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Abstract

Evolutionary process has selected for inherently unstable physiological
systems in higher animals that can react swiftly to patterns of threat or
affordance, for example blood pressure and the immune response. How-
ever, these require ongoing strict regulation: unregulated blood pressure
is fatal, and immune cells can attack ‘self’ tissues. Consciousness, per-
haps the most sophisticated rapid large-scale neural process, demands
high rates of metabolic free energy to both operate and regulate the basic
physiological machinery. Both the ‘stream of consciousness’ and the ‘river-
banks’ that confine it to useful realms are constructed and reconstructed
moment-by-moment in response to highly dynamic internal and environ-
mental circumstances. Using an information bottleneck method that links
control and information theories, it is relatively easy to show that rapid
response based on instability and its stabilization will always require high
rates of metabolic free energy. In sum, neural structures in higher animals
are highly ‘coevolutionary’, responding both to environmental signals and
to signals from other physiological systems, and stabilizing coevolutionary
cognitive structures is as difficult as programming them. Consciousness
appears fundamentally unstable, and the necessary synergism between
conscious action and its regulation underlies the ten-fold higher rate of
metabolic energy consumption in human neural tissues. Implications for
the etiology of certain psychiatric disorders are obvious.

Key Words: control system, Data Rate Theorem, information bottleneck,
metabolic free energy, rate distortion theorem

*Wallace@nyspi.columbia.edu, rodrick.wallace@gmail.com

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1236v2 | CC-BY 4.0 Open Access | rec: 21 Jul 2015, publ: 21 Jul 2015



1 Introduction

Why do neural tissues in humans consume metabolic free energy at ten times
the rate of other tissues (Clarke and Sokoloff 1999)? The simplistic answer is
that, in humans, consciousness must operate with a time constant of a hundred
milliseconds, and straightforward adaptation of the Arrhenius reaction rate law
suggests an exponential increase of neural reaction rate with the rate of adeno-
sine triphosphate (ATP) consumption. While this surely accounts for substan-
tial increase in energy demand, as we will show below, an order of magnitude
difference in energy consumption seems somewhat excessive. Is more going on?
Here, we will argue that, in addition to the matter of a short time constant,
metabolic free energy must be supplied to regulatory systems that stabilize con-
sciousness as an inherently unstable phenomenon constrained by the Data Rate
Theorem, necessitating independent metabolic free energy supplies for control
purposes.

A control theory digression. At the beginning of World War II, according
to report, British fighters were close adaptations of training aircraft that were
inherently stable, in the sense that the aerodynamic center of pressure (CP) was
well behind the machine’s center of gravity (CG). Thus, hands-off, a perturbed
aircraft would, after a few oscillations, return to stable flight. Early German
fighters had less separation between CG and CP and were far harder to fly, but,
in consequence, could turn on a dime, and were significantly better in high-speed
combat maneuvers than early British fighters, with serious consequences for the
Allies. Current fighter jets are, by contrast, inherently unstable, thus even
more highly maneuverable, and must be flown-by-wire using three independent
computers which operate controls using high-speed majority-voting rules. For
such machines, regulation is everything.

Indeed, for many physiological systems, regulation is likewise — almost —
everything. Three examples.

Even our basic multicellularity seems inherently unstable: cancerous ‘cheat-
ing’ is expected to be an ongoing threat to multi-celled organisms (Aktipis et
al. 2015). Nunney (1999) looked at cancer occurrence as a function of animal
size, arguing that, in larger animals, whose lifespan grows as about the 4/10
power of their cell count, prevention of cancer in rapidly proliferating tissues
becomes more difficult in proportion to size. Cancer control requires the de-
velopment of additional mechanisms and systems to address tumorigenesis as
body size increases — a synergistic effect of cell number and organism longevity.
This pattern may represent a real barrier to the evolution of large, long-lived
animals, and Nunney predicts that those that do evolve have recruited addi-
tional controls over those of smaller animals to prevent cancer. Different tissues
may have evolved markedly different tumor control strategies, all energetically
expensive, using different complex signaling strategies, and subject to a mul-
tiplicity of reactions to signals, including, in social animals like humans, those
related to psychosocial stress.

