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Abstract

Background

Identifying genetic interactions in data obtainezhi genome-wide association studies (GWASS)
can help in understanding the genetic basis of texrgiseases. The large number of single
nucleotide polymorphisms (SNPs) in GWASs howevekesdhe identification of genetic
interactions computationally challenging. We depeld the Bayesian Combinatorial Method
(BCM) that can identify pairs of SNPs that in comdiion have high statistical association with
disease.

Results

We applied BCM to two late-onset Alzheimer’s diseSOAD) GWAS datasets to identify
SNP-SNP interactions between a set of known SNétegens and the dataset SNPs. For
evaluation we compared our results with those fRUNK, an established method. Gene
Ontology analysis of genes from the top 200 databéts for both GWAS datasets showed
overrepresentation of LOAD-related terms. Four gamere common to both datasets: APOE
and APOC1, which have well established associattis LOAD, and CAMK1D and FBXL13,
not previously linked to LOAD but having evidenddarosolvement in LOAD. Supporting
evidence was also found for additional genes frioentop 30 dataset SNPs.

Conclusion

BCM performed well in identifying several SNPs haykevidence of involvement in the
pathogenesis of LOAD that would not have been ifledtby univariate analysis due to small
main effect. These results provide support for wpglBCM to identify potential genetic

variants such as SNPs from high dimensional GWAS8s#4s.
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Introduction
Elucidating the genetic basis of common diseasédead to understanding of the biological
mechanisms that underlie such diseases and camhdg assessment, diagnosis, prognosis and
development of new therapies. During the past s¢dercades genetic linkage studies have been
effective in mapping genetic loci responsible fanym Mendelian diseases that are caused by a
single genetic variant (Hardy & Singleton, 2009pné recently, genetic studies have indicated
that most common diseases are likely to be polygehiere multiple genetic variants acting
singly and in combination underlie the expressibdisease (Thornton-Wells, Moore & Haines,
2004).

The commonest type of genetic variation is thglsimucleotide polymorphism (SNP)
that results when a single nucleotide is replagedrother in the genome sequence. The
development of high-throughput genotyping techn@edas led to a flurry of genome-wide
association studies (GWASSs) with the aim of discogeSNPs that are associated with common
diseases. GWASs have been moderately successfidnnfying SNPs associated with common
diseases and traits. However, in most cases tidifidd SNPs have small effect sizes, and the
proportion of heritability explained is quite motedne view is that SNPs may interact in subtle
ways that lead to substantially greater effecta tha effect due to any single SNP. Another
view is that common diseases may be due to rareisumlly deleterious SNPs that cause disease
in individual patients and that in different indivials or subpopulations the disease is caused by
different deleterious SNPs.

This paper addresses the challenge of identifiyitegacting SNPs that may have small
effects and describes a Bayesian combinatorial aadeBCM) for identifying such interactions

that are associated with disease. This method ées shown empirically to perform well on low
3
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dimensional synthetic data (Balding, 2006). Howet@our knowledge BCM has not been
applied to a disease dataset with a large numb8N®&fs. In this paper we apply BCM to an
Alzheimer’s disease GWAS dataset to identify SNfas$ interact with known Alzheimer
associated SNPs.

As background, we provide brief summaries aboutA®4/ genetic interactions, and

Alzheimer’s disease in the following sections.

Genome-wide Association Studies

The development of high-throughput genotyping tetbgies that assay hundreds of thousands
of SNPs or more, along with the identification &S in the human genome by the
International HapMap Project led to the emergerdc@WASs. GWASSs are typically case-
control studies aimed at discovering SNPs — e#ilsatisease causing variants or as markers of
disease — that are associated with a common dise&segt. The success of GWASs is based in
large part on the common disease - common varigidthesis. This hypothesis posits that
common diseases in most individuals are causedlatively common genetic variants that have
low penetrance and hence have small to moderdteirde in causing disease. An alternative
hypothesis is the common disease - rare variarithggis, which posits that many rare variants
underlie common diseases and each variant causessdiin relatively few individuals with high
penetrance. Both these hypotheses likely contrittub®mmon diseases with genetic variants
may range from rare to the common SNPs.

GWAS data is typically analyzed for univariate asations between SNPs and the
disease of interest; the statistical tests usdddecahe Pearson’s chi-square test, the Fisher’s

exact test, the Cochran-Armitage trend test, ami$ odtios (Cordell, 2009). SNPs identified as
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significant by univariate analyses may be furthexreined for interactions among them using

methods such as logistic regression.

Genetic Interactions

Genetic interactions, also known as epistasispeatefined biologically as well as statistically.
Biologically, epistasis refers to gene-gene intéoacwhen the action of one gene is modified by
one or several other genes. Statistically, epstagers to interaction between variants at
multiple loci in which the total effect of the comhtion of variants at the different loci may
differ considerably from a linear combination oétéffects of individual loci. The detection of
statistical epistasis has the potential to indiggteetic loci that have a biological interaction
(Hahn, Ritchie & Moore, 2003).

