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Abstract  21 

Background 22 

Identifying genetic interactions in data obtained from genome-wide association studies (GWASs) 23 

can help in understanding the genetic basis of complex diseases. The large number of single 24 

nucleotide polymorphisms (SNPs) in GWASs however makes the identification of genetic 25 

interactions computationally challenging. We developed the Bayesian Combinatorial Method 26 

(BCM) that can identify pairs of SNPs that in combination have high statistical association with 27 

disease.  28 

Results 29 

We applied BCM to two late-onset Alzheimer’s disease (LOAD) GWAS datasets to identify 30 

SNP-SNP interactions between a set of known SNP associations and the dataset SNPs. For 31 

evaluation we compared our results with those from logistic regression, as implemented in 32 

PLINK. Gene Ontology analysis of genes from the top 200 dataset SNPs for both GWAS 33 

datasets showed overrepresentation of LOAD-related terms. Four genes were common to both 34 

datasets: APOE and APOC1, which have well established associations with LOAD, and 35 

CAMK1D and FBXL13, not previously linked to LOAD but having evidence of involvement in 36 

LOAD. Supporting evidence was also found for additional genes from the top 30 dataset SNPs. 37 

Conclusion 38 

BCM performed well in identifying several SNPs having evidence of involvement in the 39 

pathogenesis of LOAD that would not have been identified by univariate analysis due to small 40 

main effect. These results provide support for applying BCM to identify potential genetic 41 

variants such as SNPs from high dimensional GWAS datasets.42 
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Introduction  43 

Elucidating the genetic basis of common diseases will lead to understanding of the biological 44 

mechanisms that underlie such diseases and can help in risk assessment, diagnosis, prognosis and 45 

development of new therapies. During the past several decades genetic linkage studies have been 46 

effective in mapping genetic loci responsible for many Mendelian diseases that are caused by a 47 

single genetic variant (Hardy & Singleton, 2009). More recently, genetic studies have indicated 48 

that most common diseases are likely to be polygenic where multiple genetic variants acting 49 

singly and in combination underlie the expression of disease (Thornton-Wells, Moore & Haines, 50 

2004).  51 

 The commonest type of genetic variation is the single nucleotide polymorphism (SNP) 52 

that results when a single nucleotide is replaced by another in the genome sequence. The 53 

development of high-throughput genotyping technologies has led to a flurry of genome-wide 54 

association studies (GWASs) with the aim of discovering SNPs that are associated with common 55 

diseases. GWASs have been moderately successful in identifying SNPs associated with common 56 

diseases and traits. However, in most cases the identified SNPs have small effect sizes, and the 57 

proportion of heritability explained is quite modest. One view is that SNPs may interact in subtle 58 

ways that lead to substantially greater effects than the effect due to any single SNP. Another 59 

view is that common diseases may be due to rare and usually deleterious SNPs that cause disease 60 

in individual patients and that in different individuals or subpopulations the disease is caused by 61 

different deleterious SNPs. 62 

 This paper addresses the challenge of identifying interacting SNPs that may have small 63 

effects and describes a Bayesian combinatorial method (BCM) for identifying such interactions 64 

that are associated with disease. This method has been shown empirically to perform well on low 65 
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dimensional synthetic data (Balding, 2006). However, to our knowledge BCM has not been 66 

applied to a disease dataset with a large number of SNPs. In this paper we apply BCM to an 67 

Alzheimer’s disease GWAS dataset to identify SNPs that interact with known Alzheimer 68 

associated SNPs. 69 

 As background, we provide brief summaries about GWASs, genetic interactions, and 70 

Alzheimer’s disease in the following sections. 71 

Genome-wide Association Studies 72 

The development of high-throughput genotyping technologies that assay hundreds of thousands 73 

of SNPs or more, along with the identification of SNPs in the human genome by the 74 

International HapMap Project led to the emergence of GWASs. GWASs are typically case-75 

control studies aimed at discovering SNPs – either as disease causing variants or as markers of 76 

disease – that are associated with a common disease or trait. The success of GWASs is based in 77 

large part on the common disease - common variant hypothesis. This hypothesis posits that 78 

common diseases in most individuals are caused by relatively common genetic variants that have 79 

low penetrance and hence have small to moderate influence in causing disease. An alternative 80 

hypothesis is the common disease - rare variant hypothesis, which posits that many rare variants 81 

underlie common diseases and each variant causes disease in relatively few individuals with high 82 

penetrance. Both these hypotheses likely contribute to common diseases with genetic variants 83 

may range from rare to the common SNPs.  84 

GWAS data is typically analyzed for univariate associations between SNPs and the 85 

disease of interest; the statistical tests used include the Pearson’s chi-square test, the Fisher’s 86 

exact test, the Cochran-Armitage trend test, and odds ratios (Cordell, 2009). SNPs identified as 87 
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significant by univariate analyses may be further examined for interactions among them using 88 

methods such as logistic regression.  89 

Genetic Interactions 90 

Genetic interactions, also known as epistasis, can be defined biologically as well as statistically. 91 

Biologically, epistasis refers to gene-gene interaction when the action of one gene is modified by 92 

one or several other genes. Statistically, epistasis refers to interaction between variants at 93 

multiple loci in which the total effect of the combination of variants at the different loci may 94 

differ considerably from a linear combination of the effects of individual loci. The detection of 95 

statistical epistasis has the potential to indicate genetic loci that have a biological interaction 96 