The immune system, seen as an independent subcomponent of the more gen-
eral tumor control system (Atlan and Cohen 1998), is also inherently unstable:
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failure of differentiation between ‘self’ and ‘nonself’ leads to carcinogenic chronic
inflammation (Rakoff-Nahoum 2006) and autoimmune disorders (Mackey and
Rose 2014). The immune system must, then, both respond quickly to injury or
pathogenic challenge and yet be closely regulated to avoid self-attack.

Unregulated blood pressure would be quickly fatal in any animal with a
circulatory system. The associated baroreceptor control reflex is not simple
(Rau and Elbert 2001), but can be inhibited through peripheral processes, for
example under conditions of high metabolic demand. Higher brain structures
modulate the reflex, for instance, when threat is detected and fight or flight
responses are being prepared. This suggests, then, that blood pressure control
is a broad and actively regulated modular physiological system.

The stream of consciousness, or whatever metaphor one prefers, seems sim-
ilarly regulated, and high speed mechanisms, in concert with high speed regu-
lators, will require a high rate of metabolic free energy.

2 Reaction rate

Physiological processes such as wound healing, the immune response, tumor
control, and animal consciousness all represent the evolutionary exaptation of
inevitable information crosstalk into dynamic processes that recruit sets of sim-
pler cognitive modules to build temporary working coalitions that address par-
ticular patterns of threat and opportunity confronting an organism (Wallace
2012). Such tunable coalitions operate, however, at markedly different rates.
Wound healing, depending on the extent of injury, may take 18 months to com-
plete its work (Mindwood et al 2004). Animal consciousness typically operates
with a time constant of a few hundred milliseconds. How can phenomena acting
on such different rates be subsumed under the same underlying mechanism?
Adaptation of Arrhenius’ law (Laidler 1987), which predicts exponential differ-
ences in reaction rate with ‘temperature’, in a large sense, produces a first ap-
proximation to the result, recognizing that cognitive phenomena are inherently
nonequilibrium. That is, a large class of cognitive processes can be associated
with dual information sources (Wallace 2012) for which palindromes are highly
improbable. The rate of biocognition, however, appears exponentially driven by
the rate of available metabolic free energy as a temperature analog.

The energetics of biological reactions are remarkable: at 300 K, molecular en-
ergies represent approximately 2.5 KJ/mol in available free energy. By contrast,
the basic biological energy reaction — the hydrolysis of adenosine triphosphate
(ATP) to adenosine diphosphate — under proper conditions at 300 K, produces
some 50 KJ/mol. in reaction energy. This is equivalent to a ‘reaction tem-
perature’ of 6000 K. Increasing the rate of ATP delivery to one kind of tissue
an order of magnitude over any others provides sufficient energy for very rapid
biocogniton.

The question is how such rapid biocognition is parceled out between con-
sciousness itself and the mechanisms that must regulate and stabilize it.

In more detail, given a chemical reaction of the form a A+bB — pP+qQ, the
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rate of change in (for example) the concentration of chemical species P (written
[P]) is often determined by an equation like

d[P]/dt = k(T)[A]"[B]"™ (1)

where n and m depend on the reaction details. The rate constant k is expressed
by the Arrhenius relation as

k = aexp[—FE,/RT) (2)

where « is another characteristic constant, F, is the reaction activation energy,
T is the Kelvin temperature and R a universal constant. exp[—E,/RT] is, using
the Boltzmann distribution, the fraction of molecular interactions having energy
greater than F,.

The inherently nonequilibrium nature of cognition, however, requires a slightly
more sophisticated treatment. Following Wallace (2005, 2012), cognition can of-
ten be associated with a dual information source. Consciousness appears to be
largely an all-or-nothing phenomenon (Sergeant and Dehaene 2004), so that
conscious signal perception must exceed a threshold before becoming entrained
into the characteristic general broadcast.