Statistical methods for identifying genetic intetfans can be broadly divided into
exhaustive and non-exhaustive methods. Exhaustethads examine all possible SNP-subsets
and examples include Multifactor Dimensionality Retion (MDR) (Moore et al, 2006) and the
BCM (Visweswaran, Wong & Barmada, 2009) that wecdbs in the next section. Examples of
non-exhaustive methods include BOolean Operati@ed&creening (BOOST), SNPHarvester
and SNPRuler. We briefly describe these methodsibel

The software package PLINK that is used widelytfar analysis of GWAS datasets also
implements logistic regression for the detectio®NP-SNP interactions and offers the option to
test either all or specific sets of SNPs in a ddtéBurcell et al, 2007).

MDR exhaustively evaluates all 1-,2-,3SNP subsets whereis specified by the user.

It combines the variables in a SNP subset to cocisér single binary variable and uses

classification accuracy of the binary variable valaate a SNP-subset. Since MDR does not
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scale up beyond a few hundred SNPs, for high dimeakdata a multivariate filtering
algorithm called ReliefF is applied to reduce tlhenber of SNPs to a few hundred (M. D.
Ritchie et al, 2001; Hahn, Ritchie & Moore, 2003pMe et al, 2006; Moore & White, 2007).
BOOST uses a two-step procedure (Wan et al, 20D#)e screening step, it uses an
approximate likelihood ratio statistic that is cartgtionally efficient and computes it for all
pairs of SNPs. Only those SNPs that pass a threéghdhe first step are examined for significant
interaction effect using the classical likelihoadio test that is computationally more expensive.
SNPHarvester is a stochastic search algorithmutbed a two-step procedure to identify
epistatic interactions (Yang et al, 2009). In tingt fstep it identifies 40-50 significant SNP
groups using a stochastic search strategy, arteisdcond step, it fits a penalized logistic
regression model to each group.
SNPRuler searches in the space of SNP rules asdaugranch-and-bound strategy to
prune the huge number of possible rules in GWAS& @atan et al, 2010b). An example of a rule

is X, =0C X, =2= Z =1 (X; andX; are SNPs, the three genotypes that a SNP camtake

coded as 0, 1 and 2 a#ds a binary outcome variable). The quality of kerig evaluated with

the chi-square statistic.

Alzheimer’s Disease

Alzheimer’s disease (AD) is the commonest neurodegdive disease associated with aging
and the commonest cause of dementia (Goedert &a8fili, 2006). AD affects about 3% of all
people between ages 65 and 74, about 19% of tleteeén 75 and 84, and about 47% of those

over 85. AD is characterized by adult onset of peegive dementia that typically begins with

PeerJ PrePrints | https://peerj.com/preprints/123v1/ | v1 received: 27 Nov 2013, published: 27 Nov 2013, doi: 10.7287/peerj.preprints.123v1




131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

subtle memory failure and progresses to a slevoghitive deficits like confusion, language
disturbance and poor judgment (Bertram, Lill & Ta2010).

AD is typically divided into early-onset Alzheimedisease (EOAD) in which the onset
of disease is before 60 years of age and late-éiskeimer’s disease (LOAD) in which the
onset is at or after 60 years of age. EOAD is aae exhibits an autosomal dominant mode of
inheritance. The genetic basis of EOAD is well eshed, and mutations in one of three genes
(amyloid precursor protein gene, presenelin 1 resgnelin 2) account for most cases of EOAD
(Avramopoulos, 2009).

LOAD is widespread and is estimated to strike alrha#f of all people over the age of
85. LOAD is believed to be a disease with both geraad environmental influences, and
elucidating the role of genetic factors in the pa#nesis and development of LOAD has been a
major focus of research for more than a decade.génetic risk factor for LOAD that has been
consistently replicated is the apolipoprotein E Q& locus determined by the combined
genotypes at the loci rs429358 (APOE*4) and rsAAEXOE*2) (Holtzman, Morris & Goate,
2011). In the past few years, GWASs have identi$ieceral additional genetic loci associated
with LOAD (Reiman et al, 2007; Hollingworth et 2011; Hu et al, 2011; Wijsman et al, 2011,

Kamboh et al, 2012).

Bayesian Combinatorial Method

BCM uses a Bayesian network (BN) to model a s&NiPs and interactions among them and
their association with disease, and the model atuawed with a Bayesian score. It then

exhaustively searches a space of all possible madédlentify high scoring models.
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Bayesian network model and scoreFor a datasdd that contains a set afSNPs i,
Xz, ..., Xn} and a binary outcome variahfe(e.g, disease or phenotype)dindividuals, BCM's
goal is to identify a set of SNPs that togethermaost predictive oZ in D. We model the effects
of SNPs orZ with a BN that has SNP-nodes and an additional nodeZom this BN, which
we call a SNP-BN, a subset of th&NPs is modeled to have an effectZoand every node in
that subset has an arcZ@nd every node not in the subset does not haeecainZ. Also, there
are no arcs between the SNP-nodes since we doou#lithe relations among the SNPs. Figure
1 gives an example of a SNP-BN where SXPandX; are modeled to have a joint effectn
(as shown by the arcs connecting therA)tand the remaining SNPs do not have an effe@ on