(Hahn, Ritchie & Moore, 2003).  97 

 Statistical methods for identifying genetic interactions can be broadly divided into 98 

exhaustive and non-exhaustive methods. Exhaustive methods examine all possible SNP-subsets 99 

and examples include Multifactor Dimensionality Reduction (MDR) (Moore et al, 2006) and the 100 

BCM (Visweswaran, Wong & Barmada, 2009) that we describe in the next section. Examples of 101 

non-exhaustive methods include BOolean Operation-based Screening (BOOST), SNPHarvester 102 

and SNPRuler. We briefly describe these methods below. 103 

 The software package PLINK that is used widely for the analysis of GWAS datasets also 104 

implements logistic regression for the detection of SNP-SNP interactions and offers the option to 105 

test either all or specific sets of SNPs in a dataset (Purcell et al, 2007). 106 

 MDR exhaustively evaluates all 1-,2-,3-,..n-SNP subsets where n is specified by the user. 107 

It combines the variables in a SNP subset to construct a single binary variable and uses 108 

classification accuracy of the binary variable to evaluate a SNP-subset. Since MDR does not 109 
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scale up beyond a few hundred SNPs, for high dimensional data a multivariate filtering 110 

algorithm called ReliefF is applied to reduce the number of SNPs to a few hundred (M. D. 111 

Ritchie et al, 2001; Hahn, Ritchie & Moore, 2003; Moore et al, 2006; Moore & White, 2007). 112 

 BOOST uses a two-step procedure (Wan et al, 2010a). In the screening step, it uses an 113 

approximate likelihood ratio statistic that is computationally efficient and computes it for all 114 

pairs of SNPs. Only those SNPs that pass a threshold in the first step are examined for significant 115 

interaction effect using the classical likelihood ratio test that is computationally more expensive.  116 

 SNPHarvester is a stochastic search algorithm that uses a two-step procedure to identify 117 

epistatic interactions (Yang et al, 2009). In the first step it identifies 40–50 significant SNP 118 

groups using a stochastic search strategy, and in the second step, it fits a penalized logistic 119 

regression model to each group.  120 

 SNPRuler searches in the space of SNP rules and uses a branch-and-bound strategy to 121 

prune the huge number of possible rules in GWAS data (Wan et al, 2010b). An example of a rule 122 

is 120 21 =⇒=∧= ZXX  (X1 and X2 are SNPs, the three genotypes that a SNP can take are 123 

coded as 0, 1 and 2 and Z is a binary outcome variable). The quality of a rule is evaluated with 124 

the chi-square statistic.  125 

Alzheimer’s Disease 126 

Alzheimer’s disease (AD) is the commonest neurodegenerative disease associated with aging 127 

and the commonest cause of dementia (Goedert & Spillantini, 2006). AD affects about 3% of all 128 

people between ages 65 and 74, about 19% of those between 75 and 84, and about 47% of those 129 

over 85. AD is characterized by adult onset of progressive dementia that typically begins with 130 
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subtle memory failure and progresses to a slew of cognitive deficits like confusion, language 131 

disturbance and poor judgment (Bertram, Lill & Tanzi, 2010). 132 

 AD is typically divided into early-onset Alzheimer’s disease (EOAD) in which the onset 133 

of disease is before 60 years of age and late-onset Alzheimer’s disease (LOAD) in which the 134 

onset is at or after 60 years of age. EOAD is rare and exhibits an autosomal dominant mode of 135 

inheritance. The genetic basis of EOAD is well established, and mutations in one of three genes 136 

(amyloid precursor protein gene, presenelin 1, or presenelin 2) account for most cases of EOAD 137 

(Avramopoulos, 2009). 138 

LOAD is widespread and is estimated to strike almost half of all people over the age of 139 

85. LOAD is believed to be a disease with both genetic and environmental influences, and 140 

elucidating the role of genetic factors in the pathogenesis and development of LOAD has been a 141 

major focus of research for more than a decade. One genetic risk factor for LOAD that has been 142 

consistently replicated is the apolipoprotein E (APOE) locus determined by the combined 143 

genotypes at the loci rs429358 (APOE*4) at codon 112 and rs7412 (APOE*2) at codon 158 144 

(Holtzman, Morris & Goate, 2011). Because the two SNPs are in LD their combination 145 

determines six genotypes (2-2, 2-3, 3-3, 3-4, 2-4, 4-4) and the well-established protein 146 

polymorphism as one locus with three alleles (E*2, E*3, E*4). In the past few years, GWASs 147 

have identified several additional genetic loci associated with LOAD (Reiman et al, 2007; 148 

Hollingworth et al, 2011; Hu et al, 2011; Wijsman et al, 2011; Kamboh et al, 2012). 149 
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Bayesian Combinatorial Method 150 

BCM uses a Bayesian network (BN) to model a set of SNPs and interactions among them and 151 

their association with disease, and the model is evaluated with a Bayesian score. It then 152 

exhaustively searches a space of all possible models to identify high scoring models. 153 

 Bayesian network model and score. For a dataset D that contains a set of n SNPs {X1, 154 

X2, …, Xn} and a binary outcome variable Z (e.g, disease or phenotype) on N individuals, BCM’s 155 

goal is to identify a set of SNPs that together are most predictive of Z in D. We model the effects 156 

of SNPs on Z with a BN that has n SNP-nodes and an additional node for Z. In this BN, which 157 

we call a SNP-BN, a subset of the n SNPs is modeled to have an effect on Z and every node in 158 

that subset has an arc to Z and every node not in the subset does not have an arc to Z. Also, there 159 

are no arcs between the SNP-nodes since we do not model the relations among the SNPs. Figure 160 