A direct information theory argument focuses on the Rate Distortion Func-
tion (RDF) R(D) associated with the channel connecting the cognitive indi-
vidual with an embedding and embodying environment. R(D) > 0, a convex
function (Cover and Thomas 2006), defines the minimum rate of information
transmission needed to ensure that the average distortion between what is sent
and what is received is less than or equal to D > 0, according to an appropriate
distortion measure. Assuming a threshold Ry for conscious perception of an
incoming signal, we can, following Feynman’s (2000) identification of informa-
tion as a form of free energy, write a Boltzmann-like probability for the rate of
cognition as

f;j exp[—R/wM]dR

Jo° exp[-R/wM]dR

P[R > Ry] = = exp[—Ro/wM] (3)

where M is the supplied rate of metabolic free energy, w a constant (representing
entropic loss-in-translation), and figure 1 follows.

If we define an efficiency measure as (cognition rate)/M, we see that energy
efficiency peaks at a relatively low cognition rate. Indeed, a simple calcula-
tion shows that exp[—k/M]/M has its maximum at M = k. The form of
exp[—k/M]/M is distinct, and closely similar to what has been found in other
recent work. Using numerical models of optimal coding and information trans-
mission in Hodgkin-Huxley neurons under metabolic constraints, Kostal and
Kobayashi (2015) find an almost exactly similar efficiency curve. Their treat-
ment, however, goes beyond ours and involves regimes determined by the critical
value of the effective reversal potential of their neural model.

For mammals, since body temperature remains constant, the rate of avail-
able metabolic free energy — dependent on mitochondrial function — serves as a
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Figure 1: ‘Arrhenius’ relation for rate of cognition as a function of the rate of
available metabolic free energy M, along with the efficiency measure of rate per
unit metabolic energy. An order of magnitude increase in such free energy can
enable several orders of magnitude increase in the rate of cognition, although
the point of greatest efficiency is at relatively low values of M: it is easy to
show that the efficiency measure exp[—k/M]/M has its maximum at M = k.
Decline in M below the shoulder of the curve triggers catastrophic collapse of
cognition.
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temperature index for rates of biocognition. This determines the characteristic
rate of chemically-generated consciousness, or of the individual lower-level cog-
nitive modules that come together in a temporary assemblage to form such an
analog. Neural tissues, in humans consuming metabolic energy at an order of
magnitude greater rate than other tissues, thus can provide cognitive function
many orders of magnitude faster than similar physiological phenomena.

But is this the whole story? Kostal and Kobayashi (2015) argue that effi-
ciency matters in neural process, so that regimes of lower energy consumption
may be favored over the highest cognitive rates. But, as Ristroph et al. (2013)
argue, inherent instability, in itself, allows extremely rapid responses that have
been strongly selected for. Here, we will argue that regulation of such phenom-
ena must consume significant metabolic free energy, in addition to that needed
for (relatively) rapid cognition.

How do we understand the regulation of inherently unstable control systems?
Two fundamental relations, the Data Rate and Rate Distortion Theorems, are a
necessary foundation. Their convolution, we shall show, provides further insight
on metabolic energy demands of high-speed cognition.

3 The Data Rate Theorem

The Data Rate Theorem (DRT), based on an extension of the Bode Integral
Theorem for linear control systems, describes the stability of feedback control
under data rate constraints (Nair et al. 2007). Given a noise-free data link
between a discrete linear plant and its controller, unstable modes can be sta-
bilized only if the feedback data rate H is greater than the rate of ‘topological
information’ generated by the unstable system. For the simplest incarnation, if
the linear matrix equation of the plant is of the form x;1; = Az; + ..., where
x; is the n-dimensional state vector at time ¢, then the necessary condition for
stabilizability is that

H > log[|detA"|] (4)

where det is the determinant and A" is the decoupled unstable component of A,
i.e., the part having eigenvalues > 1. The determinant represents a generalized
volume. Thus there is a critical positive data rate below which there does not
exist any quantization and control scheme able to stabilize an unstable system
(Nair et al. 2007).

The new theorem, in its various forms, relates control theory to information
theory and is as fundamental as the Shannon Coding and Source Coding The-
orems, and the Rate Distortion Theorem for understanding complex biological
phenomena.