We evaluate the goodness of fit of a SNP-BN ta daing an efficiently computable
Bayesian score that computes the posterior prababilthe BN given the data. In particular, we
compute the BDeu (Bayesian Dirichlet equivalencéoam) score described in (Heckerman,
Geiger & Chickering, 1995) which is commonly usediN learning from data. This score is
computed efficiently in closed form as follows:

n+t J r(aij) K‘ r(nijk +aijk)

P(M D) = P(M)] ﬂ rn +a) bt ray,) ?

where, ([) is the gamma functioM is a SNP-BNP(D | M) is the posterior probability éfl

givenD, P(M) is the prior probability oM, K| is the number of states of variablerepresented
by nodei, J; is the number of joint states of the parents afenpni is the number of times in

the data that nodes in statek given parent state a;, are the parameter priors in a Dirichlet

distribution which define the prior probability avéne BN parameters. Also,

K. K.
' ' a . . . .
n, =Zr\jk ay = Z%k , and ay, :H’ wherea is a single user-defined parameter prior.
k=1 k=1 i

8
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Thenjk are obtained from the data and stored in a cdahts that is associated with each node
(an example of a counts table for natlis shown in Figure 1). We make the following
assumptions and simplifications: (1) model the ppi@babilityP(M) as a constant, i.e,priori

we consider all models to be equally plausible s€t)r =1 which is a commonly used non-
informative parameter prior, (3) use the logaritbfoirm to simplify computations when dealing
with very small numbers, and (4) assign the scor@fSNP-BN model to be the BDeu score
attributable to just nodg (Visweswaran & Wong, 2009). The reason for assiong#) is as
follows. The BDeu score decomposes over the nodé®iBN and each node makes an
independent contribution to the overall score him$pace of SNP-BNs, the score contributions
of the SNP-nodes is a constant since they havaaaming arcs, and hence variation in the
scores for distinct SNP-BNs is due only to the saitributable t&. Thus, the score we use for
a SNP-BN is given by the following expression (indés absent since there is only one node
under consideration, namel, andK = 2 sinceZ is binary):
2 F(n W tay)

r(n. | kz May)

J

scordM) = ZI g—— (2)

We have evaluated the BCM score in low dimensisgathetic data and found that in such data
it has significantly greater power and is computexte efficiently than MDR (Visweswaran,

Wong & Barmada, 2009; Jiang, Barmada & Visweswa2@40; Jiang et al, 2011).

Materials & Methods

This section describes the GWAS datasets, the ixeetal methods, and previously identified

LOAD SNPs.
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GWAS Dataset

We used two different LOAD GWAS datasets in ourexkpents. The first dataset was part of
the University of Pittsburgh Alzheimer’s DiseasesBarch Center (ADRC) that is described
elsewhere (Kamboh et al, 2012). This dataset censif2245 individuals, of which 1290 had
LOAD and 955 did not. For each individual, the ggpe data consists of 682,685 SNPs on
autosomal chromosomes.

The second dataset was collected by the Trans&t@®anomics Research Institute
(TGen) (Reiman et al, 2007). This dataset consisigl11 individuals, of which. 861 had LOAD
and 550 did not. For each individual, the imputedajype data consists of 234,665 SNPs on
autosomal chromosomes. For each individual, thetgpe data consists of 502,627 SNPs; the
original investigators analyzed 312,316 SNPs alfpglying quality controls. We used those
312,316 SNPs, plus two additional APOE SNPs froenstlime study namely, rs429358 and

rs7412.

Experimental Methods

BCM searches exhaustively over all possible SNPrBidels in a dataset. For a GWAS dataset

with half a million SNPs, the number of SNP-BN misde 2' = 9.95 x 16°%***and the number

50000
of SNP-BN models with just 2 SNPSES ) C}: 1.25 x 108", Thus, the search space is very

large and it is computationally infeasible to ew&ievery model in the space (Ritchie, 2011).
We addressed this challenge by applying BCM tcstricted space of SNP-BN models
that consisted of a subset of all possible 2-SNBaiso We considered only those 2-SNP models

where one of the SNPs in a model is a member ef afsSNPs previously known to be

10
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associated with LOAD and the second SNP is any @X€luding the first SNP) in the dataset

of interest. Since the number of known LOAD asdecié&SENPs is much smaller than the number
of SNPs in a dataset, it was computationally ttzletto search this space of SNP-BN models.
The selection of the previously identified LOAD Si\tRhat we used is described in the next
section.