1 gives an example of a SNP-BN where SNPs X2 and X3 are modeled to have a joint effect on Z 161 

(as shown by the arcs connecting them to Z) and the remaining SNPs do not have an effect on Z. 162 

 We evaluate the goodness of fit of a SNP-BN to data using an efficiently computable 163 

Bayesian score that computes the posterior probability of the BN given the data. In particular, we 164 

compute the BDeu (Bayesian Dirichlet equivalence uniform) score described in (Heckerman, 165 

Geiger & Chickering, 1995) which is commonly used in BN learning from data. This score is 166 

computed efficiently in closed form as follows: 167 
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where, )(⋅Γ  is the gamma function, M is a SNP-BN, P(D | M) is the posterior probability of M 169 

given D, P(M) is the prior probability of M, Ki is the number of states of variable Xi represented 170 

by node i, Ji is the number of joint states of the parents of node i, nijk is the number of times in 171 
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the data that node i is in state k given parent state j, ijkα  are the parameter priors in a Dirichlet 172 

distribution which define the prior probability over the BN parameters. Also, 173 

∑
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k
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1

αα , and 
ii

ijk KJ ⋅
= αα , where α is a single user-defined parameter prior. 174 

The nijk are obtained from the data and stored in a counts table that is associated with each node 175 

(an example of a counts table for node Z is shown in Figure 1). We make the following 176 

assumptions and simplifications: (1) model the prior probability P(M) as a constant, i.e, a priori 177 

we consider all models to be equally plausible, (2) set 1=α  which is a commonly used non-178 

informative parameter prior, (3) use the logarithmic form to simplify computations when dealing 179 

with very small numbers, and (4) assign the score for a SNP-BN model to be the BDeu score 180 

attributable to just node Z (Visweswaran & Wong, 2009). The reason for assumption (4) is as 181 

follows. The BDeu score decomposes over the nodes in the BN and each node makes an 182 

independent contribution to the overall score. In the space of SNP-BNs, the score contributions 183 

of the SNP-nodes is a constant since they have no incoming arcs, and hence variation in the 184 

scores for distinct SNP-BNs is due only to the score attributable to Z. Thus, the score we use for 185 

a SNP-BN is given by the following expression (index i is absent since there is only one node 186 

under consideration, namely, Z, and K = 2 since Z is binary): 187 
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We have evaluated the BCM score in low dimensional synthetic data and found that in such data 189 

it has significantly greater power and is computed more efficiently than MDR (Visweswaran, 190 

Wong & Barmada, 2009; Jiang, Barmada & Visweswaran, 2010; Jiang et al, 2011). 191 
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Materials & Methods  192 

This section describes the GWAS datasets, the experimental methods, and previously identified 193 

LOAD SNPs. 194 

GWAS Dataset 195 

We used two different LOAD GWAS datasets in our experiments. The first dataset was part of 196 

the University of Pittsburgh Alzheimer’s Disease Research Center (ADRC) that is described 197 

elsewhere (Kamboh et al, 2012). This dataset consists of 2245 individuals, of which 1290 had 198 

LOAD and 955 did not. For each individual, the genotype data consists of 682,685 SNPs on 199 

autosomal chromosomes.  200 

The second dataset was collected by the Translational Genomics Research Institute 201 

(TGen) (Reiman et al, 2007). This dataset consists of 1411 individuals, of which. 861 had LOAD 202 

and 550 did not. For each individual, the imputed genotype data consists of 234,665 SNPs on 203 

autosomal chromosomes. For each individual, the genotype data consists of 502,627 SNPs; the 204 

original investigators analyzed 312,316 SNPs after applying quality controls. We used those 205 

312,316 SNPs, plus two additional APOE SNPs from the same study namely, rs429358 and 206 

rs7412. 207 

Experimental Methods 208 

BCM searches exhaustively over all possible SNP-BN models in a dataset. For a GWAS dataset 209 

with half a million SNPs, the number of SNP-BN models is 2n = 9.95 x 10150514 and the number 210 
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of SNP-BN models with just 2 SNPs is 








2

500000
= 1.25 x 1011. Thus, the search space is very 211 

large and it is computationally infeasible to evaluate every model in the space (Ritchie, 2011). 212 

We addressed this challenge by applying BCM to a restricted space of SNP-BN models 213 

that consisted of a subset of all possible 2-SNP models. We considered only those 2-SNP models 214 

where one of the SNPs in a model is a member of a set of SNPs previously known to be 215 

associated with LOAD and the second SNP is any SNP (excluding the first SNP) in the dataset 216 

of interest. Since the number of known LOAD associated SNPs is much smaller than the number 217 

of SNPs in a dataset, it was computationally tractable to search this space of SNP-BN models. 218 

The selection of the previously identified LOAD SNPs that we used is described in the next 219 

section. 220 

 We applied BCM to each of the two GWAS datasets separately and analyzed in detail the 221 

top scoring 200 SNP-BN models. From each SNP-BN model, we extracted the SNP that was not 222 

in the set of previously identified LOAD SNPs. We mapped these SNPs to genes and considered 223 

only intragenic SNPs for further analyses. We performed the SNP to gene mapping with BioQ, a 224 

web-service which uses dbSNP build 135 and Genome Assembly GRCh37.p5 (Saccone, Quan & 225 

Jones, 2012). We performed enrichment analysis of the annotations of the associated genes in the 226 