Some thought suggests that, accepting Feynman’s (2000) insight that infor-
mation is simply a form of free energy, in biological circumstances, we can write
that M = m(#H), where M is the rate of metabolic free energy used to gener-
ate the control information rate H, and m is a sharply increasing monotonic
function, a consequence of massive entropic losses necessarily associated with
translation of metabolic energy to information. Equation (4) thus implies that
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there is a minimum necessary rate of free energy consumption below which it
is not possible to stabilize an inherently unstable biological control system. A
little more calculation, however, provides a much deeper result.

4 The Rate Distortion Theorem

Suppose a sequence of signals is generated by a biological information source
Y having output y™ = y1,y2,.... This is ‘digitized’ in terms of the observed
behavior of the system with which it communicates, for example a sequence of

‘observed behaviors’ ™ = by, bo,.... Assume each b" is then deterministically
retranslated back into a reproduction of the original biological signal, b™ —
9" = U1, Yo, .-

Define a distortion measure d(y,§) comparing the original to the retrans-
lated path. Many distortion measures are possible. For example, the Hamming
distortion is defined simply as d(y,9) = 1,y # §,d(y,9) =0,y = 3.

For continuous variates, the squared error distortion measure is just d(y, §) =
(y—9)*

There are many possible distortion measures. The distortion between paths
y™ and " is defined as

A", ") = =Y d(y;, §5) (5)
j=1

3=

A remarkable characteristic of the Rate Distortion Theorem is that the basic
result is independent of the exact distortion measure chosen (Cover and Thomas
2006). We shall iterate the Data Rate Theorem via the information bottleneck
method of Tishby et al. (1999), and use H of the Data Rate Theorem as the
distortion measure.

Suppose that with each path y™ and b™-path retranslation into the y-language,
denoted g", there are associated individual, joint, and conditional probability

distributions p(y"), p(9"),p(y",9"), p(y"[9")-
The average distortion is defined as

D= "ply")dy",i") (6)

It is possible to define the information transmitted from the Y to the Y
process using the Shannon source uncertainty of the strings:

I(Y,Y) = HY) - H(Y[Y) = HY) + H(Y) - H(Y.Y) (7)

where H(...,...) is the joint, and H(...|...) the conditional, Shannon uncertainties
(Cover and Thomas 2006).

If there is no uncertainty in Y given the retranslation Y, then no information
is lost, and the systems are perfectly synchronous.

This will almost never be true.
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The rate distortion function R(D) for a source Y with a distortion measure
d(y,9) is defined as

R(D) = min I(Y,Y) (8)
p9) ), oy PO)P(5)d(y,5) <D

The minimization is over all conditional distributions p(y|§) for which the
joint distribution p(y, ) = p(y)p(y|§) satisfies the average distortion constraint
of having average distortion < D.

The Rate Distortion Theorem states that R(D) is the minimum necessary
rate of information transmission which ensures the communication between the
biological vesicles does not exceed average distortion D. Thus R(D) defines
a minimum necessary channel capacity. Cover and Thomas (2006) or Dembo
and Zeitouni (1998) provide details. The rate distortion function has been
calculated for a number of systems, often using Lagrange multiplier or Khun-
Tucker optimization methods.

Cover and Thomas (2006, Lemma 13.4.1) show that R(D) is necessarily
a decreasing convex function of D for any reasonable definition of distortion.
That is, R(D) is always a reverse J-shaped curve. This will prove crucial for the
overall argument: convexity is an exceedingly powerful mathematical condition,
and permits deep mathematical inference (Rockafellar 1970, Ellis (1985, Ch.
VI). This is, indeed, the point from which all else follows. We will use the
Gaussian channel as an easily calculated example, but the central results are
quite general, and will drive the final argument.