We applied BCM to each of the two GWAS datasepsussely and analyzed in detail the
top scoring 200 SNP-BN models. From each SNP-BNehaodk extracted the SNP that was not
in the set of previously identified LOAD SNPs. Wapped these SNPs to genes and considered
only intragenic SNPs for further analyses. We pengx the SNP to gene mapping with BioQ, a
web-service which uses dbSNP build 135 and Genossebly GRCh37.p5 (Saccone, Quan &
Jones, 2012). We performed enrichment analysiseofhnotations of the associated genes in the
Gene Ontology (GO) with the web-based tool GeneGoEur a set of genes GeneCoDis
retrieves the associated GO terms, and identifidsanks those GO terms that are significantly
enriched in the set of genes (Carmona-Saez ed@¥,; Nogales-Cadenas et al, 2009). Enriched
functional descriptors facilitate the interpretatiaf the gene set. The hierarchical nature of the
GO annotations however means that the set of exdi€O terms may contain terms closely
related in a parent-child relationship (Khatri &hici, 2005). Such redundant terms confound
the interpretation. Therefore, we further examitrelGO terms associated with the intragenic
SNPs using the REViGo webserver. The REViGo sofvesaluates the semantic similarity
between the enriched terms, identifies the mostinétive common ancestors and the related
redundant GO terms and groups the latter undear @aheestors (Supek et al, 2011). The resulting
set facilitates simultaneous examination of thectved GO terms at two levels: a detailed one, at

the lowest level overrepresented term and a mastaadh one at the highest level common
11
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ancestor of overrepresented terms. The detailed &an reveal specific genes of interest
whereas the abstract level serves a compact ovenfithe processes, functions and cellular
compartments associated with the genes in the set.

In addition to the analysis of the top scoring 3NP-BN models, we performed
additional analyses of the top scoring 30 SNP-BNia® We analyzed the genes associated
with the intragenic SNPs for differential expressin AD, through the ArrayExpress web server
(Parkinson et al, 2011) and biological functionlgsia. Differential gene expression in relation
to AD aims to integrate experimental evidence ftaanscriptomic analysis with those of
genomic analysis. Up-regulation or down-regulatroAD of a gene in our results indicates
increased biological plausibility for the reporigehetic interaction. Finally, elements from the
functional description of a gene (expression $itection related to the nervous system or
pathways of LOAD, previous literature) were conssdieas supporting the biological relevance
of an identified interaction.

We also compared BCM with PLINK. PLINK uses logistegression to identify
statistical genetic interactions. For this comparis/e used as previous knowledge SNPs for all
methods the rs429358 (APOE *4), a known LOAD ri§k>S We applied the methods to the

ADRC LOAD dataset.

Previously Identified LOAD SNPs

We obtained a set of SNPs that are known to beceded with LOAD from the AlzGene
website. The AlzGene website contains a regulgsfjated database of SNPs that have been
shown to be associated with LOAD mostly in GWASJ#&s (Bertram et al, 2007). The curators

of the AlzGene website use criteria establishethbyHuman Genome Epidemiology Network

12
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(HuGENet) for assessing the cumulative evidencessbciations of SNPs with disease
(loannidis et al, 2008). We obtained 10 SNPs treevassessed to have sufficiently strong
evidence of being associated with LOAD from the@éne website in March 2012. If a
previously identified LOAD SNP was not present ur datasets, we selected a replacement
SNP. The replacement SNP was within 500 kb, irstiree gene, as the original SNP with
pairwise linkage disequilibrium threshold of*2.8, using the SNAP web-based tool (Johnson
et al, 2008). Using this protocol, we were unable@entify replacement SNPs in the TGen
dataset for three previously identified LOAD SNiwrefore we replaced them with SNPs from
other genes, also reported as significantly aststiaith LOAD in the AlzGene website. Table

1 gives the list of previously identified LOAD SNBsat we used in the experiments.

Results and Discussion

This section describes the results that were obdairom applying BCM to the ADRC LOAD

dataset and from applying BCM to the ADRC and tleei GWAS datasets.

Top Scoring SNP-BN Models

Each SNP-BN model includes two SNPs of which on® $\a previously identified LOAD
SNP and the other SNP is not. We call the formelP @khown SNRand the latter SNP dataset
SNP The known and dataset SNPs from the top sco®MgSNP-BN models are given in Table
S1 (for ADRC) and Table S2 (for TGen) in the Suppdatal Tables. A plot of the scores of the
top scoring 200 SNP-BN models for the two datasesiown in Figure 2.

In the ADRC dataset, the known SNP in each of dpestoring 200 SNP-BN models is

rs429358 (APOE*4). In the TGen dataset, rs4293%Bdknown SNP in 192 of the top scoring

13
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200 SNP-BN models, specifically models ranked 1 H@00, and in the 8 remaining models
(ranked 2-9) the known SNP belongs to genes GAB24ABA, MS4A4E, CR1, PICALM,
SORL1, TF whereas the dataset SNP is rs7412 f@rralbdels. SNPs rs429358 and rs7412 are
located on the APOE gene and their combined gesstgliptermine the APOE allelic status
which is known to be the strongest genetic variiat is predictive of LOAD.

In the ADRC dataset, the dataset SNPs from thet¢opgng 200 models included 92
intragenic SNPs that mapped to 77 distinct germesbilze dataset SNPs from the top scoring 30
models included 18 intragenic SNPs that mapped tidtinct genes. In the TGen dataset, the
dataset SNPs from the top scoring 200 models ied@2 intragenic SNPs that mapped to 69
genes, and the dataset SNPs from the top scoringo8@ls included 19 intragenic SNPs that
mapped to 11 genes.