Gene Ontology (GO) with the web-based tool GeneCoDis. For a set of genes GeneCoDis 227 

retrieves the associated GO terms, and identifies and ranks those GO terms that are significantly 228 

enriched in the set of genes (Carmona-Saez et al, 2007; Nogales-Cadenas et al, 2009). Enriched 229 

functional descriptors facilitate the interpretation of the gene set. The hierarchical nature of the 230 

GO annotations however means that the set of enriched GO terms may contain terms closely 231 

related in a parent-child relationship (Khatri & Drăghici, 2005). Such redundant terms confound 232 
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the interpretation. Therefore, we further examined the GO terms associated with the intragenic 233 

SNPs using the REViGo webserver. The REViGo software evaluates the semantic similarity 234 

between the enriched terms, identifies the most informative common ancestors and the related 235 

redundant GO terms and groups the latter under their ancestors (Supek et al, 2011). The resulting 236 

set facilitates simultaneous examination of the enriched GO terms at two levels: a detailed one, at 237 

the lowest level overrepresented term and a more abstract one at the highest level common 238 

ancestor of overrepresented terms. The detailed level can reveal specific genes of interest 239 

whereas the abstract level serves a compact overview of the processes, functions and cellular 240 

compartments associated with the genes in the set. 241 

In addition to the analysis of the top scoring 200 SNP-BN models, we performed 242 

additional analyses of the top scoring 30 SNP-BN models. We analyzed the genes associated 243 

with the intragenic SNPs for differential expression in AD, through the ArrayExpress web server 244 

(Parkinson et al, 2011) and biological function analysis. Differential gene expression in relation 245 

to AD aims to integrate experimental evidence from transcriptomic analysis with those of 246 

genomic analysis. Up-regulation or down-regulation in AD of a gene in our results indicates 247 

increased biological plausibility for the reported genetic interaction. Finally, elements from the 248 

functional description of a gene (expression site, function related to the nervous system or 249 

pathways of LOAD, previous literature) were considered as supporting the biological relevance 250 

of an identified interaction. 251 

We also compared BCM with logistic regression as implemented in PLINK for the 252 

identification of statistical genetic interactions. For this comparison we used as previous 253 

knowledge SNPs for all methods the rs429358 (APOE *4), a known LOAD risk SNP. We 254 

applied the methods to the ADRC LOAD dataset.  255 
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Previously Identified LOAD SNPs 256 

We obtained a set of SNPs that are known to be associated with LOAD from the AlzGene 257 

website. The AlzGene website contains a regularly updated database of SNPs that have been 258 

shown to be associated with LOAD mostly in GWAS studies (Bertram et al, 2007). The curators 259 

of the AlzGene website use criteria established by the Human Genome Epidemiology Network 260 

(HuGENet) for assessing the cumulative evidence of associations of SNPs with disease 261 

(Ioannidis et al, 2008). We obtained 10 SNPs that were assessed to have sufficiently strong 262 

evidence of being associated with LOAD from the AlzGene website in March 2012. If a 263 

previously identified LOAD SNP was not present in our datasets, we selected a replacement 264 

SNP. The replacement SNP was within 500 kb, in the same gene, as the original SNP with 265 

pairwise linkage disequilibrium threshold of r2 ≥ 0.8, using the SNAP web-based tool (Johnson 266 

et al, 2008). Using this protocol, we were unable to identify replacement SNPs in the TGen 267 

dataset for three previously identified LOAD SNPs; therefore we replaced them with SNPs from 268 

other genes, also reported as significantly associated with LOAD in the AlzGene website. Table 269 

1 gives the list of previously identified LOAD SNPs that we used in the experiments. 270 

Results and Discussion 271 

This section describes the results that were obtained from applying BCM to the ADRC LOAD 272 

dataset and from applying BCM to the ADRC and the TGen GWAS datasets.  273 

Top Scoring SNP-BN Models 274 

Each SNP-BN model includes two SNPs of which one SNP is a previously identified LOAD 275 

SNP and the other SNP is not. We call the former SNP a known SNP and the latter SNP a dataset 276 
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SNP. The known and dataset SNPs from the top scoring 200 SNP-BN models are given in Table 277 

S1 (for ADRC) and Table S2 (for TGen) in the Supplemental Tables. A plot of the scores of the 278 

top scoring 200 SNP-BN models for the two datasets is shown in Figure 2. 279 

In the ADRC dataset, the known SNP in each of the top scoring 200 SNP-BN models is 280 

rs429358 (APOE*4). In the TGen dataset, rs429358 is the known SNP in 192 of the top scoring 281 

200 SNP-BN models, specifically models ranked 1 and 10-200, and in the 8 remaining models 282 

(ranked 2-9) the known SNP belongs to genes GAB2, MS4A6A, MS4A4E, CR1, PICALM, 283 

SORL1, TF whereas the dataset SNP is rs7412 for all 8 models. SNPs rs429358 and rs7412 are 284 

located on the APOE gene and their combined genotypes determine the APOE allelic status 285 

which is known to be the strongest genetic variant that is predictive of LOAD. 286 

In the ADRC dataset, the dataset SNPs from the top scoring 200 models included 92 287 

intragenic SNPs that mapped to 77 distinct genes, and the dataset SNPs from the top scoring 30 288 

models included 18 intragenic SNPs that mapped to 15 distinct genes. In the TGen dataset, the 289 

dataset SNPs from the top scoring 200 models included 82 intragenic SNPs that mapped to 69 290 

genes, and the dataset SNPs from the top scoring 30 models included 19 intragenic SNPs that 291 

mapped to 11 genes.  292 

In the top scoring 200 SNP-BN models the two datasets have in common two intragenic 293 