For the standard Gaussian channel, having white noise with zero mean and

variance o2, and using the squared distortion measure,

R(D) =1/2log[0?/D],0 < D < ¢*
R(D)=0,D > o 9)

5 Elementary Rate Distortion dynamics

Following Wallace (2015a), for the Gaussian channel, we can define a ‘Rate
Distortion entropy’ as the Legendre transform

Sr = R(D) — DAR(D)/dD = 1/2log[o®/D] +1/2 (10)
The simplest nonequilibrium Onsager equation (de Groot and Mazur 1984)
is
dD/dt = —pudSgr/dD = /2D (11)
where t is the time and g is a diffusion coefficient. This has the solution

D(t) = Vil (12)

which is the classic outcome of the diffusion equation. Such correspondence
reduction serves as the foundation for arguing upward in both scale and com-
plexity.
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Regulation, however, does not involve the diffusive drift of average distortion.
Let M be the rate of metabolic free energy available for such regulation. Then
a plausible model, in the presence of an internal system noise 42 in addition
to the environmental channel noise defined by o2, is the stochastic differential
equation

dD, = (2 — il
= ( F(M))dt + — D;dW; (13)
2D, 2
where dW; represents unstructured white noise and F'(M) > 0 is a monotoni-
cally increasing function in the rate of metabolic free energy M.
This relation has the nonequilibrium steady state expectation

I
2F(M)

Dyss = (14)
Using the Ito chain rule on equation (13) (Protter 1990; Khasminskii 2012),
it is possible to calculate the variance in the distortion as E(D?) — (E(Dy))?.
Letting Y; = D? and applying the Ito relation,
g 2
- F(M) + ZYt]dt + B2Y: dW; (15)

I
VY,

where (3%/4)Y; is the Ito correction to the time term of the SDE.

No real number solution for the expectation of Y; = D? is possible unless the
discriminant of the resulting quadratic equation is > 0, producing a minimum
necessary rate of available metabolic free energy for regulatory stability defined

by
2
L2
=2

aY; = [2/%(

F(M) Vi (16)
Values of F'(M) below this limit will trigger a phase transition into a disinte-
grated, pathological, system dynamic in a highly punctuated manner. Wallace
(2015a) uses a Black-Scholes model to calculate the form of F'(M), and to solve
for M in terms of system parameters. Applying the inverse of the function F to
equation (16) gives a slightly different form of the Data Rate Theorem, in terms
of minimum necessary metabolic free energy. Similar models can be constructed
using the ‘natural’ channel having the Rate Distortion Function R(D) = 5/D.
We can extend the Data Rate Theorem by iterating the argument for any
convex Rate Distortion Function, via the information bottleneck method.

6 A Data Rate index theorem model

The Data Rate Theorem states that there is a minimum necessary rate of control
information needed to stabilize an inherently unstable system. Is this, in itself,
a stable condition? That is, once a stabilizing control information rate has
been identified, is that the whole story, or are there other dynamic processes
to consider? A control system has at least three components: the structure to
be controlled, the mechanism for control, and the underlying ‘program’ of that
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mechanism. The ‘mechanism’, in our case, is the interacting set of high-speed
neural systems that becomes the global broadcast of consciousness.

An approach to the dynamics of control stability in such a system — and
the rate of metabolic free energy required — is possible using a variant of the
information bottleneck of Tishby et al. (1999).

We envision an iterated application of the Rate Distortion Theorem to a
control system in which a series of ‘orders’ y™ = 1, ..., yn, having probability
p(y™), is sent through and the outcomes monitored as §™ = 1,...,0n. The
distortion measure, however, is now taken as the minimum necessary control
information H(y™,§"), defining an average ‘distortion’ H as

H=> ply")H(y",§") =0 (17)

We can then define a new, iterated, Rate Distortion Function R(?—Al) and a
new ‘entropy’ as

S =R(H) — HAR/dH (18)

We next invoke the analog to the ‘diffusion’ equation (11),
dH/dt = —pdS /dH (19)

where ¢ is the time and y a diffusion coefficient.
Since R is always a convex function of H (Tishby et al. 1999; Cover and
Thomas 2006), this relation has the solution

H(t) = f(t) (20)

where f(t) is a monotonic increasing function of ¢. Thus, in the absence of
continuous regulation, in this model the needed control signal will relentlessly
rise in time, surpassing all possible bounds, and hence triggering a failure to
control an inherently unstable system.