In the top scoring 200 SNP-BN models the two dasdsave in common two intragenic
SNPs, rs7412 (APOE gene) and rs4420638 (APOC1 gesnsgll as two genes mapped from
intragenic SNPs, CAMK1D (rs11257738 in ADRC and7s31584 in TGen) and FBXL13

(rs7779121 in ADRC and rs17475512 in TGen).

GO Term Analysis

The most informative common ancestors of the opeesented GO terms obtained from
GeneCoDis for the ADRC dataset are given in TaBlar®l for the TGen dataset are given in
Table S4 in the Supplemental Tables. In both setgaus system-related terms are enriched
(e.g,regulation of dendrite development, nervous systewelopment, regulation of axon
extension, short term memyras well as terms related to cholesterol and lipetabolism (e.g,

lipid metabolic processhylomicror), beta amyloidigeta amyloid bindingcell membranes (e.g,

14
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integral to membrane, plasma membrgoestsynaptic , clathrin-coated endocytic vegicle
calmodulin and intracellular calcium homeostasig,@lmodulin binding, cytosolic calcium ion
transpor) and the immune systenmmunoglobulin binding Overrepresentation of these terms
shows that the identified genes from both datdsetsde genes that are members of
biochemical pathways involved in LOAD pathophys@tdHoltzman, Morris & Goate, 2011,

Morgan, 2011).

Expression Analysis

The 15 genes corresponding to the 18 dataset artra@NPs from the top scoring 30 models in
the ADRC dataset and the 19 genes corresponditing tb9 dataset intragenic SNPs from the top
scoring 30 models in the TGen dataset were exanfare@lative expression in AD (Table 2 for
the ADRC dataset and in Table 3 for the TGen dgtasethese tables, the second to last column
gives the rank of the corresponding SNP based@mtidel score obtained by applying BCM to
1-SNP models. For some of the SNPs the rank baséuedl-SNP model is very low compared
to the score of the corresponding 2-SNP model wimghlies that these SNPS would not have
been identified by univariate analysis. The lasticm gives the p values for the pairs of SNPs

that were obtained from using logistic regressioRLINK.

Comparison of BCM with PLINK

Among the top 50 models ranked by BCM and PLINKessively, there are 4 models in
common, and among the top 200 models, there wenmsa2igls in common between BCM and

PLINK.

15

PeerJ PrePrints | https://peerj.com/preprints/123v1/ | v1 received: 27 Nov 2013, published: 27 Nov 2013, doi: 10.7287/peerj.preprints.123v1




323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

Discussion

Examining all pairs of SNPs in a GWAS dataset @lenitifying interacting SNP pairs is usually
not computationally tractable due to the large nendi SNP pairs. We addressed this challenge
by examining only a subset of all pairs of SNPsngtmme member of the pair is drawn from a
small set of previously known disease-associateBsSihd by using a Bayesian score to
evaluate that statistical association of a SNP\p#ir the disease. We applied this strategy to
two LOAD GWAS datasets and our results show theaiit identify interacting SNPs of
plausible biological significance. Moreover, thigategy finds SNPs that would be overlooked in
a univariate analysis because they exhibit smaith mffects; however, they are detected when
paired with another SNP due to interaction effects.

In both LOAD GWAS datasets that we examined, tleipusly known disease-
associated SNP that was identified is either rsB24APOE*4) or rs7412 (APOE*2); these
SNPs reside in the APOE gene which is known tdhbestrongest genetic determinant for
LOAD. GO term enrichment analysis of the datasePShlentified terms that are relevant to
biochemical pathways implicated in the pathogenafsiSOAD such adipid metabolic process
calmodulin binding, nervous system developraedtmultiple membrane-related terms.

Gene expression analysis of the dataset SNPs shbaefbr each dataset studied a
majority of the genes corresponding to the top &@skt SNPs are differentially expressed in
LOAD. Functional annotations and literature evidetitat are presented with the expression
data in the relevant tables further support the oblthese genes in the pathogenesis of LOAD.

Among the genes corresponding to the top 200 dafh¢les, besides the APOE gene,
three other genes are common to both datasets: APOEMK1D and FBXL13. Evidence

supporting the interaction of APOC1 with APOE aresented in the analysis for the top 30
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dataset SNPs. CAMK1D (calcium/calmodulin-depengeatein kinase 1D) belongs to the
family of calmodulin kinases which modulate neutafevelopment and plasticity (Wayman et
al, 2008). It has been found to be overexpressédDiand is expressed in the brain especially
during hippocampal formation with high expressiorhe pyramidal cell layers (Lukk et al,
2010; Pugazhenthi et al, 2011). It encodes a meoflibe Ca2+/calmodulin-dependent protein
kinase 1 subfamily of serine/threonine kinases (btagt al, 2011). CAMK1D interacts with
CALM1 (calmodulin), which has been associated Wi risk (Lambert et al, 2010). The
encoded protein may regulate calcium-mediated dpagte function and activates MAPK3
(Mitogen-activated protein kinase 3 - inferred fiioie by similarity). In vitro, it phosphorylates
transcription factor CREM (cAMP responsive elenmtanding) isoform Beta and probably
CREB1 (Pugazhenthi et al, 2011). The CREB pathvesyshrole in memory formation and
CREB phosphorylation has been proposed as a sigmakthway involved in the pathogenesis
of AD (Muller et al, 2011) and also its down-redgida may have a role in exacerbations of AD
(Pugazhenthi et al, 2011). Another member of timeestamily, neuronal CaM kinase |l
phosphorylates tau protein on ser262, an imposizm in the formation of neurofibrillary
tangles in AD (Yamauchi, 2005). FBXL13 (F-box arddine-rich repeat protein 13) belongs to
the F-box protein family. Members of this familyesa characteristic approximately 40-amino
acid F-box motif and take part in SCF (SKP1-CULbd* protein) complexes that act as
protein-ubiquitin ligases (Maglott et al, 2011).€Tbiquitin-proteasome system is involved in
protein turnover and degradation and is perturbefD (Riederer et al, 2011). An SCF complex
of another F box protein (FBXW?7) is involved in thegradation of NICD (NOTCH1 released