SNPs, rs7412 (APOE gene) and rs4420638 (APOC1 gene) as well as two genes mapped from 294 

intragenic SNPs, CAMK1D (rs11257738 in ADRC and rs17151584 in TGen) and FBXL13 295 

(rs7779121 in ADRC and rs17475512 in TGen).  296 
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GO Term Analysis 297 

The most informative common ancestors of the overrepresented GO terms obtained from 298 

GeneCoDis for the ADRC dataset are given in Table S3 and for the TGen dataset are given in 299 

Table S4 in the Supplemental Tables. In both sets nervous system-related terms are enriched 300 

(e.g, regulation of dendrite development, nervous system development, regulation of axon 301 

extension, short term memory), as well as terms related to cholesterol and lipid metabolism (e.g, 302 

lipid metabolic process, chylomicron), beta amyloid (beta amyloid binding) cell membranes (e.g, 303 

integral to membrane, plasma membrane, postsynaptic , clathrin-coated endocytic vesicle), 304 

calmodulin and intracellular calcium homeostasis (e.g, calmodulin binding, cytosolic calcium ion 305 

transport) and the immune system (immunoglobulin binding). Overrepresentation of these terms 306 

shows that the identified genes from both datasets include genes that are members of 307 

biochemical pathways involved in LOAD pathophysiology (Holtzman, Morris & Goate, 2011; 308 

Morgan, 2011). 309 

Expression Analysis 310 

The 15 genes corresponding to the 18 dataset intragenic SNPs from the top scoring 30 models in 311 

the ADRC dataset and the 19 genes corresponding to the 19 dataset intragenic SNPs from the top 312 

scoring 30 models in the TGen dataset were examined for relative expression in AD (Table 2 for 313 

the ADRC dataset and in Table 3 for the TGen dataset). In these tables, the second to last column 314 

gives the rank of the corresponding SNP based on the model score obtained by applying BCM to 315 

1-SNP models. For some of the SNPs the rank based on the 1-SNP model is very low compared 316 

to the score of the corresponding 2-SNP model which implies that these SNPS would not have 317 
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been identified by univariate analysis. The last column gives the p values for the pairs of SNPs 318 

that were obtained from using logistic regression in PLINK. 319 

Comparison of BCM with PLINK 320 

Among the top 50 models ranked by BCM and PLINK respectively, there are 4 models in 321 

common, and among the top 200 models, there were 25 models in common between BCM and 322 

PLINK. 323 

 324 

Discussion  325 

Examining all pairs of SNPs in a GWAS dataset for identifying interacting SNP pairs is usually 326 

not computationally tractable due to the large number of SNP pairs. We addressed this challenge 327 

by examining only a subset of all pairs of SNPs where one member of the pair is drawn from a 328 

small set of previously known disease-associated SNPs and by using a Bayesian score to 329 

evaluate that statistical association of a SNP pair with the disease. We applied this strategy to 330 

two LOAD GWAS datasets and our results show that it can identify interacting SNPs of 331 

plausible biological significance. Moreover, this strategy finds SNPs that would be overlooked in 332 

a univariate analysis because they exhibit small main effects; however, they are detected when 333 

paired with another SNP due to interaction effects.  334 

In both LOAD GWAS datasets that we examined, the previously known disease-335 

associated SNP that was identified is either rs429358 (APOE*4) or rs7412 (APOE*2); these 336 

SNPs reside in the APOE gene which is known to be the strongest genetic determinant for 337 

LOAD. GO term enrichment analysis of the dataset SNPs identified terms that are relevant to 338 
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biochemical pathways implicated in the pathogenesis of LOAD such as lipid metabolic process, 339 

calmodulin binding, nervous system development and multiple membrane-related terms.  340 

Gene expression analysis of the dataset SNPs showed that for each dataset studied a 341 

majority of the genes corresponding to the top 30 dataset SNPs are differentially expressed in 342 

LOAD. Functional annotations and literature evidence that are presented with the expression 343 

data in the relevant tables further support the role of these genes in the pathogenesis of LOAD.  344 

Among the genes corresponding to the top 200 dataset SNPs, besides the APOE gene, 345 

three other genes are common to both datasets: APOC1, CAMK1D and FBXL13. Evidence 346 

supporting the interaction of APOC1 with APOE are presented in the analysis for the top 30 347 

dataset SNPs. CAMK1D (calcium/calmodulin-dependent protein kinase ID) belongs to the 348 

family of calmodulin kinases which modulate neuronal development and plasticity (Wayman et 349 

al, 2008). It has been found to be overexpressed in AD and is expressed in the brain especially 350 

during hippocampal formation with high expression in the pyramidal cell layers (Lukk et al, 351 

2010; Pugazhenthi et al, 2011). It encodes a member of the Ca2+/calmodulin-dependent protein 352 

kinase 1 subfamily of serine/threonine kinases (Maglott et al, 2011). CAMK1D interacts with 353 

CALM1 (calmodulin), which has been associated with AD risk (Lambert et al, 2010). The 354 

encoded protein may regulate calcium-mediated granulocyte function and activates MAPK3 355 

(Mitogen-activated protein kinase 3 - inferred function by similarity). In vitro, it phosphorylates 356 

transcription factor CREM (cAMP responsive element binding) isoform Beta and probably 357 

CREB1 (Pugazhenthi et al, 2011). The CREB pathway has a role in memory formation and 358 