The next stage involves generalization of equation (18) in the direction of
equation (13) to allow calculation of a nonequilibrium steady state in a model
for ongoing, continuous investment metabolic energy and other resources at a
rate M in order to regulate the system.

As a further consequence of the convexity of the Rate Distortion Function,
this too will have an expectation analogous to equations (14) and (16), so that
— for the moment ignoring stochastic effects —

Hiss < 1/g(M) (21)

where g(M) is monotonic increasing in the metabolic energy rate M.

Thus the magnitude of the ‘control distortion’ 7—1,155 needed to stabilize high
level animal cognition — consciousness — can be constrained by the delivery of
regulatory metabolic free energy at a sufficiently high rate, in addition to the
rate of metabolic free energy necessary to operate the underlying machinery of
consciousness itself.

10
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Since we do not know the mathematical form of R(H), we cannot carry
out the calculation leading to equation (16) or the explicit results of Wallace
(2015a), based on the assumption of a Gaussian channel.

We can, however, take stochastic effects into account and generalize equation
(19) in the direction of equation (13) to derive an index theorem, in the sense
of Atiyah and Singer (1963) and Hazewinkel (2002). An index theorem is an
analytic relation whose solutions represent different topological modes of an un-
derlying manifold, in a large sense. The argument is straightforward. Imposing
white noise on the system, equation (19) becomes

2
d%:GWMM%—FwMﬁ+%ﬁAm (22)

Setting the time-average expectation of d’}:lt to zero
<dH, >=0 (23)

defines the index theorem, whose multiple possible solutions represent quasi-
stable modes of the regulatory system. These may range from simple fixed
points to closed ‘Red Queen’ cycles or pseudorandom ‘strange attractors’ within
a bounded region. Below, we will examine ‘directed transitions’ between such
modes representing large deviations in the sense of Champagnat et al. (2006).

7 A phase change model

Indeed, more subtle regulatory behaviors, following Parker et al. (2002), seem
likely to involve bifurcations or phase transitions, since biological systems are
cognitive at every scale and level of organization, and cognition can often be
represented in terms of groupoid symmetries that generalize the group structures
familiar to the dynamics of simple physical systems (e.g., Wallace 2012). An
outline of the argument is as follows.

Let T =1/g(M), so that the nonequilibrium steady state ‘information cost’
of stabilizing an inherently unstable (and inherently cognitive) biological system
grows with the ‘temperature’ measure 7. This is, we argue, analogous to phase
transitions arguments in statistical physics that use a Morse Function argument,
as follows.

A pseudoprobability over the unstable, regulated cognitive system charac-
terized by a groupoid {G;} can be constructed as

expl—Ha, /xT)
5, expl~He, /<T]

where k is a characteristic constant. The sum is to be taken over all possible
subgroupoids of the largest embedding cognitive symmetry groupoid.

A relatively simple Morse Function, leading to Pettini’s (2007) topological
hypothesis in this system, that can be built from this is the ‘groupoid free

(24)

11
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energy’ F defined as

exp[—F/KkT] = Zexp[—/}:[(;j/fiﬂ (25)

Using F, we impose a modified version of Landau’s spontaneous symme-
try breaking argument on the groupoid associated with the cognitive process
regulated by the average control information cost A.

Following Pettini (2007), changes in 7, an inverse function of available levels
of metabolic free energy, can lead to punctuated phase transition/bifurcation
changes in the average control signal needed to stabilize an inherently unstable,
but consequently highly responsive, dynamic biological system.

Failure of metabolic free energy supply — from developmental disorder to
senescence — will lead to punctuated onset of dysfunction.