notch intracellular domain) and probably of PSEN#&g UniProt Consortium, 2013).
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In addition to the genes corresponding to the P scoring SNP-BN models in the
ADRC dataset, we found other genes in lower sco8N&-BN models with plausible
associations with LOAD. In the 8Gscoring model (dataset SNP rs7793977), gene PEjédn
homolog (Drosophila)], also known as GSAP (gamn@aetase-activating protein), is known to
increase amyloid beta production (Maglott et al, 20In the 198 scoring model, (dataset SNP
rs6534145), gene PDESA (phosphodiesterase 5A, cGMeHic) could be implicated to LOAD
pathogenesis via two different mechanisms. PDESAssbstrate of CASP3 (caspase 3) (Frame
et al, 2001), which in turn has been shown to belued in the early synaptic dysfunction in a
mouse model of AD (D’Amelio et al, 2011). It has@been shown that inhibition of PDE5SA
results in a decrease in the transcription of Wo#tenin (Tinsley et al, 2011). A reduction in
Whnt signalling has been implicated in the amylogtiebdependent neurodegeneration in LOAD
(Inestrosa & Toledo, 2008).

While BCM has been applied to low dimensional sgtithdata with good results
(Visweswaran & Wong, 2009), in this paper we hgweliad it to GWAS datasets. BCM has
several advantages. It is computationally moreieffit than the widely used MDR
(Visweswaran, Wong & Barmada, 2009). Since BCM ukedBayesian paradigm, the BCM
score represents a coherent way to combine knoeledity data. Biological knowledge or
results from analyses of earlier studies can bedewtas a prior distribution over the models that
can then be used in Equation 1. Use of informaiiv@rs is becoming common in the analysis of
microarray expression studies, and a similar gyatan be employed for genomic data.

A limitation of our study is the use of GWAS datizseslated to a single disease,
although it is an important disease. In future aesle, we plan to apply and investigate the utility

of BCM on GWAS datasets related to additional dissaAnother limitation is the use just 10
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409

previously known LOAD-associated SNPs. In futurekyave plan to explore the use of a larger
set of known LOAD associated SNPs that will incl@&MPs with weaker evidence of being
associated with LOAD. In addition, we plan to stuldg effect of excluding the APOE SNPs
rs429358 and rs7412 which are present in every |g&Rve examined for biological

plausibility. Another limitation is that we did nase informative prior probabilities for encoding
prior knowledge from the literature and previous &8%. BCM can be extended easily to allow
the incorporation of informative priors and inclusiof informative priors in the analysis is an

interesting area for study.

Conclusion

We applied BCM to two LOAD GWAS datasets to idegnphirs of SNPs that in combination
have high statistical association with developnwntOAD. To reduce the large search space of
all possible parts of SNPs in a GWAS dataset weeice=d BCM to evaluate those SNP pairs
where one of the SNP was drawn from a set of 1@iquely known LOAD associated SNPs.
Our results identified several SNPs that have bickl evidence of being involved in the
pathogenesis of LOAD that would not have been ifledtby univariate analysis alone due to
small main effect but were identified in conjunctiwith another SNP. These results provide
support for applying BCM to identify potential geicevariants such as SNPs from high

dimensional GWAs datasets.
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Figures

Figure 1. A SNP-BN model where SNP& andX3 have an effect oA and the remaining SNPs
do not have an effect &b The table gives counts for the stateZ abnditioned on the joint

states ofX2 andX3.

Xz 0 1 2

X |ol12(0| 12 |0|1]2
Z=0| 2| 3(0|4|5|6|1(0]4
=1 3| 23| 3|6 |3]2|0]3

Figure 2. Plots of the distribution of BCM model scores floe top ranked 200 SNP-BN models
for the two datasets, ADRC and TGen. The scoreh®ADRC dataset (blue points)
correspond to the left hand Y axis, while thosetfier TGen dataset correspond to the right hand

Y axis. The dotted vertical line marks the top reeh00 SNP-BN models.
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Tables

Table 1Previously identified LOAD SNPs.