CREB phosphorylation has been proposed as a signalling pathway involved in the pathogenesis 359 

of AD (Müller et al, 2011) and also its down-regulation may have a role in exacerbations of AD 360 

(Pugazhenthi et al, 2011). Another member of the same family, neuronal CaM kinase II 361 
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phosphorylates tau protein on ser262, an important step in the formation of neurofibrillary 362 

tangles in AD (Yamauchi, 2005). FBXL13 (F-box and leucine-rich repeat protein 13) belongs to 363 

the F-box protein family. Members of this family have a characteristic approximately 40-amino 364 

acid F-box motif and take part in SCF (SKP1-CUL1-F-box protein) complexes that act as 365 

protein-ubiquitin ligases (Maglott et al, 2011). The ubiquitin-proteasome system is involved in 366 

protein turnover and degradation and is perturbed in AD (Riederer et al, 2011). An SCF complex 367 

of another F box protein (FBXW7) is involved in the degradation of NICD (NOTCH1 released 368 

notch intracellular domain) and probably of PSEN1 (The UniProt Consortium, 2013). 369 

In addition to the genes corresponding to the top 30 top scoring SNP-BN models in the 370 

ADRC dataset, we found other genes in lower scoring SNP-BN models with plausible 371 

associations with LOAD. In the 80th scoring model (dataset SNP rs7793977), gene PION [pigeon 372 

homolog (Drosophila)], also known as GSAP (gamma-secretase-activating protein), is known to 373 

increase amyloid beta production (Maglott et al, 2011). In the 196th scoring model, (dataset SNP 374 

rs6534145), gene PDE5A (phosphodiesterase 5A, cGMP-specific) could be implicated to LOAD 375 

pathogenesis via two different mechanisms. PDE5A is a substrate of CASP3 (caspase 3) (Frame 376 

et al, 2001), which in turn has been shown to be involved in the early synaptic dysfunction in a 377 

mouse model of AD (D’Amelio et al, 2011). It has also been shown that inhibition of PDE5A 378 

results in a decrease in the transcription of Wnt/β-catenin (Tinsley et al, 2011). A reduction in 379 

Wnt signalling has been implicated in the amyloid beta-dependent neurodegeneration in LOAD 380 

(Inestrosa & Toledo, 2008). 381 

While BCM has been applied to low dimensional synthetic data with good results 382 

(Visweswaran & Wong, 2009), in this paper we have applied it to GWAS datasets. BCM has 383 

several advantages. It is computationally more efficient than the widely used MDR 384 
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(Visweswaran, Wong & Barmada, 2009). Since BCM uses the Bayesian paradigm, the BCM 385 

score represents a coherent way to combine knowledge with data. Biological knowledge or 386 

results from analyses of earlier studies can be encoded as a prior distribution over the models that 387 

can then be used in Equation 1. Use of informative priors is becoming common in the analysis of 388 

microarray expression studies, and a similar strategy can be employed for genomic data. 389 

A limitation of our study is the use of GWAS datasets related to a single disease, 390 

although it is an important disease. In future research, we plan to apply and investigate the utility 391 

of BCM on GWAS datasets related to additional diseases. Another limitation is the use just 10 392 

previously known LOAD-associated SNPs. In future work, we plan to explore the use of a larger 393 

set of known LOAD associated SNPs that will include SNPs with weaker evidence of being 394 

associated with LOAD. In addition, we plan to study the effect of excluding the APOE SNPs 395 

rs429358 and rs7412 which are present in every SNP pair we examined for biological 396 

plausibility. Another limitation is that we did not use informative prior probabilities for encoding 397 

prior knowledge from the literature and previous GWASs. BCM can be extended easily to allow 398 

the incorporation of informative priors and inclusion of informative priors in the analysis is an 399 

interesting area for study. 400 

Conclusion 401 

We applied BCM to two LOAD GWAS datasets to identify pairs of SNPs that in combination 402 

have high statistical association with development of LOAD. To reduce the large search space of 403 

all possible parts of SNPs in a GWAS dataset we restricted BCM to evaluate those SNP pairs 404 

where one of the SNP was drawn from a set of 10 previously known LOAD associated SNPs. 405 

Our results identified several SNPs that have biological evidence of being involved in the 406 
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pathogenesis of LOAD that would not have been identified by univariate analysis alone due to 407 

small main effect but were identified in conjunction with another SNP. These results provide 408 

support for applying BCM to identify potential genetic variants such as SNPs from high 409 

dimensional GWAs datasets.  410 

411 
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Figures 599 

 600 

Figure 1. A SNP-BN model where SNPs X2 and X3 have an effect on Z and the remaining SNPs 601 

do not have an effect on Z. The table gives counts for the states of Z conditioned on the joint 602 

states of X2 and X3. 603 

 604 

 605 

 606 

Figure 2. Plots of the distribution of BCM model scores for the top ranked 200 SNP-BN models 607 

for the two datasets, ADRC and TGen. The scores for the ADRC dataset (blue points) 608 

correspond to the left hand Y axis, while those for the TGen dataset correspond to the right hand 609 