8 An optimization model

Something much like the multiple quasi-stable states implied by the develop-
ments leading to equations (23) and (25) can also be derived via an optimization
argument applied to the rate calculation of equation (3). The essential point
is that both consciousness and its necessary cognitive regulatory system(s) will
follow similar metabolic scaling functions, so that we can seek to maximize a
joint efficiency measure subject to constraint, applying the usual Lagrange mul-
tiplier argument. That is, letting the subscript C' represent consciousness and
R its regulatory machinery, we seek to maximize an efficiency functional

eXp[—kc/Mc] i eXp[—kR/MR]
Me Mp

(26)

subject to the constraint
Mc+Mrp=M (27)

The kx are appropriate constants and Mx is the metabolic free energy rate
for process X.
Taking
exp[—kc/Mc| | exp|—kr/MEg]

AM~, M = M, Mp—M 2
(Mg, Mg, \) Mo + M + AMMc + Mg ) (28)

gives the Lagrange optimization conditions as
Ve mp A =0 (29)

The resulting complicated third order equation for solution pairs Mg, Mg
implies the existence of several different possible (M-dependent) optimization
points for the system. In a sense, this represents yet another form of index
theorem relating solutions of an analytic equation to underlying topological
modes.

12
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Extending the perspective somewhat, as is well known, there are a number
of different stages to sleep, most notably NREM (non-rapid eye movement)
which involves low rates of blood flow to the brain, and REM sleep which can
rival or exceed conscious state blood flows. Again, sleep states must, like other
neural processes, also be highly regulated, and similar arguments may well carry
through.

Indeed, crudely, if we assume ko & kg in equation (26), direct calculation
shows a symmetric efficiency curve with equal peaks at two ends of the re-
lation M = Mg + Mg, as in figure 2. There, taking kx = 1, M¢c + Mp =
M = 10 we obtain maximum efficiency at the symmetric points (M¢c, Mg) =
(1.03,8.97), (8.97,1.03), suggesting an on/off conscious/sleep mode for such a
system in which ‘sleep’ may represent a parsimonious assumption of essential
maintenance duties by systems otherwise dedicated to the regulation of awake
consciousness. This is analogous to the immune system which, when not extin-
guishing the fires of infection, wound healing and malignancy, is deeply involved
with processes of routine cellular maintenance (Cohen 2000). This suggests that
sleep dysfunction may be very serious indeed.

Note that values of k¢ = kr > 1 generate much broader symmetric curves
with far less well-defined peaks, while values less than 1 are much more sharply
peaked. Unequal values raise or lower one or the other peak. Thus ‘tuning’
these parameters would provide significant added system control.

This argument can be generalized. The essence of the information bottleneck
method is use of an information measure as a distortion parameter. From our
viewpoint, however, metabolic free energy can also be taken as an information
index, and we can redo part of the calculation above from that perspective. Let
us define, then, a new ‘distortion’ parameter M x,X = C, R using something
like equation (17)

Mx = p(y")Mx(y",3") = 0 (30)

Now we can, as in the information bottleneck method, define new convex
‘rate distortion functions’ based on M r and MC. The sum of the new RDF’s also
represents a free energy equivalent, constrained by the condition M = MO +M R-
The energy equivalent of that RDF sum can then be written as a function of
MC, and, some thought shows, will necessarily be bi-convex, i.e., U-shaped, in
Mc, since Mr = M — Mc. A horizontal line at M then defines the possible
operating points of M¢ at high and low values of the index.

The question arises, how is the transition made between such operating
modes?

9 Transition dynamics
How does the consciousness/regulator structure — however we choose to char-
acterize it — make changes between the quasi-stable states that the different

modeling strategies above imply are central to the regulatory process? Indeed,
recent primate experiments imply that even routine conscious decision-making

13

Peer] PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1236v2 | CC-BY 4.0 Open Access | rec: 21 Jul 2015, publ: 21 Jul 2015



0.4

0.3

Index

0.2

ICiency

Eff

|| = —

0.1

Figure 2: Total consciousness-and-regulator efficiency as a function of the
metabolic free energy consumed by consciousness, M¢, for kx = 1, Mo+ Mg =
10. The maxima are at (1.03, 8.97) and (8.97, 1.03), suggesting sleep/awake
modes for consciousness. During sleep, ‘regulator’ systems for consciousness
may perform routine maintenance duties as does the immune system when not
fighting fires of infection, wound healing, or malignancy. Changing the values of
the kx markedly shifts the relative heights and widths of the peaks, suggesting
an added control mode.
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takes place in discrete steps (Latimer et al. 2015). Similar problems arise in
evolutionary theory. Taking the approach of equations (22) and (23) in an evo-
lutionary context, Champagnat et al. (2006) argue that the probability of a
‘large deviation’ driving the system from one quasi-stable mode to another is
given by a negative exponential of an entropy-like function