# Gene AlzGene Odds ratio p value ADRC re TGen re
SNP (95% CI) SNP SNP

1 | APOE4 | rs42935 | 3.685 (3.3-4.12 | <1E-5C Sam - Sami -

2 CR1 rs3€183671 | 1.174 (1.1-1.21 | 4.72E-21 Sam - rs665640 | 0.84(

3 | PICALM rs385117 | 0.879 (0.8-0.9) | 2.85E-20 Sam - rs711063 | 0.841

4 | MS4A6A | rs61093. | 0.904 (0.8-0.93 | 1.81E-11 Sam - rs57469! | 0.93¢

5 CD33 rs386544 | 0.893 (0.8-0.93' | 2.04E-10 Sam - Sami -

6 | MS4A4E rs67013' | 1.079 (1.0-1.11' | 9.51E-10 rs60055! 1 rs67630! 1

7 CD2AP rs934940 | 1.117 (1.0-1.16; | 2.75E-09 rs929655 1 rs929655 1

8 GAB2 rs237311 | 0.85 (0.7--0.94 Sam - Sami -

9 SORL1 rs228264 | 1.10(1.0-1.17 rs72660 0.92z | rs72660. | 0.922

1C TF rs104929 | 1.18 (1.0-1.31 Sam - Sami -

AlzGene SNRthe SNP in the AlzGene meta-analysis, along thighrelevant odds ratios and p values
(the latter for those SNPs with p values <0.000BDRC SNPthe corresponding SNP in the ADRC
dataset, along with the r2 scor&@§en SNPthe corresponding SNP in the TGen dataset, aldtigthe
r2 scores for linkage disequilibrium.
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623 Table 2 Functional description and expression of genssaated with the top 30 dataset SNPs

624 in the ADRC dataset.
Gene Name Description Expression in AD 1-SNP| p value of
Symbol model | pair from
(SNP) rank PLINK

APOC1 Apolipoprotein (-I Appears to modulate tt Overexpresse (Lukk | 2 0.332¢
(rs4420638) interaction of APOE with et al, 2010)

beta-migrating VLDL. Binds|

free fatty acids.
TOMM40 Translocase of outt Channe-forming subunit o | Underexpresse (Lukk | 3 0.413¢
(rs157582) | mitochondrial membrane | the translocase of the et al, 2010)

40 homolog mitochondrial outer

membrane (TOM) complex,

essential for protein import

into mitochondria.
APOE Apolipoprotein ApoOE is essential for tt Overexpresse (Lukk | 5 0.817:
(rs7412) normal catabolism of et al, 2010)

triglyceride-rich lipoprotein

constituents. Known risk

factor for LOAD.
SNTG1 Gammi-1-syntrophir Specifically epressed in th | Overexpresse (Lukk | 2490¢ | 0.00454i
(rs16914489 brain, highly expressed in | et al, 2010)

the cortex. Organizes the

subcellular localization of a

variety of proteins.
TMEM217 Transmembrane prote Expressed in the bre - 458¢ 0.00464.
(rs9470543) | 217
SMADG6 Mothers against DP Negative regulation (BMP | Underexpresse (Lukk | 41282 | 0.000099
(rs3934907) | homolog 6 and TGF-beta/activin- et al, 2010)

signaling. BMP-6 is

increased in AD brains and

leads to impaired

neurogenesis (Crews et al,

2010). Reduced TGF-beta

signaling is involved in

neurodegeneration and

promotes AD like changes in

mice (Tesseur et al, 2006).
NPAS: Neuronal PAS doain Transcription factor. Ma Overexpresse (Lukk | 108¢ 0.122¢
(rs4981180) | protein 3. regulate genes involved in | et al, 2010)

neurogenesis. Associated

with schizophrenia and

mental retardation
NTM Neurotrimin May promote neurit Overexpresse(Lukk | 1220¢ | 0.142:
(rs11222692 outgrowth and adhesion. | et al, 2010)

NTM lies at locus 11925,

which has been associated

30
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with AD (Blacker et ¢,
2003; Liu et al, 2007).

PPAPDC1A
(rs4752432)

Phosphatidic aci
phosphatase type 2 domg
containing 1A

n

6852

0.396:

NPFF
(rs8192593)

Neuropeptide F-amide
peptide precursor

Modulation of morphin-
induced antinociception.

3981

0.125:

SLC25A21
(rs7140725)

Solute carrier family 2!

Known also as ornithin
decarboxylase (ODC).
Mitochondrial oxoadipate
carrier, part of polyamine
synthesis pathway.

Overexpresse
(Bernstein & Miiller,
1999; Nilsson et al,
2006)

444

0.0676°

RAB23
(rs182662)

Member RAS oncoger
family

Intracellular proteir
transportation. Regulated b
mMiRNA155, which also
regulates PICALM (a knowr
AD association).

Underexpresse (Lukk
y et al, 2010)

I

9¢

0.0825:

UNC5D
(rs4577954)

unc-5 homolog D (C
elegans)

Netrin receptor: netrins a
secreted proteins that direc
axon extension and cell
migration during neural
development. APP also
binds Netrin-1 and in
transgenic mice this
suppresses amyloid beta
peptide production
(Lourenco et al, 2009).