Y axis. The dotted vertical line marks the top ranked 200 SNP-BN models.  610 

 611 
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Tables 615 

 616 
Table 1 Previously identified LOAD SNPs. 617 

 618 

# Gene AlzGene 
SNP 

Odds ratio 
(95% CI) 

p value ADRC  
SNP 

r 2 TGen  
SNP 

r 2 

1 APOE 4 rs429358 3.685 (3.30-4.12) <1E-50 Same - Same - 
2 CR1 rs3818361 1.174 (1.14-1.21) 4.72E-21 Same - rs6656401 0.840 
3 PICALM rs3851179 0.879 (0.86-0.9) 2.85E-20 Same - rs7110631 0.841 
4 MS4A6A rs610932 0.904 (0.88-0.93) 1.81E-11 Same - rs574695 0.935 
5 CD33 rs3865444 0.893 (0.86-0.93) 2.04E-10 Same - Same - 
6 MS4A4E rs670139 1.079 (1.05-1.11) 9.51E-10 rs600550 1 rs676309 1 
7 CD2AP rs9349407 1.117 (1.08-1.16) 2.75E-09 rs9296559 1 rs9296558 1 
8 GAB2 rs2373115 0.85 (0.76-0.94)  Same - Same - 
9 SORL1 rs2282649 1.10 (1.03-1.17)  rs726601 0.922 rs726601 0.922 
10 TF rs1049296 1.18 (1.06-1.31)  Same - Same - 
 619 

AlzGene SNP: the SNP in the AlzGene meta-analysis, along with the relevant odds ratios and p values 620 
(the latter for those SNPs with p values <0.00001); ADRC SNP: the corresponding SNP in the ADRC 621 
dataset, along with the r2 scores; TGen SNP: the corresponding SNP in the TGen dataset, along with the 622 
r2 scores for linkage disequilibrium. 623 

624 
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Table 2. Functional description and expression of genes associated with the top 30 dataset SNPs 625 
in the ADRC dataset.  626 

Gene 
Symbol 
(SNP) 

Name Description Expression in AD 1-SNP 
model 
rank 

p value of 
pair from 
PLINK 

APOC1 
(rs4420638) 

Apolipoprotein C-I Appears to modulate the 
interaction of APOE with 
beta-migrating VLDL. Binds 
free fatty acids. 

Overexpressed (Lukk 
et al, 2010)  

2 0.3326 

TOMM40 
(rs157582) 

Translocase of outer 
mitochondrial membrane 
40 homolog 

Channel-forming subunit of 
the translocase of the 
mitochondrial outer 
membrane (TOM) complex, 
essential for protein import 
into mitochondria. 

Underexpressed (Lukk 
et al, 2010)  

3 0.4139 

APOE 
(rs7412) 

Apolipoprotein E ApoE is essential for the 
normal catabolism of 
triglyceride-rich lipoprotein 
constituents. Known risk 
factor for LOAD. 

Overexpressed (Lukk 
et al, 2010) 

5 0.8172 

SNTG1 
(rs16914489) 

Gamma-1-syntrophin Specifically expressed in the 
brain, highly expressed in 
the cortex. Organizes the 
subcellular localization of a 
variety of proteins. 

Overexpressed (Lukk 
et al, 2010) 

24906 0.004546 

TMEM217 
(rs9470543) 

Transmembrane protein 
217 

Expressed in the brain - 4584 0.004643 

SMAD6 
(rs3934907) 

Mothers against DPP 
homolog 6 

Negative regulation of BMP 
and TGF-beta/activin-
signaling. BMP-6 is 
increased in AD brains and 
leads to impaired 
neurogenesis (Crews et al, 
2010). Reduced TGF-beta 
signaling is involved in 
neurodegeneration and 
promotes AD like changes in 
mice (Tesseur et al, 2006). 

Underexpressed (Lukk 
et al, 2010)  

41282 0.0000998 

NPAS3 
(rs4981180) 

Neuronal PAS domain 
protein 3.   

Transcription factor. May 
regulate genes involved in 
neurogenesis. Associated 
with schizophrenia and 
mental retardation 

Overexpressed (Lukk 
et al, 2010)  

1086 0.1225 

NTM 
(rs11222692) 

Neurotrimin  May promote neurite 
outgrowth and adhesion. 
NTM lies at locus 11q25, 
which has been associated 

Overexpressed (Lukk 
et al, 2010) 

12209 0.1422 
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with AD (Blacker et al, 
2003; Liu et al, 2007). 

PPAPDC1A 
(rs4752432) 

Phosphatidic acid 
phosphatase type 2 domain 
containing 1A 

- - 6852 0.3963 

NPFF 
(rs8192593) 

Neuropeptide FF-amide 
peptide precursor 

Modulation of morphine-
induced antinociception.  

- 3981 0.1251 

SLC25A21 
(rs7140725) 

Solute carrier family 25  Known also as ornithine 
decarboxylase (ODC). 
Mitochondrial oxoadipate 
carrier, part of polyamine 
synthesis pathway. 

Overexpressed 
(Bernstein & Müller, 
1999; Nilsson et al, 
2006) 

444 0.06767 

RAB23 
(rs182662) 

Member RAS oncogene 
family 

Intracellular protein 
transportation. Regulated by 
miRNA155, which also 
regulates PICALM (a known 
AD association). 

Underexpressed (Lukk 
et al, 2010) 

96 0.08251 

UNC5D 
(rs4577954) 

unc-5 homolog D (C. 
elegans) 

Netrin receptor: netrins are 
secreted proteins that direct 
axon extension and cell 
migration during neural 
development. APP also 
binds Netrin-1 and in 
transgenic mice this 
suppresses amyloid beta 
peptide production 
(Lourenço et al, 2009). 