I=-Y" PjloglP] (31)

where the P; represent a particular probability distribution. This result — the
large deviations argument — is well known in numerous contexts under vari-
ous names — Sanov’s Theorem, the Gartner/Ellis Theorem, etc. (Dembo and
Zeitouni 1998). For the composite of human consciousness-and-regulation, we
argue, the transition between ‘states’ involves the effect of impinging informa-
tion sources. That is, Z is not simply an ‘entropy’ in this case, but represents
action of an external information source (or sources) that, iteratively, regulates
the internal regulators controlling individual consciousness.

A variant on this kind of approach would, for the optimization model, make
different values of the essential parameters M, ko and kg the outputs of another,
embedding, information source.

10 Discussion and conclusions

Evolutionary process has selected for unstable control systems in higher animals
that, among other things, can react swiftly to patterns of threat or affordance,
but require ongoing strict regulation at different scales and levels of organization
for their proper operation. Here, we have argued that consciousness, perhaps
the most significant and sophisticated rapid large-scale neural process, must be
supplied with high rates of metabolic free energy to both operate and regulate
the basic physiological machinery. That is, both the ‘stream of consciousness’
and the ‘riverbanks’ that confine it to realms useful to the animal are constructed
and reconstructed moment-by-moment in response to highly dynamic internal
and environmental circumstances. High speed response, as the second part of
this paper argues, requires considerable metabolic free energy.

Neural structures in higher animals are highly ‘coevolutionary’ in that they
respond both to incoming signals and to signals from other neural systems. It
has long been known that stabilizing coevolutionary computing systems is as
inherently difficult as programming them (Wallace 2016). Here, we argue that
consciousness is inherently unstable and that a necessary powerful synergism
between conscious action and its regulation is a large underlying contributing
factor to the ten-fold higher rate of metabolic energy consumption in human
neural tissues.

Working out the full details of the energy consumption tradeoffs between
rapid cognition and its necessary control machinery remains to be done, but
punctuated transition seems inherent.
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As has often been speculated, however, failure of regulation seems to underlie
many psychiatric disorders.

Emotions, Thayer and Lane (2000) assert, are an integrative index of individ-
ual adjustment to changing environmental demands, an organismal response to
an environmental event that allows rapid mobilization of multiple subsystems.
Emotions allow the efficient coordination of the organism for goal-directed be-
havior. When the system works properly, it allows for flexible adaptation of
the organism to changing environmental demands. An emotional response must
be regulated to represent a proper selection of an appropriate response and the
inhibition of other less appropriate responses from a more or less broad behav-
ioral repertoire of possible responses. From their perspective, disorders of affect
represent a condition in which the individual is unable to select the appropriate
response, or to inhibit the inappropriate response, so that the response selection
mechanism is somehow corrupted — regulation fails.

Gilbert (2001) similarly suggests that a canonical form of such corruption
is the inappropriate excitation of modes that, in other circumstances, represent
normal evolutionary adaptations, again representing a fundamental failure of
regulation.

The formal development thus extends the perspective of Wallace (2015¢)
on the pathologies of mitochondrial dysfunction toward realms of psychiatric
disorders.

However, atomistic, individual-scale regulation must be iterated to include
social and cultural influences. ‘Culture’, to use the words of the evolutionary
anthropologist Robert Boyd, ‘is as much a part of human biology as the enamel
on our teeth’, and this leads to extensions of the transition arguments above:
the principal environment of humans is other humans, and we are the naked
mole rats of primates. Thus social interaction and cultural heritage tend to
confine individual consciousness to realms leading to socially acceptable pheno-
types. Failure of such constraint is then socially constructed as misbehavior or
pathology.
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