6397:

0.673:

CHD9
(rs3852742)

Chromodomain helicas
DNA binding protein 9,
PPARA -interacting
complex 320 kDa protein

Transcriptional c-activator
for PPARA. The APOE gen
promoter has a binding site
for PPAR alpha. Low CHDY
activity could reduce apoE
levels. Increase in APOE
transcription has been show
to clear amyloid beta in AD
mouse models (Cramer et 4
2012).

Overexpresse (Lukk
eet al, 2010)

n

1

1061

0.0469¢

CNTN4
(rs9819935)

Contectin 4, Brair-derived
immunoglobulin
superfamily protein 2

Mainly expressed in brail
Neuronal membrane proteir
that may play a role in the
formation of axon
connections in the
developing nervous system
Associated with

N

214¢

0.00238i
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Spinocerebellar Ataxie
Amyotrophic Lateral
Sclerosis, 3p deletion
syndrome.

625
626 1-SNP model rankank of the corresponding SNP in terms of univarledsSNP model score
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627

628 Table 3.Functional description and expression of genescéstea with the top 30 dataset SNPs

629

in the TGen dataset.

Gene
Symbol
(SNP)

Name

Description

Differential
Expression in AD

1-SNP
model
rank

p value of
pair from
PLINK

APOE 2
(rs7412)

Apolipoprotein E

ApoE is essential for tr
normal catabolism of
triglyceride-rich lipoprotein
constituents. Known risk
factor for LOAD.

Overexpresse (Lukk
et al, 2010)

0.0599:

APOC1
(rs4420638)

Apolipoprotein (-1

Appears to modulate tt
interaction of APOE with
beta-migrating VLDL. Binds
free fatty acids.

Overexpresse (Lukk
et al, 2010)

0.70¢

C10orfl1
(rs7079348)

Chromosome 10 ope
reading frame 11

A brair-expressed gen
Haploinsufficiency of
C10o0rfl11 contributes to the
cognitive defects in 10922
syndrome (Tzschach et al,
2010).

0.00962:

VWC2
(rs10499687)

von Willebrand factor (
domain-containing proteir]
2 (Brorin, Brain-specific
chordin-like protein)

Encodes a secreted bc
morphogenic protein (BMP)
antagonist. The encoded
protein is possibly involved
in neural function and
development and may have
role in cell adhesion. BMP-6
is increased in AD brains an
leads to impaired
neurogenesis (Crews et al,
2010).

Underexpresst
(Webster et al, 2009)

12

0.769¢

PSD3
(rs17126808)

Pleckstrin and Sec
domain containing 3

Guanine nucleotide exchan
factor for ARF6 that
contributes to the regulation
of dendritic branching (The
UniProt Consortium, 2013).

Overexpresse (Lukk
et al, 2010)

34

0.00162:

GXYLT2
(rs3732443)

Glucoside
xylosyltransferase 2

Elongates the -linked
glucose attached to EGF-likg
repeats in the extracellular
domain of Notch proteins
(The UniProt Consortium,
2013), which are substrates
y-secretase, the enzyme
involved in amyloid beta
production (Frykman et al,

Underexpressed in
> murine AD model
(D’Amelio et al, 2011)

of

0.211
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2012.

GABBR2
(rs2779550)

Gammgiaminobutyrc acid
(GABA) B receptor, 2

Target for autophag
regulation in
neurodegenerative diseases
(Lipinski et al, 2010).

Overexpresse (Lukk
et al, 2010)

391

0.000294

ENPPZ
(rs16892852)

Ectonucleotide
pyrophosphatase/phosph
diesterase 2

Hydrolyzes
0lysophospholipids to produce
lysophosphatidic acid (LPA)

in extracellular fluids.
Predominantly expressed in
brain, placenta, ovary, and
small intestine. Secreted by
most body fluids including
serum and cerebrospinal flui
(The UniProt Consortium,
2013).

Overexpresse (Lukk
2 et al, 2010)

92

0.0485:

GLP1R
(rs910171)

Glucagor-like peptide 1
receptor

Member of theglucagon
receptor family (also include
glucagon, GLP-2, secretin,
GHRH and GIP receptors).Ir
the brain located in

Protective against amyloid
beta accumulation in rats
(Perry & Greig, 2005).

hypothalamus and brainsten.

Overexpresse (Lukk
set al, 2010)

19¢

0.0146:

MOSC1
(rs746767)

MOCO sulphurase -
terminal domain
containing 1

A mitochondrial
oxidoreductase, cofactor:
molybdenum, is expressed i
the brain. MOSC1 is a target
for miR-129-5p, like
GABBR2, and miR-155, like
PICALM.

—

66

0.0450°

TM4SF20
(rs4408717)

Transmembrane 4 L s
family member 20

Tetraspannin superfami
member. Tetraspanins are
often thought to act as
scaffolding proteins,
anchoring multiple proteins t
one area of the cell
membrane. Other tetraspani
superfamily members have
been implicated in Notch
signaling and g-secretase
activity modulation (Dunn et
al, 2010).

O

=

95

0.00449:

630
631

1-SNP model rankank of the corresponding SNP in terms of univarletSNP model score
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