PPI results between the anterior DMN and task positive networks.

Clusters were thresholded at p < 0.001 with a cluster level FDR correction at p < 0.0033, 

which has taken into account of totally 15 voxel-wise analyses. Hot color encodes positive 

effects, while winter color encodes negative effects. x and z represent x and z coordinates in 

MNI space.
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Figure 4

Voxel-wise PPI results between the posterior DMN and task positive networks.

Clusters were thresholded at p < 0.001 with a cluster level FDR correction at p < 0.0033, 

which has taken into account of totally 15 voxel-wise analyses. Hot color encodes positive 

effects, while winter color encodes negative effects. x and z represents x and z coordinates in 

MNI space.
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Figure 5

Voxel-wise PPI results between networks within the DMN and within task positive 

networks.

Clusters were thresholded at p < 0.001 with a cluster level FDR correction at p < 0.0033, 

which has taken into account of totally 15 voxel-wise analyses. Hot color encodes positive 

effects, while winter color encodes negative effects. x and z represents x and z coordinates in 

MNI space.
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Table 1(on next page)

Mean correlations (Fisher's z scores) among the six networks.

Values in brackets represent raw p values of corresponding cross subject one sample t-test. 

Bold font indicates statistically significant after Bonferroni multiple comparison correction of 

totally 15 correlations.
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Table 1 Mean correlations (Fisher's z scores) among the six networks.  

Values in brackets represent raw p values of corresponding cross subject one sample t-test.  Bold 
font indicates statistically significant after Bonferroni multiple comparison correction of totally 
15 correlations. 

 
Anterior 

DMN
Posterior 

DMN
Salience Dorsal Attention L. Executive

Posterior DMN 0.359
(7.01 x 10-23)

Salience -0.299
(1.34 x 10-16)

-0.251
(4.75 x 10-15)

Dorsal Attention -0.530
(1.55 x 10-28)

-0.055
(0.0051)

0.333
(8.45 x 10-16)

L. Executive 0.184
(8.25 x 10-10)

0.320
(1.05 x 10-22)

0.076
(0.0041)

0.003
(0.87)

R. Executive 0.247
(2.37 x 10-13)

0.188
(3.09 x 10-12)

-0.142
(1.09 x 10-7)

0.004
(0.87)

0.427
(3.83 x 10-28)

L., left.
R., right.

Page 1. 

PeerJ reviewing PDF | (v2013:11:1000:1:0:NEW 18 Mar 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.124v2 | CC-BY 3.0 Open Access | received: 18 Mar 2014, published: 18 Mar 2014

P
re
P
rin

ts