- 63972 0.6731 

CHD9 
(rs3852742) 

Chromodomain helicase 
DNA binding protein 9, 
PPARA -interacting 
complex 320 kDa protein 

Transcriptional co-activator 
for PPARA. The APOE gene 
promoter has a binding site 
for PPAR alpha. Low CHD9 
activity could reduce apoE 
levels. Increase in APOE 
transcription has been shown 
to clear amyloid beta in AD 
mouse models (Cramer et al, 
2012). 

Overexpressed (Lukk 
et al, 2010) 

1061 0.04696 

CNTN4 
(rs9819935) 

Contactin 4, Brain-derived 
immunoglobulin 
superfamily protein 2 

Mainly expressed in brain. 
Neuronal membrane protein 
that may play a role in the 
formation of axon 
connections in the 
developing nervous system. 
Associated with 

- 2149 0.002386 
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Spinocerebellar Ataxia, 
Amyotrophic Lateral 
Sclerosis, 3p deletion 
syndrome. 

 627 

1-SNP model rank: rank of the corresponding SNP in terms of univariate 1-SNP model score628 
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 629 

Table 3. Functional description and expression of genes associated with the top 30 dataset SNPs 630 

in the TGen dataset. 631 

Gene 
Symbol 
(SNP) 

Name Description Differential 
Expression in AD 

1-SNP 
model 
rank 

p value of 
pair from 
PLINK 

APOE 2 
(rs7412) 

Apolipoprotein E ApoE is essential for the 
normal catabolism of 
triglyceride-rich lipoprotein 
constituents. Known risk 
factor for LOAD. 

Overexpressed (Lukk 
et al, 2010)  

1 0.05993 

APOC1 
(rs4420638) 

Apolipoprotein C-1 Appears to modulate the 
interaction of APOE with 
beta-migrating VLDL. Binds 
free fatty acids. 

Overexpressed (Lukk 
et al, 2010) 

3 0.705 

C10orf11 
(rs7079348) 

Chromosome 10 open 
reading frame 11 

A brain-expressed gene. 
Haploinsufficiency of 
C10orf11 contributes to the 
cognitive defects in 10q22 
syndrome (Tzschach et al, 
2010). 

- 4 0.009623 

VWC2 
(rs10499687) 

von Willebrand factor C 
domain-containing protein 
2 (Brorin, Brain-specific 
chordin-like protein) 

Encodes a secreted bone 
morphogenic protein (BMP) 
antagonist. The encoded 
protein is possibly involved 
in neural function and 
development and may have a 
role in cell adhesion. BMP-6 
is increased in AD brains and 
leads to impaired 
neurogenesis (Crews et al, 
2010). 

Underexpressed 
(Webster et al, 2009) 

12 0.7698 

PSD3 
(rs17126808) 

Pleckstrin and Sec7 
domain containing 3 

Guanine nucleotide exchange 
factor for ARF6 that 
contributes to the regulation 
of dendritic branching (The 
UniProt Consortium, 2013). 

Overexpressed (Lukk 
et al, 2010) 

34 0.001623 

GXYLT2 
(rs3732443) 

Glucoside 
xylosyltransferase 2 

Elongates the O-linked 
glucose attached to EGF-like 
repeats in the extracellular 
domain of Notch proteins 
(The UniProt Consortium, 
2013), which are substrates of 
γ-secretase, the enzyme 
involved in amyloid beta 
production (Frykman et al, 

Underexpressed in a 
murine AD model 
(D’Amelio et al, 2011) 

6 0.211 
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2012). 

GABBR2 
(rs2779550) 

Gamma-aminobutyric acid 
(GABA) B receptor, 2 

Target for autophagy 
regulation in 
neurodegenerative diseases 
(Lipinski et al, 2010). 

Overexpressed (Lukk 
et al, 2010) 

391 0.0002945 

ENPP2 
(rs16892852) 

Ectonucleotide 
pyrophosphatase/phospho
diesterase 2 

Hydrolyzes 
lysophospholipids to produce 
lysophosphatidic acid (LPA) 
in extracellular fluids. 
Predominantly expressed in 
brain, placenta, ovary, and 
small intestine. Secreted by 
most body fluids including 
serum and cerebrospinal fluid 
(The UniProt Consortium, 
2013). 

Overexpressed (Lukk 
et al, 2010) 

92 0.04851 

GLP1R 
(rs910171) 

Glucagon-like peptide 1 
receptor 

Member of the glucagon 
receptor family (also includes 
glucagon, GLP-2, secretin, 
GHRH and GIP receptors).In 
the brain located in 
hypothalamus and brainstem. 
Protective against amyloid 
beta accumulation in rats 
(Perry & Greig, 2005).  

Overexpressed (Lukk 
et al, 2010) 

193 0.01462 

MOSC1 
(rs746767) 

MOCO sulphurase C-
terminal domain 
containing 1 

A mitochondrial 
oxidoreductase, cofactor: 
molybdenum, is expressed in 
the brain. MOSC1 is a target 
for miR-129-5p, like 
GABBR2, and miR-155, like 
PICALM. 

- 66 0.04507 

TM4SF20 
(rs4408717) 

Transmembrane 4 L six 
family member 20 

Tetraspannin superfamily 
member. Tetraspanins are 
often thought to act as 
scaffolding proteins, 
anchoring multiple proteins to 
one area of the cell 
membrane. Other tetraspanin 
superfamily members have 
been implicated in Notch 
signaling and g-secretase 
activity modulation (Dunn et 
al, 2010). 

- 95 0.004495 

 632 

1-SNP model rank: rank of the corresponding SNP in terms of univariate 1-SNP model score 633 
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